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Abstract The main purpose of this article is to
demonstrate that bursting oscillations can be observed
not only in the slow–fast autonomous dynamical sys-
tems with multiple scales associated with time domain,
but also in the non-autonomous dynamical systems
with periodic excitations when an order gap exists
between the exciting frequency and the natural fre-
quency, implying multiple scales in frequency domain.
Furthermore, we try to investigate the influence of
different codimensional bifurcations between the qui-
escent states (QS) and repetitive spiking states (SP)
and the nonlinear structures with different equilibrium
branches on the bursting oscillations. By introducing
an inductor as well as a periodically changed electrical
current source in a traditional Chua’s circuit and taking
suitable parameter values, amodified four-dimensional
periodically excited oscillator with multiple scales
in frequency domain is established. Bursting oscilla-
tions for two cases with nonlinear terms up to third
and fifth order with codimension-1 and codimension-
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2 bifurcations have been explored, respectively. It is
found that more equilibrium states may exist when
higher order nonlinear terms are introduced in the vec-
tor field, which may cause multiple quiescent states,
and accordingly, multiple forms of repetitive spik-
ing oscillations in one bursting attractor, leading to
more complicated bursting phenomena. Furthermore,
instead of jumping from one stable equilibrium branch
to settle down to another stable equilibrium branch
when codimension-1 bifurcations (fold bifurcations)
exist between QSs and SPs, codimension-2 bifurcation
(fold-Hopf bifurcation) may cause QS approximately
located on one stable equilibrium branch to jump to
repetitive spiking oscillations surrounding another sta-
ble equilibrium branch of the generalized autonomous
system.

Keywords Periodic excitation · Multiple time scales ·
Bursting oscillation · Bifurcation mechanism

1 Introduction

Many dynamical systems in natural and engineering
problems involve two time scales [1,2], which often
behave in periodic states characterized by a combina-
tion of relatively large-amplitude and nearly harmonic
small-amplitude oscillations, conventionally denoted
by NK with N and K corresponding to large and small
amplitude oscillations, respectively [3,4]. Generally,
we say the system is in quiescent state (QS) stage when
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all the variables are at rest or exhibit small-amplitude
oscillations [5]. The coupling of two time scales may
lead the systems to spiking state (SP), in which the
variables may behave in large-amplitude oscillations
[6,7]d. Bursting phenomena can be observed when the
variables alternate between QS and SP. Two important
bifurcations associated with the bursters exist: bifurca-
tion of a quiescent state to repetitive spiking and bifur-
cation of a spiking attractor to quiescence [8,9].

At the beginning of the analysis for the dynamical
systems with multiple time scales, a obvious method
is introduced by eliminating the slow variables upon
solving the related equations [10]. Perturbationmethod
is also employed to find the asymptotic solutions by
expanding all the variables in terms of small parameters
[11]. Many other approaches have been developed to
investigate the dynamics, which, however, cannot be
used to explore the interaction between different time
scales, until the so-called slow–fast analysis method is
introduced [12–14]. By dividing the whole system into
two subsystems, i.e., the fast subsystem and the slow
subsystem [15], QSs and SPs aswell as the bifurcations
between themmay be approximated by the equilibrium
states as well as the related bifurcation forms in the
fast subsystem, while the slow system can be used to
understand the slow passage effect on the moderation
of QS and SP [16,17].

Based on the slow–fast analysis, a lot of results
related to dynamics with two time scales are pre-
sented, in which several bursting oscillations such
as the fold/fold [18] and fold/Hopf [19] bursters are
obtained. However, most of the reports are focused on
the autonomous systems, in which obvious slow and
fast subsystems can be obtained [20], while for non-
autonomous systems, such as periodically excited sys-
tems, when an order gap exists between the frequency
of periodic excitation and natural frequency, no obvi-
ous slow and fast subsystem exists, while the effect of
two time scales can also be observed [21], on the fact
that the trajectories of systems are related to both the
two frequencies [22], behaving in relaxation oscilla-
tions [23]. Here we define the frequency of the free
vibration of autonomous nonlinear dynamical system
as the natural frequency of the related nonlinear sys-
tem. Unlike the linear system, the natural frequency
of the nonlinear system is related to the dynamical
behaviors, which may change with the parameters of
the system. For example, when the trajectory settles
down to a focus, the natural frequency can be deter-

mined by the imaginary parts of the pair of the conju-
gate eigenvalues of the focus, while when the system
behaves in periodic movement, the natural frequency
can be described by the frequency of the oscillation.
Since no obvious slow and fast subsystem exists, the
method of slow–fast analysis [24] can not be directly
employed to approach the mechanism of the bursting.
How to explore the characteristics of the multi-mode
oscillations in non-autonomous system still remains
an open problem. For the typical periodically excited
dynamical system, when the exciting term changes on
a much smaller time scale comparing with the origi-
nal system, the whole exciting term can be regarded
as a slow-varying parameter, leading to the so-called
generalized autonomous and the transformed phase
portrait can be employed to explore the influence of
the exciting term on the evolution of the dynamical
behavior [25].

