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Complex systems, from animal herds to human nations, sometimes
crash drastically. Although the growth and evolution of systems have
been extensively studied, our understanding of how systems crash is
still limited. It remains rather puzzling why some systems, appearing
to be doomed to fail, manage to survive for a long time whereas
some other systems, which seem to be too big or too strong to fail,
crash rapidly. In this contribution, we propose a network-based
system dynamics model, where individual actions based on the local
information accessible in their respective system structures may lead
to the “peculiar” dynamics of system crash mentioned above. Exten-
sive simulations are carried out on synthetic and real-life networks,
which further reveal the interesting system evolution leading to the
final crash. Applications and possible extensions of the proposed
model are discussed.
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Systems emerge and grow up, and, naturally, systems die. Al-
though extensive studies have been carried out on the growth

and evolution of various complex systems, in many cases
adopting complex network-based approaches (e.g., refs. 1 and 2),
hardly any similar studies exist on system crash. As a special type
of system evolution, however, system crash defies straightforward
description by any of the existing models of system evolution, to the
best of our knowledge. A few important observations of system
crash remain puzzling and require careful study: (i) Some “inferior”
or “outdated” systems, although appearing to be doomed to fail,
may survive for a very long time. Examples include “living fossils”
such as coelacanths, which have survived for more than 80 million
years (3), some depleted-but-not-eliminated species under compe-
tition or faced by seemingly unstoppable invasion (4), and social
systems such as the final Qing dynasty in China, which went through
70 y of disastrous defeats and rebellions with surprising robustness
until its sudden termination in 1911 (5). We term such systems
as being in a “pseudo-steady state” before their final crashes.
(ii) Systems that appear to be too big or too strong to fail
sometimes crash rapidly. Well-known examples include the
crashes of various ecological and biological systems, which, in
some cases, occur much faster than expected (6, 7) or even for
no obvious reason (8, 9). Similar phenomena exist in human
society, e.g., the sudden crash of the Soviet Union (10) and the
crash of the once biggest online social network (OSN),
Friendster, in less than 1 y (11). To help understand the
crashes of ecological (6, 7, 12), biological (8, 9), neurological
(13), physical and cyberphysical (14), economic (15, 16), social
(5, 10, 11), and many other complex systems, new modeling ap-
proaches to describe the process and dynamics of a system crash
are needed.
Some relevant studies, although not focusing directly on sys-

tem crash, may help in understanding a few aspects of system
crash or system crash under some special cases, and are hence
worth mention. The largest class of relevant studies is probably
those on herd behavior, which refers to system behavior where
individuals in a group act collectively without centralized control
(17–22). For example, conformity theories (17), which focus on
exploring the mechanism leading to uniform behavior, may help

to explain a sudden crash when (and only when) most indi-
viduals are close to the borderline between alternatives; in-
formational cascade theories (18, 19) point out that, if
individuals follow the behavior of the preceding individuals
without regarding their own information, a big shift in the
system may be caused by a small shock; and studies on lock-in
effects and switching cost (20, 21), which evaluate effects of
the cost that individuals have to pay to change a choice, may
help explain the existence of a pseudo-steady state. Such
studies, however, have their respective limitations: Conformity
theories in themselves cannot explain how individuals get close
to the borderline; informational cascade theories may not work
well for system crashes where individuals do not easily disre-
gard their own information; and the critical question of how
individuals overcome the lock-in effects in the system crash
remains largely open.
Although most of the above studies have largely ignored ef-

