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The percolation for interdependent networks with identical dependency map follows a second-

order phase transition which is exactly the same with percolation on a single network, while perco-

lation for random dependency follows a first-order phase transition. In real networks, the depend-

ency relations between networks are neither identical nor completely random. Thus in this paper,

we study the influence of randomness for dependency maps on the robustness of interdependent lat-

tice networks. We introduce approximate entropy(ApEn) as the measure of randomness of the de-

pendency maps. We find that there is critical ApEnc below which the percolation is continuous, but

for larger ApEn, it is a first-order transition. With the increment of ApEn, the pc increases until

ApEn reaching ApEn0c and then remains almost constant. The time scale of the system shows rich

properties as ApEn increases. Our results uncover that randomness is one of the important factors

that lead to cascading failures of spatially interdependent networks. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4939984]

The interdependent networks which fully consider the

interactions between networks have been used to model

real complex systems better. Robustness is one of the

most important properties for interdependent networks

especially spatially interdependent networks, since most

of the infrastructure networks are spatially networks. In

real interdependent networks, the dependency relation-

ship is not usually random. Thus, we analyze how the

randomness of dependency map affects the robustness of

interdependent lattices which are used to model the spa-

tially interdependent networks. We found that the ran-

domness of dependency map between networks is quite

critical for the robustness of interdependent lattices.

I. INTRODUCTION

Robustness is one of the most important properties of

complex networks and has been widely explored on single

networks in the last decade.1–8 However, complex systems

are rarely isolated. The more casual situation is that networks

usually interact with other networks such as transportation

networks and financial systems.9–13 In the case of interde-

pendent networks, conclusions are often far different from

single networks. In particular, a removal of a very small frac-

tion of nodes can lead to catastrophic failures on the whole

network.14 A theoretical framework based on percolation

theory has been established to analyze the resilience of inter-

dependent systems,9,15 and much details have been

explored.16–20 The fraction of interdependent nodes is a key

factor that will influence the phase transition of the net-

works.21,22 Also, the overlap of links can significantly

change the properties of the percolation, and there is a criti-

cal point above which the emergence of the mutually con-

nected component is continuous.20 The presence of degree

correlations in multiplex networks can modify drastically the

percolation threshold.18,19

Most previous models have focused on interdependent

random and scale-free networks in which space restrictions

are not considered. However, many real-world systems such

as power grid networks and computer networks are embed-

ded in two-dimensional space.23,24 In interdependent random

and scale-free networks, the overlap of links and degree cor-

relations will change the properties of phase transition.

Nevertheless, for spatially embedded interdependent net-

works which are modeled as square lattices, the overlap of

links or the degree correlations of nodes lose significance,

since their network topologies are identical. The spatially

interdependent networks are extremely vulnerable. Any frac-

tion of interdependent nodes will lead to first-order transi-

tion.23 From an identical dependency map to totally random

dependency map, the randomness of the dependency map

may be one of the most important factors leading to the

emergence of discontinuous percolation. In most real inter-

dependent systems, dependencies are neither totally random

nor identical. Researches on the resilience of intermediate

systems that lie somewhere between these two extremes are

of high practical significance and need further exploration.

From this perspective, we study the relationship between

the dependency’s randomness and stability of the system of

two interdependent spatially embedded networks. We use

approximate entropy(ApEn) as the measure of randomness.

One of the big challenges here is how to introduce controlled

degree of randomness into the system. Therefore, we propose

an intermediate model which describes the system witha)Electronic mail: li_lixiang2006@163.com
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dependency map between identical map and totally random

map. Inspired by the constructing procedure of the Watt-

Strogatz small-world model,25 starting from an identical de-

pendency map, we rewire each dependency link at random

with probability q. By increasing q from 0 to 1, the ApEn
increases monotonically. Therefore, the traverse of random-

ness can be generally represented by q. We reveal that there

is a critical value qc, below which the percolation transition

becomes continuous, whereas for any q> qc, the collapse is

discontinuous. Changing the topologies on a single layer, we

discover that qc is different for interdependent scale-free net-

works, Watts-Strogatz networks, and Erd}os-R�enyi networks.

There is another critical value q0c for the function pc VS q,

which is different from qc. The percolation threshold pc

increases with q when q < q0c and remains approximately

constant when q > q0c. Additionally, we present an analytical

method for time scale of cascade failures based on critical p

and find that the four topologies display rich transient prop-

erties when q changes from 0 to 1. Finally, we analyze the

influence of limited dependency length on spatial networks.