Furthermore, up to now, only codimension-1 bifur-
cations [26,27], such as fold bifurcation andHopf bifur-
cations, exist between QS and SP and only one form
of QS and SP [28,29] involves in the most of bursting
oscillations reported [30,31]. How the bursting oscilla-
tions behave when higher codimensional bifurcations
ormultiple forms of QSs and SPs involve in the dynam-
ics still need to be explored.

Here we introduce an inductor as well as a period-
ically changed electrical power in a traditional Chua’s
circuit [32] and taking suitable parameter values so that
not only an order gap exists between the excited fre-
quency and the natural frequency, but also different
codimensional bifurcations as well as multiple equilib-
rium branches may involve in generalized autonomous
system corresponding to the oscillations, the evolution
of the dynamics of the system is investigated and dif-
ferent types of bursting oscillations as well as the bifur-
cation mechanism will be presented.

2 Mathematical model

Based on the canonical three-dimensional Chua’s
model [32], a modified version has been constructed
with a controller composed of an inductor as well
as a linear resistor, which may exhibit more complex
dynamics [33]. By introducing a periodically changed
electrical current source in the model with a nonlin-
ear resistor, shown in Fig. 1, the related mathematical
model can be expressed as
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Fig. 1 Circuit with periodic excitation

dV1
dt = 1

C1
[G1(V2−V1)−G1 g(V1)+ IG sin(ωt)],

dV2
dt = 1

C2
[G1(V1 − V2) + iL1 + iL2],

diL1
dt = − 1

L1
(V2 − R2 iL2),

diL2
dt = − 1

L2
V2,

(1)

where G1 = 1/R1,G2 = 1/R2, while g(V1) =
�1 V1 + �2 V 3

1 + �3 V 5
1 describes the relationship

between the current and the voltage passing across the
nonlinear resistor, in which �1 is a non-dimensional
parameter, while�2 and�3 corresponds to the dimen-
sion (v)−2 and (v)−4, respectively.

By introducing the transformations V1 = E10 x ,
V2 = E20 y, iL1 = E20

R1
u, iL2 = E20

R1
v, t = R1C2τ

and taking R2 = L1
R1 C2

, (1) can be written in the non-
dimensional form as

dx
dτ = α[y − δ f (x)] + w,

dy
dτ = κx − y + u + v,

du
dτ = −γ y + v,

dv
dτ = −βy,

(2)

where E10 and E20 is used as the references and

α = C2 E20
R1 E10

, β = R2
1 C2
L2

,κ = E20
E10

, δ = E20
E10

(1 + �1),

γ = R2
1 C2
L1

, f (x) = a x + b x3 + c x5 with a =
1.0,b = �3 E2

10
1+�1

, c = �5 E4
10

1+�1
, w = A sin(Ωτ) with

A = IG R1 C2
C1 E10

, Ω = ωR1C2. System (2) with no exter-
nal excitation may evolve from stable fixed point to
periodic orbit and to chaos. Furthermore, super-chaotic
movement can be observed for certain parameter val-
ues, corresponding to twopositiveLyapunov exponents
[34]. The external excitation may also cause the oscil-
lator to evolve from periodic orbit to chaotic move-
ments. However, when an order gap exists between Ω

and the natural frequency of the autonomous oscilla-

tor, the effect of two time scales may appear. Here we
fix the parameter Ω = 0.005 and other parameters at
O(1.0). Obviously, the state variables x, y, u, v may
oscillate mainly according to the natural frequency,
i.e., O(dx/dτ, dy/dτ, du/dτ, dv/dτ) ≈ O(1.0) ≡
T1, while the exciting term w oscillates periodi-
cally according to another much smaller scale, i.e.,
O(dw/dτ) ≈ O(0.005) ≡ T2, leading to the coupling
between two scales T1 and T2, which may cause the
bursting oscillations in the system.

3 Bifurcation analysis of the generalized
autonomous system

Since the state variables may oscillate mainly accord-
ing to the natural frequency, for Ω � ΩN , where ΩN

represents the natural frequency, during an arbitrary
period TN , (TN = 2π/ΩN ) i.e., τ ∈ [τ0, τ0 + TN ], the
exciting termwmay change betweenwA = Acos(Ωτ0
and wB = Acos[Ω(τ0 + τN )], implying wA ≈ wB ,
which means w keeps almost a constant during any
arbitrary period TN . Therefore, (2) can be considered
as a generalized autonomous system, in which w may
be regarded as a slow-varying parameter thoughw may
vary between −A and +A. It can also be understood
from the fact that the autonomous system (2) forms the
fast subsystem, while w = A cos(Ωτ) forms the slow
subsystem.