fects of the underlying structures of connections (22), an im-
portant trend in research on complex systems is to study them in
the content of various complex networks. The most notable
studies that combine system crash dynamics and network analysis
are probably those on k-core cascade theory (11, 23). Specifi-
cally, the k-core of a network is defined as the maximum subset
of the network where each node is connected to at least k other
nodes in the same subset. Assume that a network node with
fewer than k connections may have a chance to leave the current
system [e.g., an OSN user may need to have a large enough
number of connections to justify the effort of staying on (11)].
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Measuring the k-core of a network therefore estimates how many
nodes may stay on when the value of k increases due to various
reasons. This theory, however, can only explain a sudden system
crash when there exists a big jump in the value k due to
some special reasons. Other interesting developments include
(i) system crash model based on node energy level and in-
ternodal energy transfer (24) and (ii) network-based ranking of
the extinction risks of different species in food webs or mutual-
istic networks (12).
Altogether, although various theories have been developed in

different areas of science to make sense of abrupt changes in
complex systems, what is still lacking is a system dynamics model
that could properly describe a system crash, including the pseudo-
steady state in some cases, as evolution of the system dynamics in
their respective system structures. Note that the system crash
discussed in this contribution is different from the cascading fail-
ure of a complex system or multiple interdependence systems
discussed in the literature (25, 26), where components of the
system(s) are strongly coupled and the sequence of a cascading
failure is mainly decided by such coupling effects, e.g., failure of a
node A may lead to failure of its strongly coupled neighboring
node B but not of another weakly coupled neighboring node C.
In this contribution, we propose a complex network-based

model for describing the process and dynamics of a system crash,
and the pseudo-steady state in some cases as well. Specifically,
the proposed model is as follows: Given a complex network, each
network node may leave the network at a certain probability
either (i) when the node has fewer than ks connections, in which
case it may not have enough support or benefit to stay on, or
(ii) when the node has lost more than a certain proportion (denoted
by q) of its neighbors, in which case it may become a more attractive
option to leave the current system, either to lower/avoid the risk
(e.g., to avoid becoming a victim of a sudden system/herd crash) or
to join another system with a more promising future. As we see, in
this model, the first part reflects a value/risk assessment of the
present situation, whereas the second part measures the effects of a
relatively simple counting-based “copying” action, which may be a
result of certain calculations and predictions of the risk, benefit,
and/or future developments of the system. We term this model the
“KQ-cascade model.” Note that the KQ-cascade model is sub-
stantially different from the k-core-based model in ref. 11, and it is
also different from the threshold model in refs. 27 and 28, which
generally assumes that nodes leave when they lose q proportion of
neighbors, with a main focus on analyzing the threshold value of q in
causing a global crash after a trivial or random proportion of nodes
are initially removed. The KQ-cascade model includes the latter
two models as special cases (hereafter denoted the k-cascade and
q-cascade models, respectively), but it leads to much more complex

dynamics. For example, although it is difficult to provide a rigid
proof, in our extensive numerical simulations on various synthetic
and real-life networks, neither the k-cascade model nor the
q-cascade model has ever allowed the emergence of the pseudo-
steady state.
The proposed model is tested on various synthetic and real-life

networks. Considering the increasing importance of OSNs and
the relative easiness in getting the data of OSN structures, the
testing on real-life networks will mainly focus on OSNs, although
the proposed model certainly applies to many different kinds of
complex systems. For the well-known case of Friendster’s quick
crash, where there exist relatively abundant data on the whole
process (11), we perform individual-based simulations to mimic
the actions of each individual. A good match is achieved with
some interesting insights.

Results
The KQ-Cascade Model.We start with an original network GðV ,EÞ,
where V is the set of vertices and E is the set of edges. To keep
the KQ-cascade model simple, we introduce only two key pa-
rameters: the critical degree ks and the loss-tolerance coefficient
q. In the ith time step, any node with a degree k< ks or having
lost more than q proportion of its original connections may leave
the network with a probability fiðkÞ.
An example of the KQ-cascade model is illustrated in Fig. 1.