With the same dependency length, we show that a linearly

dependent system is always continuous, but not continuous

for some locally randomly dependent system. Our results

show that the randomness of dependency may be one of im-

portant factors for extreme vulnerability of spatially interde-

pendent systems.

II. MODEL DESCRIPTION

Our model of interdependent networks is realized via

two networks (N¼ 106) A and B under full dependency.

Here, one network is the copy of the opposite network and

their average degree hki¼ 4 (the same as a square lattice).

The degree distribution of the scale-free network is hki�k,

where k¼ 2.7. In each network, each node has two types of

links: connectivity link and dependency link. Also, every

node in network A is connected with one and only one node

in network B. For a square lattice, each node is connected to

its four nearest neighbors within the same lattice via connec-

tivity links. All dependencies in our model are mutual and

bidirectional. Dependency is taken to mean that if a node in

network A is removed from the system and a node in B that

depends on it will be removed from B as well. Thus failures

of nodes iterate until mutually connected giant component of

both networks emerges. This process is called cascade fail-

ures and see Methods for details of cascade process of the

system.

There are two extreme situations. (i) node i in A depends

on node j in the B such that j¼ i. We call it identical depend-

ency map (Fig. 1(a)). (ii) The random dependency map as

most papers considered (Fig. 1(d)). Like the constructing

procedure of the Watt-Strogatz small-world model, starting

from the identity dependency map, we rewire each depend-

ency link at random with probability q, while guaranteeing

that each node in A depends on one and only one node in

B(0� q� 1). We sample q¼ 0, 0.25, 0.50, 1 and plot them

in Fig. 1.

Note: We must figure out that our model is different

from partially interdependent lattices proposed by Bashan

et al.23 In partially interdependent lattices, there are interde-

pendent lattices with a fraction q of interdependent nodes

and the remaining 1� q of nodes autonomous. In our model,

however, the remaining 1� q nodes are connected with the

identical nodes in the opposite network. It is illustrated in

Fig. 2. In Fig. 2, we can see that the cascade failures process

differs much between these two models: with the same

q¼ 5/9 and p¼ 4/9, the size of the giant component in our

model is 0/9, while the size of giant component in partially

interdependent networks is 4/9. This apparently shows that

our model is different from partially interdependent lattices.

III. RESULTS

Entropy can be used to measure the randomness effec-

tively.26 In fact, approximate entropy(ApEn) is adopted in this

paper for computation convenience. When q¼ 0, ApEn is

nearly 0, and when q¼ 1, it reaches its maximum. The ApEn
is a continuous and monotonically increasing function of q
(Fig. 3). However, the randomness is not fully represented by

FIG. 1. The interdependent square lattices with the rewiring probability of

dependency links q¼ 0, 0.25, 0.50, 1.00, respectively. When q¼ 0, the de-

pendency map is an identical mapping, i.e., node i in network A is dependent

on node j in network B, where i¼ j (Fig. 1(a)). When q¼ 1.00, the situation

is the same as totally random mapping (Fig. 1(d)). When q¼ 0.25 or 0.5, the

situation is between both extremes (Figs. 1(b) and 1(c)).

FIG. 2. Difference of cascade failures between partially randomly interde-

pendent lattices and partially interdependent lattices. The blue points stand

for the survived nodes, while the red points stand for the failure nodes.

Figure sequence (a)–(e) stands for the cascade failures process in partially

randomly interdependent lattices with q¼ 5/9 (fraction of nodes that are ran-

domly dependent and the remaining 1� q of nodes are dependent with the

identical nodes in the opposite network) and p¼ 4/9 (fraction of nodes ini-

tially removed). Figure sequence (A)–(C) stands for the cascade failures pro-

cess in partially interdependent networks with q¼ 5/9 (fraction of nodes that

are dependent and the remaining 1� q are autonomous) and p¼ 4/9. It can

be obviously seen with the same q, the size of giant component in partially

randomly interdependent lattices is 0/9, while the size of giant component in

partially interdependent lattices is 4/9. The cascade failures process differs

for these two models.
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rewiring dependency links, since the locally randomly interde-

pendent lattices27 in which q¼ 1 is not totally randomly inter-

dependent but with length constraints. Then, considering a

more casual situation, the permutation of 1–N cannot be ex-

hausted by rewiring the dependency links of identical map at

probability q. But as the approximate entropy changes contin-

uously with q, we can traverse q to generally represent all ap-

proximate entropies.