Now we turn to the bifurcation analysis of the gen-
eralized autonomous system on regarding the peri-
odic external excitation as a parameter w. The equi-
librium point of (2) can be expressed in the form
EQ(x, y, u, v) = (X0, 0,−κX0, 0), where X0 satis-
fies

αδ(X0 + bX3
0 + cX5

0) + w = 0, (3)

the stability of which can be determined by the associ-
ated characteristic equation, written in the form

λ4 + h1 λ3 + h2 λ2 + h3 λ + h4 = 0, (4)

where

h1 = 1 + αδ(1 + 3bX2
0 + 5cX4

0),

h2 = β + γ − ακ + αδ(1 + 3bX2
0 + 5cX4

0),

h3 = β + αδ(1 + 3bX2
0 + 5cX4

0),

h4 = αβδ(1 + 3bX2
0 + 5cX4

0).

(5)
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Obviously, EQ is stable for h1 > 0, h4 > 0,h1h2 −
h3 > 0 and h1h2h3 − h21h4 − h23 > 0, resulting in two
possible bifurcation sets. One can be expressed in the
form h4=0, i.e.,{
1 + 3bX2

0 + 5cX4
0 = 0,

1 + bX3
0 + cX5

0 = 0,
(6)

on which fold bifurcation may occur, causing jump-
ing phenomenon between different equilibrium points,
while the other can be written in the form

h1h2h3 − h21h4 − h23 = 0,

(h1 > 0, h4 > 0 h1h2 − h3 > 0), (7)

on which Hopf bifurcation may take place, leading to
periodic oscillation with the frequency ΩH = h3

h1
.

Furthermore, a codimension-2 bifurcation with a
zero and a pair of pure imaginary eigenvalues ±√

β I
as well as negative eigenvalue −1 takes place on the
set

⎧⎪⎨
⎪⎩
a + 3bX2

0 + 5cX4
0 = 0,

a + bX3
0 + cX5

0 = 0,

ακ − γ = 0,

(8)

leading to the occurrence of limit cycle away from the
original fixed point.

As an example, the bifurcation sets on the plane
(κ,w) for the parameters fixed at α = 8.0, β = 0.5,
γ = 8.0, δ = −0.15, b = −2.0, c = 0.0 are presented
in Fig. 2a, which divide the parameter plane into eight
regions corresponding to different dynamical behav-
iors. In Region (1) and (8), only one stable equilibrium
point exists corresponding to EB1 and EB3 in Fig. 2b,
respectively. On the fold bifurcation set F1, two equi-
librium branch EB2 and EB3 meet each other, which
leads to a cusp point, together with a stable equilib-
rium point related to EB1. While on the fold bifurca-
tion set F2, EB1 and EB2 meet each other, leading to
a cusp point, together with a stable equilibrium point
related to EB3. On the Hopf bifurcation sets H1, the
stable focus related to EB1 loses its stability to form
a limit cycle, while on H2, the stable focus related to
EB3 bifurcates to another limited cycle.

In region (2) and (5), a stable focus related to EB1

as well as a stale limit cycle bifurcated from the equi-
librium branch EB3 can be observed, while in Region
(4) and (6), a stable focus related to EB3 as well as a

(a)

(b)

Fig. 2 Bifurcations for α = 8.0, β = 0.5, γ = 8.0, δ = −0.15,
b = −2.0, c = 0. a Bifurcation sets on the (κ, w) plane
b equilibrium branches with the variation of w

stale limit cycle bifurcated from the equilibrium branch
EB1 exists. Two stable cycles bifurcate from equilib-
rium branches EB1 and EB3, respectively, in Region
(3). However, in Region (7), two stable foci related
to EB1 and EB3 as well as a saddle point can be
obtained.

At the two intersection points B+1 and B−1 of the
bifurcation sets F1 and H1 or F2 and H2, codimension
two bifurcations of the equilibrium points correspond-
ing to a zero as well as a pair of pure imaginary eigen-
values take place, which leads to different behaviors in
the neighboring regions of B+1 and B−1, respectively,
with small parameter perturbation.

However, at the intersection points HA and HB of
H1 or H2, instead of a codimension two bifurcation,
two codimension one bifurcations (super-Hopf bifurca-
tions) corresponding to the equilibrium points located
on EB1 and EB3, respectively, take place, leading to
different limit cycles.
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The mechanism of bursting oscillations with different codimensional bifurcations 997

Remark 1 � There also exist other forms of bifurca-
tions for certain values of parameters,whichweomitted
here for simplicity, since these bifurcation conditions
are so special that they may not really exist for the real
systems. Furthermore, for certain fixed parameters, not
all the above bifurcation sets can be observed, since
the original stable fixed point may lose the stability via
only one bifurcation form.

� The bifurcation sets can be obtained by contin-
uation method, using a properly continuation pack-
age for continuous-time system, such as MATCONT
[35], which is a standard tool for numerical bifurcation
analysis. Here we only list the conditions for the bifur-
cations, which may be used for the investigation of the
bursting oscillations caused by the interaction between
different time scales.

4 Evolution of bursting oscillations as well as the
mechanism

Because of the order gap between the exciting fre-
quency and the natural frequency, bursting oscillations,
which always behave in the combination of small- and
large-amplitude oscillations, can be observed.Note that
the form of nonlinear function f (x) may influence the
attractors of bursting oscillations. When higher-order
nonlinear terms are introduced in the function, more
equilibrium points of the generalized autonomous sys-
tem can be observed, which may lead to more compli-
cated bursting oscillations. Furthermore, the forms of
the bifurcations between the quiescent states (QSs) and
repetitive spiking states (SPs) may also affect the struc-
tures of bursting attractors. Here we fix the parameters
at

α = 8, β = 0.5, γ = 8, Ω = 0.005, (9)

and consider the influence of the two factors, i.e., the
nonlinear functions and the bifurcations between QSs
and SPs, on the bursting oscillations.

We first introduce the conception of transformed
phase portrait (TPP), in which the relationship between
the variations of state variables and that of excited term
will be presented, so that the bifurcation analysis above
with the change of w can be employed to account for
the mechanism of the bursting oscillations.

4.1 Transformed phase portrait (TPP)

Note that all the bifurcation analysis is investigated
upon takingw as the bifurcation parameter, which may
be employed to explore the mechanism of the burst-
ing oscillations. Therefore, the relationship between
the state variables and w is very important for the
effect of two time scales on the dynamics, which can
be described by the transformed phase portraits. The
trajectory as well as w can be described as

ΠG = [X (t), w]
= {[x(t), y(t), z(t), A sin(Ωt)], ∀t ∈ R}, (10)

from which one may obtain the traditional phase por-
traits {[x(t), y(t), z(t)],∀t ∈ R}, as well as its pro-
jections on subspaces such as {[x(t), y(t)],∀t ∈ R}.
Here we regard w as a generalized state variable and
define ΠG changing with four variables (x, y, z, w)

as well as their projections on subspaces related to w,
such as (x, w), (x, y, w), etc., as the transformed phase
portraits (TPP), which may exhibit the relationships
between the state variables and the slow variable w.

4.2 Bursting oscillations with codimension-1
bifurcation

For the parameters fixed at κ = 0.5, δ = −0.15,b =
−2.0 and c = 0, which implies that nonlinear terms
only up to third order are considered in the function
f (x), there are only codimension-1 bifurcations, i.e.,
fold bifurcations, occurring at the points FB±(x, w) =
(±√

6/6,±2
√
6/15). The bifurcation points divide the

x-axis into three parts.When |x | >
√
6/6, only one sta-

ble focus exists, while for |x | <
√
6/6, two stable foci

as well as a unstable saddle point can be observed. At
the bifurcation points x = ±√

6/6, one of the two sta-
ble foci maymeet the saddle point to form a degenerate
cusp point, which may lead to the jumping phenomena
between different equilibrium points.

While for κ = 0.5, δ = 0.15, b = −2.0
and c = 4

3 , implying nonlinear terms up to fifth
order are included in the function f (x), there still
exist only codimension-1 bifurcations, occurring at
the four points FB±1(x, w) = (±0.470,±0.352),
FB±2(x, w) = (±0.824,±0.254), leading to the vari-
ation of the number of equilibrium points between one,
three and five. At the bifurcation points, one stable
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Fig. 3 Phase portraits for κ = 0.5, δ = −0.15,b = −2.0, c = 0, A = 20.0 a on the (x, y) plane b on the (y, v) plane

1200 1600 2000

-0.07

0.00

0.07

y

Fig. 4 Time history of y for κ = 0.5, δ = −0.15, b = −2.0,
c = 0, A = 20.0

focus may meet one unstable saddle point to form a
degenerate cusp point, causing the jumping phenom-
ena between different stable equilibrium points.

4.2.1 Bursting oscillations with third-order nonlinear
term

Figure 3 gives the phase portrait of the bursting oscil-
lations for κ = 0.5, δ = −0.15, b = −2.0, c = 0,
A = 20.0, which implies that nonlinear terms only up
to third order are considered in the function f (x), and
the related time history of y is plotted in Fig. 4.

The trajectory, starting from the point A1, moves
almost strictly along the stable equilibrium branch EB1

to form the first stage of quiescent state (QS1), until
it arrives at the bifurcation point FB1. Jumping phe-
nomenon occurs, which causes the trajectory to quickly

jump to the point A3. Then the trajectory may tend to
another equilibrium branch EB2, resulting in repetitive
spiking (SP1) with large-amplitude oscillations, since
the point A3 is not exactly located on EB2. The ampli-
tudes of the oscillations may gradually decrease, and
finally the trajectory may settle down to stable EB2

to form QS2. At the point A2, the external excitation
reaches its maximum w = A = 20.0, which implies w

may decrease with the evolution of time. Therefore, the
trajectory may return almost strictly along EB2 until it
arrives at the second fold bifurcation point FB2. The
jumping phenomenon between different equilibrium
branches results in the repetitive spiking (SP2) with
large-amplitude oscillations.When the oscillations set-
tle down to the equilibrium branch EB1 to the point A1,
one period of the bursting oscillations is finished.