Through simulation, we find that there is a critical

qc� 0.13 for a system of interdependent lattice networks

below which the percolation is second-order but first-order

above. In Fig. 4, we can see that for q¼ 0.1, the phase transi-

tion of the system is second-order since the decrease of giant

component occurs in multiple size steps (Dp). For q¼ 0.2

and q¼ 1.0, the giant component may completely collapse

by removal of a small fraction of nodes, characteristic of a

first-order transition (Fig. 4). There is another critical value

q0c, which is different from qc. The variation tendency of the

percolation threshold pc on the left side of q0c is distinct from

right side of it. When q is relatively small, pc increases

approximately linearly with q. And when q > q0c, pc remains

almost constant (Fig. 5). In other words, when q < q0c, the

more random the dependency map is, the more fragile the

system is.

Analogously, for interdependent scale-free networks,

Watts-Strogatz networks, and Erd}os-R�enyi networks, there is

also a critical qc. As the critical qc is different for different

interdependent networks, we define the qsl
c as qc of interde-

pendent square lattices. Similarly, we use qWS
c ; qER

c , and qSF
c

to stand for qc of interdependent Watts-Strogatz networks,

Erd}os-R�enyi networks, and scale-free networks, respectively.

We find that qsl
c ¼ 0:13 < qWS

c ¼ 0:52 < qER
c ¼ 0:61 < qSF

c

¼ 0:87 (Fig. 6). Additionally, pc of lattice network is gener-

ally greater than that of other networks. This means that a

system of interdependent scale-free networks is most robust

under random attacks, while the system of interdependent

square lattices is most vulnerable. A system of interdepend-

ent random networks is more stable than a small-world one

(Fig. 5).

The time scale of cascade failures, i.e., the time that the

interdependent networks needed to collapse to the stationary

state is an evidently important merit for system’s resilience.

When the system’s phase transition is first-order, the number

of iterations (NOI) increases and reaches its peak at pc and

goes quickly down to a small value with p (Fig. 7). And

when the system’s phase transition is second-order, the

FIG. 3. The value of ApEn under different q. When q¼ 0, ApEn is nearly 0,

and when q¼ 1, ApEn reaches its maximum. The ApEn is a continuous func-

tion of q, and it changes monotonously as the increment of q.

FIG. 4. Relations of the size of p1 at steady state after random failure of a

fraction 1� p (Dp¼ 10�3) of the nodes on two interdependent square latti-

ces, each of size 1000� 1000. The green circles, red squares, and blue trian-

gles stand for q¼ 0.1, q¼ 0.2, and q¼ 1.0, respectively. The numerical

results are obtained by averaging 100 realizations of networks. For q¼ 0.1,

the phase transition of the system is second-order since the giant component

emerges in multiple size steps (Dp). For q¼ 0.2 and q¼ 1.0, however, the

transition is first-order as the giant component collapses even by removing a

very small fraction of nodes.

FIG. 5. Percolation threshold pc VS q. The cyan circles, blue triangles, red

squares, and brown stars stand for pc of interdependent square lattices, Watt-

Strogatz networks, Erd€os-R�enyi networks, and scale-free networks, respec-

tively. There is a critical q0c, below which the pc increases almost linearly

with q, while pc remains almost constant when q � q0c. pc for interdependent

square lattices is greater than other three networks. This means that interde-

pendent square lattices are the most vulnerable for random attacks, while the

interdependent scale-free networks are the most stable system. For scale-

free networks, k¼ 2.7. And in Watts-Strogatz networks, the rewiring proba-

bility equals 0.5. The average degree of each network in all the four systems,

i.e., hki¼ 4. The numerical results are obtained by averaging 100 realiza-

tions of networks consisting of N¼ 106 nodes.
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number of iterations varies little with q. So, the NOI at pc is

an effective measure for time scale of the system. The NOI
at pc (i.e., NOIpc

ðqÞ) is a function of q. NOIpc
ðqÞ increases

quickly with q when q < q0c and declines very gently above

q0c for interdependent lattice networks. For interdependent

scale-free network, it increases until q0c and then starts to

decline. For interdependent random networks and small-

world networks, it increases monotonously with q, but the

variation tendency becomes nearly 0 above q0c (Fig. 8). All

four interdependent systems have variation tendency’s

changes around their own q0c. NOIpc
ðqÞ of interdependent lat-

tice networks is greater than those of scale-free, small-world,

and random networks when q < qsl
c . NOIpc

ðqÞ of interde-

pendent square lattice is smaller than those of all other three

network types when q > qER
c . The NOI reflects the time scale

of system collapse. Our results show that the transient char-

acteristics of the four systems go through rich changes with

the variation of q.