The amplitudes as well as the frequency of the repet-
itive spiking oscillations can be approximated by the
eigenvalues of equilibrium points located on the equi-
librium branches. Here we take SP2 as an example.
The spiking oscillations SP2 may take place between
two points on x-axis, denoted by Π1 and Π2, with Π1

for x = 0.932 and Π2 for x = 1.491. The related
eigenvalues can be approximated at

λ1=−0.570, λ2=−0.059, λ± =−0.147 ± 2.740 I,
λ1=−15.08, λ2=−.0591, λ± =−0.334 ± 2.863 I,

(11)

at Π1 and Π2, respectively. Therefore, the frequency
related to the spiking oscillations may vary from
ΩΠ1 ≈ 2.740 to ΩΠ2 ≈ 2.863, which agrees well
with the numerical results viaΩNF = 2π

TE
varying from

2.764 to 2.881, obtained from the time history in Fig. 3.
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The mechanism of bursting oscillations with different codimensional bifurcations 999

The mean frequency of spiking oscillations can
be computed at ΩM = 1

2 (ΩΠ1 + ΩΠ2) = 2.802,
yielding the mean period at TM = 2π

ΩM
≈ 2.242,

while the mean value for the real parts of the pair
of the conjugate eigenvalues between Π1 and Π2 can
be approximated at ReM ≈ −0.2405 and the y-
value of the SP2 oscillations may be approximated
at y = YAe−0.2405(τ−τ0) cos[ΩM (τ − τ0)], where YA

is the y-value at the beginning of the repetitive spik-
ing with non-dimensional time τ0, approximated at
YA = −0.0858 and τ0 = 1891.376.

The curve y = YAe−0.2405(τ−τ0), corresponding
to APE2 in Fig. 4, can be used to approximate the
amplitudes of the repetitive spiking oscillations, which
agrees well with the extreme values of SP2. There-
fore, the amplitudes of SP2 oscillations can be approx-
imated at Ai = |YA|e−0.5392 i , (i = 1, 2, . . .). For
examples, A2 and A3 canbe theoretically approximated
at A2 = 0.051 and A3 = 0.010, respectively, which
agrees well with the values of next two amplitudes of
spiking oscillations in SP2 via the numerical simula-
tions (see Fig. 4).

To reveal the mechanism of the bursting oscilla-
tions, we plotted the overlap of the transformed phase
portrait and the equilibrium branch on the (x, w) =
[x(τ ), A sin(Ωτ)] plane in Fig. 5.

The trajectory, starting from the point A1, moves
almost strictly along the stable equilibrium branch
EB1 to form QS1 until it arrives at the point FB1,
at which fold bifurcation occurs, leading to the jump-
ing phenomenon of the trajectory, which may try to
approach another stable equilibrium branchEB2, yield-
ing repetitive spiking oscillations (SP1), since the sta-
ble EB1 is stopped at the point B2 with (w, x) =
(0.3266,−0.4082), while EB3 is unstable branch asso-
ciated with saddle point. The trajectory in spiking state
(SP2) may tend to the stable equilibrium branch EB2

via the gradual decrease of the amplitudes of the oscil-
lations, which may finally settle down to EB2, leading
the second stage of the quiescent state (QS2).When the
trajectorymoves at the point A2, the external excitation
reaches its maximum with w = A = 20.0, which may
cause the return of the trajectory with further increase
of the non-dimensional time τ . The trajectory moves
almost strictly alongEB2, until another fold bifurcation
occurs at the point A3, which leads to the jumping phe-
nomenon from EB2 to EB1, yielding repetitive spiking
oscillations (SP2). The spiking oscillations may settle
down to stable EB1, until it reaches the starting point

-2

-1

0

1

2
(a) A2

A1

SP2

SP1

QS2

QS1
A4

A3

FB2

FB1

w=Asin( )

x

-20 -10 0 10 20

-20 -10 0 10 20

-2

-1

0

1

2

w=Asin( )

EB3

EB1

EB2

(b)
A2

A1

SP2

SP1

QS2

QS1
A4

A3

FB2

FB1
x

Fig. 5 a Transformed phase portrait b Overlap of the TPP and
equilibrium branches of the generalized autonomous system

A1, which finishes one period of the bursting oscilla-
tions.

Remark 2 � There exists very small distance between
the fold bifurcation points of the equilibrium branch
and connecting points between QSs and SPs on the
trajectory, which may be caused by inertia of the tra-
jectory.
� The repetitive spiking oscillations are caused by the
transient procedures of the trajectory to settle down
to the stable equilibrium branches of the general-
ized autonomous system, in which the fold bifurca-
tion points can be considered as the initial points to
approach the focus-type stable equilibrium branches.

4.2.2 Bursting oscillations with fifth-order nonlinear
term

Figure 6 gives the phase portrait of the bursting oscil-
lations for κ = 0.5, δ = 0.15,b = −2.0, c = 4

3 and
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Fig. 6 Phase portraits for κ = 0.5, δ = 0.15, b = −2.0, c = 4
3

and A = 1.0 a on the (x, y) plane b on the (y, v) plane
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Fig. 7 Time history of y for κ = 0.5, δ = 0.15, b = −2.0,
c = 4

3 and A = 1.0

A = 1.0, which implies that nonlinear terms up to
fifth order are considered in the function f (x), and the
related time history of y is plotted in Fig. 7, where only
the parts related to SP1 and SP2 are presented because
of the symmetric structures for SP3 and SP4.

The trajectory, starting from the point A1, moves
along the curve A1FB−2,which is almost a straight line
with very small y-value, to form QS1. When it moves
to the point FB−2, fold bifurcation occurs, leading to
jumping phenomenon, which results in repetitive spik-
ing oscillations (SP1). The trajectory quickly passes
across the point A2 to A3 and oscillates to settle down
to the curve A4FB+1, which is almost a straight line
with very small y-value. The trajectory moves along
A4FB+1 to form QS2 until it arrives at the point FB+1,
at which another fold bifurcation takes place. Jumping
phenomenon appears, leading to the repetitive spiking
oscillations SP2, which causes the trajectory to quickly
pass across A5 to A6 and then oscillates around the
curve FB+2B1, an almost straight line with very small
y-value. When the amplitudes of the oscillations settle

down to zero, the trajectorymoves alongwith the curve
FB+2B1 to form QS3. The trajectory returns at the
point B1 since the state variable x reaches its maximum
and moves along FB+2B1. Fold bifurcation occurs at
the point FB+2, leading to the repetitive spiking oscil-
lations SP3. The trajectory quickly passes across B2 to
B3 and oscillates to settle down to the curve B4FB−1.
When the amplitudes of the oscillations decrease to
zero, it may move along the curve B4FB−1, which
is an almost straight line with very small y-value, to
form QS4. Fold bifurcation takes place at the point
FB−1, causing the trajectory to quickly pass across B5

to B6. The jumping phenomenon leads to the repetitive
spiking SP4 around the curve A1FB−2. The gradual
decreasing of the amplitudes of the oscillations may
lead to the trajectory to settle down to the curve. When
the trajectory returns to the point A1, one period of the
bursting oscillations is finished.

The amplitudes as well as the frequency of the repet-
itive spiking oscillations can be approximated by the
eigenvalues of equilibrium points located on the curves
associated, which are almost straight lines with very
small y-values by employing the same method for the
analysis of the spiking oscillations in Fig. 3. Here we
only list the results related to frequencies of the spik-
ing oscillations. For the SP1, the spiking oscillations
may take place from the point FB−2 to A4, in which
the x-value may vary from −0.824 to −0.0242, caus-
ing the pair of complex conjugate eigenvalues to vary
from −.4429 ± 2.050I to −.0830 ± 2.289I. There-
fore, the frequency related to SP1 may increase gradu-
ally from 2.050 to 2.289, which agrees very well with
the numerical simulations varying from 2π

2.983 ≈ 2.106
to 2π

2.741 ≈ 2.292 (see Fig. 7).

Remark 3 Two factors cause the difference between
the two frequencies obtained via theoretical method
and numerical simulations, respectively. Firstly, the
starting point to compute the frequency from time his-
tory is taken at A2, which is away from the bifurcation
point FB−2. Secondly, the absolute value of x for the
ending point for numerical computation is taken a bit
larger than the absolute value of x at the point A4.

To reveal the mechanism of the bursting oscil-
lations, we plotted the overlap of the transformed
phase portrait and the equilibrium branches of the
generalized autonomous system on the (x, w) =
(x(τ ), Asin(Ωτ)) plane in Fig. 8.
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Fig. 8 a Transformed phase portrait on (w, x) b Overlap of the
phase portrait and the equilibrium branches

The trajectory, starting from the point A1, moves
almost strictly along the stable equilibrium branch EB1

to form QS1 until it arrives at the point FB
(2)
−2, at which

fold bifurcation occurs, leading to the jumping phe-
nomenon of the trajectory, which may try to approach
another stable equilibrium branch EB3, yielding repet-
itive spiking oscillations (SP1). The trajectory in spik-
ing state SP1 may tend to the stable equilibrium branch
EB3 via the gradual decrease of the amplitudes of the
oscillations, and finally settles down to EB3, leading
the second stage of the quiescent state (QS2). Tra-
jectory then moves almost strictly along EB3 until it
reaches the point FB(2)

+1, at which another fold bifur-
cation takes place. The trajectory may jump to another
stable equilibrium branchEB5, yielding repetitive spik-
ing oscillations (SP2), which oscillate around EB5.
When the trajectory oscillates to settle down to EB5,
it moves almost strictly along the stable equilibrium

branch EB5 to form QS3. The trajectory may return
along EB5 when it arrives at the point B1, at which w

reaches its maximum valuew = +1. The system keeps
in quiescent state QS3, until the trajectory arrives at the
point FB(2)