On the other hand, NOI strongly depends on system

size. Therefore, take interdependent square lattices as exam-

ple, we get simulation data of NOIpc
ðqÞ from systems whose

size ranges from N¼ 102 to N¼ 106. It is also true that

NOIpc
ðqÞ increases quickly with q when q < q0c and then

declines very gently when q is greater than q0c for interde-

pendent lattice networks. However, the critical value q0c con-

verges gradually from a relatively great value to around 0.38

with the increment of system size. The relationship between

critical value q0c and system size is shown in Table I.

Finally, we check locally interdependent networks in

which the distance between two interdependent nodes is

limited (d� r, i.e., jx1 � x2j � r and y1 � y2j � r in

Reference 27). For simplicity, we consider one more spe-

cial condition. Here, we split the whole network into small

blocks of size r * r, and dependency links are randomized

within each block. We find that there is critical distance

rc� 25 under which the percolation is continuous but dis-

continuous above rc (Fig. 9). The rc is greater than r0c in

Ref. 27 because the randomness(approximate entropy) here

is lower than that in Ref. 27 with the same distance. The

FIG. 6. Size of giant component at pc VS q. The brown, blue, cyan, and red

lines stand for size of giant component at pc of interdependent square latti-

ces, scale-free networks, Watt-Strogatz networks, and Erd}os-R�enyi net-

works, respectively. It can be clearly observed that qsl
c < qWS

c < qER
c < qSF

c .

For scale-free networks, k¼ 2.7. And in Watts-Strogatz networks, the rewir-

ing probability equals 0.5. The average degree of each network in all the

four systems, i.e., hki¼ 4. The numerical results are obtained by averaging

100 realizations of networks consisting of N¼ 106 nodes.

FIG. 7. The function of number of iterations (NOI) VS p (Dp¼ 10�2) in

interdependent lattice networks (q¼ 1). The numerical results are obtained

by averaging 100 realizations of networks consisting of N¼ 104 nodes. The

vertical red line is the critical line. On the left side of it, the system collapses

down (blue circle), while a giant component remains functional on the right

side (green circle). There is a sharp divergence of the NOI when p
approaches pc.

FIG. 8. The change of NOI at pc with q. The brown, cyan, red, and blue

circles stand for NOI at pc of interdependent square lattices, scale-free net-

works, Watt-Strogatz networks, and Erd€os-R�enyi networks, respectively.

For interdependent random networks and small-world networks, NOI

increases monotonously with q. However, for interdependent lattice net-

works and scale-free networks, there is one critical q0c. When q < q0c, the

NOI increases approximately linearly, and when q � q0c, the NOI starts to

decreases. For scale-free networks, k¼ 2.7. And in Watts-Strogatz networks,

the rewiring probability equals 0.5. The average degree of each network in

all the four systems, i.e., hki¼ 4. The numerical results are obtained by aver-

aging 100 realizations of networks consisting of N¼ 104 nodes.

TABLE I. The critical values of NOIpc
ðqÞ VS system size.

System size 102 1.6 � 103 104 1.6 � 105 106

Critical value 0.61 0.43 0.40 0.39 0.38
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corresponding approximate entropy ApEn� 0.923 of rc is

approximately equal to ApEnc. Compared with locally ran-

dom dependency, the linear dependency map is more ro-

bust. In linear dependency map in this paper, each node

(i, j) in network of size L� L is mapped to node

ðiþ c mod L; jþ b mod LÞ, where c and d are inte-

gers. In fact, it is also an isometric mapping. In linear de-

pendency map, the distance of dependency link r¼max(c,

d). For the linear dependency map, the percolation is

always continuous (Fig. 9). Although the dependency dis-

tance changes strongly, the approximate entropies of those

dependency maps are almost equal to 0. So, their percola-

tion properties are nearly the same as percolation on a sin-

gle lattice. It is thus clear that the randomness may be a

more important factor leading to cascade failures than de-

pendency distance.