+2, at which fold bifurcation occurs, leading
to jumping phenomenon of the trajectory to approach
EB3. Repetitive spiking oscillations SP3 occur, where
the trajectory oscillates around EB3. The amplitudes
of the oscillations may gradually decrease and finally
settle down to zero. Then the trajectory moves almost
strictly along EB3 to form QS4 until the trajectory
arrives at the point FB(2)

−1, at which fold bifurcation
occurs. Jumping phenomenon can be observed, which
may cause the trajectory to oscillate around the stable
equilibrium branch EB1 via repetitive spiking oscilla-
tions (SP4). The amplitudes of the oscillations may
gradually settle down to zero, causing the trajectory to
move almost strictly along the stable EB1. When the
trajectory arrives at the starting point A1, one period of
the movement is finished.

Remark 4 � From the overlap of the transformed
phase portrait and the equilibrium branches in Fig. 8b,
one may find that there exists a bit difference between
the theoretical fold bifurcation points and the corre-
sponding connecting points between QSs and SPs on
the trajectory, whichmay be caused by the inertia of the
trajectory since the nominal parameter w is not static,
but changes slowly with the non-dimensional time τ .

� The spiking oscillations are caused by the tran-
sient procedures of the trajectory to approach the sta-
ble focus-type equilibrium branches, since the trajec-
tory at the fold bifurcation points may jump from one
equilibrium branch to another focus-type equilibrium
branch. Therefore, the fold bifurcation points, located
near the corresponding bifurcation points on one equi-
librium branch, can be considered as the initial points
to approach another equilibrium branch. Because of
the focus-type of the equilibrium branch, the trajectory
may cycle around the equilibrium branch to settle down
to the branch, which may cause the spiking oscillations
around the corresponding equilibrium branch.

4.3 Bursting oscillations with codimension-2
bifurcation

When the conditions in (8) are satisfied, codimension-
2 bifurcation (fold-Hopf bifurcation) associated with
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a zero and a pair of pure imaginary eigenvalues
may take place. For the parameters fixed in (9)
and κ = 1.0, δ = −0.15,b = −2.0, c = 0,
which implies that nonlinear terms only up to third
order are considered in the function f (x), there exist
codimension-2 bifurcations, i.e., the combination of
fold and Hopf bifurcations, occurring at the points

FB±(x, w) = (±
√
6
6 ,± 2

√
6

15 ). While for κ = 1.0, δ =
0.15, b = −2.0, c = 4

3 , implying that nonlinear
terms up to fifth order are included in the function
f (x), codimension-2 bifurcations may occur at the
four points FB±1(x, w) = (±0.470,±0.352), FB±2

(x, w) = (±0.824,±0.254). The codimension-2
bifurcations may cause different structures of bursting
attractors, since there exist not only the jumping phe-
nomena between different equilibrium branches, but
also limit cycle oscillations with the frequency

√
β. In

the following, we will investigate the bursting oscilla-
tions as well as the mechanism for the two cases with
different orders of nonlinear terms in the function f (x).

4.3.1 Bursting oscillations with third-order nonlinear
terms

Figure 9 gives the phase portrait of the bursting oscil-
lations for κ = 1.0, δ = −0.15,b = −2.0, c = 0 and
A = 20.0, which implies that nonlinear terms only up
to third order are considered in the function f (x), and
the related time history of y is plotted in Fig. 10, where
only one period is presented.

The phase portrait of the bursting oscillations with
codimension-2 bifurcations connecting the quiescent
states (QSs) and spiking states (SPs) is greatly different
from that of the bursting attractors with codimension-
1 bifurcations between QSs and SPs. The trajectory
may oscillate around two cycles, which may be caused
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Fig. 9 Phase portraits for κ = 1.0, δ = −0.15, b = −2.0, c = 0
and A = 20.0 a on the (x, y) plane b on the (y, v) plane
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Fig. 10 Time history of x for one period

by the super-Hopf bifurcation part included in the
codimension-2 bifurcations (see Fig. 8a), while the fold
bifurcation part included in the codimension-2 bifurca-
tion may lead to the jumping phenomenon between the
two oscillations around the two cycles (see Fig. 9b),
which can also be demonstrated by the time history of
x plotted in Fig. 10.

It can be found that the structures of two SPs are
symmetric to each other because of the symmetry of
the system. When spiking oscillations occur from a
QS, which is almost strictly located on one equilib-
riumbranchvia a codimension-2bifurcation, the trajec-
tory does not try to settle down to another equilibrium
branch, but to oscillate to an large-amplitude cycle with
the increase of the amplitudes of the oscillations. There-
fore, the codimension-2 bifurcation causes not only the
jumping phenomenon, but also limit cycle oscillations.
When the amplitudes of the oscillations increase to an
extent, the trajectory may oscillate to settle down to
another QS with gradual decrease of the amplitudes of
the oscillations.