Furthermore, it is possible that the randomness of de-

pendency is related to other metrics of interdependent net-

works such as dimension. The dimension of networks is a

function of the distribution of link lengths.28 For spatially em-

bedded networks, the dimension is one of the most fundamen-

tal quantities to characterize its structure and very likely will

influence its percolation property.28 However, to the best of

our knowledge, how interdependency relationships between

networks change the dimension of the system has not been

figured out so far. In Reference 27, the authors discovered

that the dependency length plays a critical role in the percola-

tion transition. However, we find that under linear dependency

map, the change of dependency length influences the percola-

tion property little. From the discrepancy of those two situa-

tions, it can be inferred that local property of dependency

relationship makes a notable difference. And, the local prop-

erty of dependency will directly influence the local topologi-

cal inter-similarity between networks. Randomness happens

to reflect the local property of dependency (we can see this

from the computation steps of approximate entropy in Section

Methods). In spatially interdependent embedded networks,

the local characteristics of dependency can be more intuitively

characterized as the relative length of dependency links.

Under linear dependency map, the relative length of depend-

ency links and the approximate entropy of dependency map

are nearly 0. No matter how large r is, they change little and

remain nearly 0, so the percolation changes little. On the other

hand, the smaller the relative length is, the less dimension is

changed from that of single network. There should exist some

relations between dimension and the randomness of the de-

pendency map.

IV. DISCUSSION

In many real interdependent systems such as coupled

power grid and communication network, the dependency

relationship is neither completely regular nor completely

random but lies somewhere between these two extremes.

The transition from regular to random dependency is one of

the keys to extreme vulnerability of spatially interdependent

systems. From the proposed intermediate cascade failure

model (from regular to random dependency), we find there is

a transform from continuous percolation to discontinuous

percolation with the randomness variation of the dependency

map between two interdependent networks. We emphasize

the generic character of our model because the dependency

map could influence not only the resilience but also synchro-

nization, disease spreading, and other dynamic processes in

interdependent networks. With suitable modification, our

model could be applied to understand the dynamical process

in most real interdependent systems since the dependency

maps between networks are more various and complicated

instead of totally random dependency or regular dependency.

The time scale of cascade failures is essential for sys-

tem’s resilience, but it has received little attentions in the

analysis of resilience so far. In different dynamic processes,

the characteristic time scales of systems vary greatly. For

instance, biological systems, social systems, and financial

market dynamics have time scale much longer than that of

cascade failures of power grid. Our analytic method based

on critical p is simple and effective for characterizing the

time scale of different systems. Generally, the system which

has a shorter time scale demands higher requirements for our

responding speed to catastrophe and brings much bigger

challenges for us to take mitigation actions than those with

longer time scale. Therefore, our method may provide a clue

for research on revealing the transient mechanism and miti-

gation of cascade failures in interdependent networks.

V. METHODS

A. Approximate entropy

The randomness for the dependency maps of the interde-

pendent square lattices is measured by approximate entropy.

Entropy can effectively reflect the randomness of a sequence.

However, for computation convenience, we choose the ap-

proximate entropy as the measure of randomness for the

FIG. 9. The fraction of nodes in the giant component as a function of q. For

locally random interdependent network, when r¼ 8, the system represents

the characteristic of a second-order transition. For r¼ 25 and r¼ 50, the

giant component may completely collapse by removal of even a single addi-

tional node, which represents the characteristic of a first-order transition.

However, for linearly interdependent networks, the transitions are second-

order one when r¼ 8, 25, 50, and even r¼L. The numerical results are

obtained by averaging 100 realizations of networks consisting of N¼ 106

nodes.
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dependency maps. The approximate entropy is denoted by

ApEn and is computed by following steps:26,29

(A) Given a series

XðiÞ ¼ ½uðiÞ;uðiþ 1Þ;…;uðiþm� 1Þ�; i¼ 1� N�mþ 1:

(B) Count the distance between the vector X(i) and other

X(j) for each i

d½XðiÞ;XðjÞ� ¼ max
k¼0�m�1

juðiþ kÞ � uðjþ kÞj:

(C) Given an threshold, count the ratio between the number

such that d[X(i), X(j)]< r for each i and the number of

the vectors, i.e., N�mþ 1(denoted by m
i ðrÞ). as

Cm
r rð Þ ¼

fthe number of d X ið Þ;X jð Þ
� �� �

< rg
N � mþ 1

:

Generally, Cm
r ðrÞ reflects m-dimensional pattern

(D) /mðrÞ ¼ 1
N�mþ1

� �PN�mþ1
i¼1 lnCm

i ðrÞ
(E) ApEnðm; rÞ ¼ UmðrÞ � Umþ1ðrÞ.