To reveal themechanism of the bursting oscillations,
weplot the related transformedphase portrait in Fig. 11.
The trajectory, starting from the point A1, moves along
A1A2A3 to form QS1. A codimension-2 bifurcation
causes the trajectory to jump to the repetitive spiking
oscillations (SP1). The amplitudes of the oscillations
increasewith the evolution of the non-dimensional time
τ until the trajectory reaches the potential limit cycle.
Then the amplitudes of the oscillationsmay decrease to
settle down to QS2. Similar situations occur when the
trajectory returns from the maximum value of w at B1.
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Fig. 11 a Transformed phase portrait b and c Locally enlarged
TPP

More clear mechanism for the bursting oscillations
can be observed in Fig. 12, in which the overlap of
the transformed phase portrait and the equilibrium
branches is plotted. The trajectory, starting form the
point A1, moves almost strictly along EB1 to form QS1
until it reaches the point B(1)

−1, at which a codimension-
2 bifurcation occurs, not only leading to the jumping
phenomenon to the equilibrium branch EB3, but also
causing the trajectory to approach the limit cycle via
repetitive spiking (SP1). The amplitude of the limit
cycle, caused by super-Hopf bifurcation part included
in the codimension-2 bifurcation,may increasewith the
increase ofw, which leads to the increase of amplitudes
of the spiking oscillations. Further increase of w may
cause the gradual decrease of the amplitude of the oscil-
lations, because of the attraction of the stable focus-
type equilibrium branch EB3. The trajectory may grad-
ually settle down to EB3 to form QS2 and returns when
w reaches its maximum value at w = 20.0. Then the
trajectory moves almost strictly along the equilibrium
branch EB3, until it arrives at another codimension-2
bifurcation point B(1)

+1. The bifurcation not only causes
the jumping phenomenon from EB3 to EB1, but also
leads to the repetitive spikingoscillations aroundpoten-
tial limit cycle to form SP2.When the trajectory settles
down to EB1 and moves to the starting point A1, one
period of the bursting oscillations is finished.
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4.3.2 Bursting oscillations with fifth-order nonlinear
terms

When nonlinear terms up to fifth order are included
in the function, another two codimension-2 bifurcation
points can be observed on the equilibrium branches of
the generalized autonomous system. Figure 13 gives
the overlap of the transformed phase portrait and the
equilibrium branches for the bursting oscillations with
κ = 1.0, δ = 0.15, b = −2.0, c = 4

3 and A = 10.0,
while the phase portrait as well as the time history is a
bit similar to those of the bursting oscillations in Figs. 8
and 9.

The trajectory, starting form the point A1 in Fig. 13a,
moves almost strictly along the equilibrium branch
EB1 to form QS1, until it arrives at the point B(1)

−2,

which is very close to the point B(2)
−2 on EB1, at which

a codimension-2 bifurcation occurs, causing the tra-
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jectory to jump to the stable focus-type equilibrium
branchEB3. Note that the x-value of the point onEB3 is
between the two codimension-2 bifurcation points B(2)

−1

and B(2)
+1 , and the trajectory may oscillate to the poten-

tial cycle around EB3, starting the stage of SP1. When
the trajectory moves near the bifurcation point B(2)

+1 ,
it turns to oscillate to the potential limit cycle around
EB5. When the amplitudes of the oscillations reach the
maximum value, they may gradually decrease to settle
down to EB to start the second stage of quiescent state
QS2. Then the trajectory moves almost strictly along
EB5 to the point B1, at which w reaches its maximum
value. The trajectory may return along EB5. Similar
phenomenon can be observed for pross for trajectory
to return to the starting point A1.

Since two different limit cycles around EB3 may
appear from the codimension-2 bifurcation points B(1)

−2

and B(1)
+2, respectively, the trajectory cannot settle down

toEB3. Similarly, two limit cycles aroundEB1 andEB5,
respectively, may bifurcate from B(1)

−1 and B(1)
+1, which

may lead to the alternation between the oscillations
aroundEB1 andEB3 or between the oscillations around
EB3 and EB5.

5 Conclusions

When an order gap exists between the periodically
exciting frequency and the natural frequency, bursting
oscillations alternating between quiescent states (QSs)
and repetitive spiking states (SPs) may be observed.
For the case when exciting frequency is far smaller
than the natural frequency, the whole exciting term can
be regarded as a small-varying parameter, leading to a
so-called generalized autonomous system, which can
be considered as a fast subsystem. The equilibrium
states as well as the related bifurcations of the fast sub-
system determine the forms of QSs and SPs as well
as the bifurcations between QSs and SPs. Therefore,
when higher-order nonlinear terms are included in the
vector fields, more equilibrium points as well as the
related bifurcations may involve the structure of the
bursting attractors, which may lead to more compli-
cated bursting oscillations. Furthermore, bifurcations
with high codimension may result in complicated tran-
sitions between QSs and SPs, which may also cause
the complexity of the bursting attractors.
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