Parameter selection: here, we choose m¼ 2 and r¼ 0.2*
(standard deviation of u).

B. Percolation transition

The percolation transition is studied by randomly

removing a fraction 1� p of nodes and the links attached to

them from both networks simultaneously. Then, on each net-

work, clusters which are detached from the largest connected

component are removed. After that, the nodes in each net-

work which lost their supporting nodes in the opposite net-

work are removed. This, in turn, causes more clusters to

break off from the giant component, and this process is con-

tinued until no more clusters break off. First, we analyze the

situation with totally random dependency maps. After the

initial attack, only a fraction p1¼ p1(p) of nodes remains

functional. Each node in A that is removed causes the re-

moval of its interdependent node in B. Then only p1(p1)

nodes in B remain alive. This produces further damage in A

and causes cascading failures. The cascade failures can be

represented by the recursive equation for the survived frac-

tion pi
14,27

p0 ¼ p;

p1 ¼
p

P0

p1 p0ð Þ ¼ P1 pð Þ;

	 	 	

pi ¼
p

Pi�1

p1 pi�1ð Þ:

(1)

In the limit i!1, Eq. (1) yields the equation for the mutual

giant component at the steady state

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pP1ðxÞ

p
: (2)

Equation (2) can be solved graphically by the intersection

between the curve y¼ pP1(x) and the straight line y¼ x.

Next, we consider the mutual percolation for more casual sit-

uations where the dependency is not totally random. For ev-

ery dependency link, there is a probability q to rewire it at

random. This is equivalent to the situation with a fraction

1� q of nodes mapping to itself and the remaining q nodes

having a random dependency map. The case of q¼ 1 corre-

sponds to the scenario of a random dependency map, and

q¼ 0 is identical to the conventional percolation on a single

lattice. For the initial attack which destroys a fraction 1� p
of nodes, bm ¼ ð1� pÞNc nodes are removed. We compute

the probability Psame that one node in A depends on the same

node in B. For n nodes in totally random dependency net-

works, the number of nodes E(n) in the same location of

both networks is30

E nð Þ ¼

Xn

m¼0

m 
 Cm
n D n� mð Þ

n!
; (3)

DðnÞ ¼ n!
Xn

k¼2

ð�1Þk 
 n!=k!: (4)

When n is very large, the computation of D(n) is very incon-

venient. For computation simplification, when n� 2, we have

DðnÞ � bn!=eþ 0:5c; (5)

where e is the Euler’s number and bxc is the integer part of x.

Then

E nð Þ ¼

Xn

m¼1

m 
 n!

n� mð Þ!m!
b n� mð Þ!=eþ 0:5Þc

n!
;

�

Xn

m¼1

m 
 n!

n� mð Þ!m!
n� mð Þ!=eþ 0:5Þ

n!
;

¼
Xn

m¼1

1

e m� 1ð Þ!þ
1

2 n� mð Þ! m� 1ð Þ! ;

¼ 1þ
Xn

m¼0

1

2 n� mþ 1ð Þ!m!
� 1þ e

2
: (6)

So for each node, the probability that it is in the same loca-

tion of A and B is

Psame ¼ 1� qð Þ 
 pþ p 
 E q 
 Nð Þ
q 
 N

: (7)

When n!1, Psame! (1� q) * p. The initial attack causes

some number of nodes to be disconnected from the giant

component in both networks A and B. Furthermore, because

of the dependency relationship, the nodes disconnected from

A will lead to further damages. P1 increases with Psame. The

greater the Psame is, the more nodes disconnected from the

giant component of A overlap the nodes in B. So, further

damage decreases and cascade failures are weakened (or pre-

vented) from the beginning. For q¼ 0, the cascade failures

are prevented from the beginning and the percolation is con-

tinuous. When q¼ 1, the totally random dependency map
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will lead to a first-order transition. As q increases, the perco-

lation transition changes from a continuous transition to a

discontinuous one. There must be a critical qc beyond which

the percolation transition becomes discontinuous.
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