Note that the classic k-core cascading can be viewed as a special
case of the KQ cascade where fiðkÞ= 1 for k< ks and fiðkÞ= 0
otherwise. As mentioned above, the value of ks quantifies the
minimum support or benefit an individual needs to have to jus-
tify staying in the system: A less user-friendly OSN, for example,
may lead to a higher ks value. The value of q, on the other hand,
reveals the individuals’ risk tolerance level or the prospect on the
future of the system they are staying in: A lower value of q re-
veals a lower risk tolerance or a less positive prospect; for those
cases with competition between different systems, it may reveal a
higher competition pressure from the competitor(s) as well. In
real life, the value of the aggregated parameter qmay be affected
by many factors, e.g., risk tolerance level, switching cost, abso-
lute/relative group size, and various environment factors.

Theoretical Analysis on Network Evolution. Under the KQ cascade,
a network may demonstrate a phase transition of cascade size,
measured by the fraction of network nodes finally remaining in
the network, under different values of ks and q: It may either
crash into virtual nonexistence or have a nontrivial proportion of
nodes remaining in the steady state.
A theoretical analysis on the network evolution under the KQ

cascade, which allows an accurate prediction of such a phase

Fig. 1. Schematic illustration of KQ cascade with ks = 3 and q= 0.5. In a
classic k-core cascade, the four nodes within the yellow square forming up a
three-core would stay on while other nodes would leave. In the KQ cascade,
however, because node 1 has lost more than 50% of its original neighbors, it
will leave in the next time step, which leaves each of the three nodes within
the blue triangle with fewer than three connections, leading to the final
crash of the network.

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

fr
ac
tio
n
of
no
de
sr
em
ai
ni
ng

time step

ER: ks=14, q=0.1, f=0.2
SF: ks=6, q=0.5, f=0.1
Exp: ks=8, q=0.18, f=0.2
SF: ks=6, q=0.3, f=0.2

Fig. 2. KQ cascade in various networks. Comparison between analytical
(lines) and simulation (symbols) results for KQ cascade in different networks
with size N= 104.
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transition in random networks by reproducing the whole pro-
cedure of the cascade, has been developed. The main idea of the
analysis is presented inMethods, and further details can be found
in SI Appendix, SI Appendix 1: Analytical Approach. To illustrate
the accuracy of the analysis, we present analytical solutions
versus simulation results averaged over 100 independent reali-
zations (details for implementing these independent realizations
are given in Methods) for the following paradigmatic random
networks: an Erdös−Rényi (ER) network (29) with an average
nodal degree z= 20; an exponential (Exp) network with an av-
erage degree z= 20 and a degree cutoff of 100; and a scale-free
(SF) network with γ = 2, a minimum degree of 3, and a degree
cutoff of 100 (30). All three types of networks are generated using
the configuration model (30) with size of N = 104. For simplifica-
tion, we assume that, in each time step, individuals fulfilling the
conditions to leave may decide to do so with a constant probability f,
which may be viewed as a special case of the leaving probability
fiðkÞ. As we observe in Fig. 2, the proposed theoretical analysis
accurately predicts the evolution of the network size in all these
cases. The accurate prediction of the network dynamics also allows
us to calculate the threshold value of q leading to the network crash,
denoted as qth, by adopting a simple trial-and-error approach, as
illustrated in Fig. 3. The thresholds of some real-life networks,
presented in SI Appendix, Fig. S1, and related discussions can be
found in SI Appendix, SI Appendix 2: Cascade Threshold of Real-Life
Networks. Further results of the proposed analysis in predicting the
cascade process are given in SI Appendix, Figs. S2–S7. Simulation
results showing how the degree distribution affects the resilience
and cascade size (i.e., fraction of the remaining nodes) of random
networks are presented in SI Appendix, Figs. S14–S20. Analytical
and simulation results for the case where decline of a system shakes
the individuals’ confidence, leading to an accelerated system crash
(31), are reported in SI Appendix, SI Appendix 5: The Speedup Loss
of Individuals in a System Crash.

Pseudo-Steady State and Sudden Crash. We find that the proposed
model enables the occurrence of the pseudo-steady state and a
sudden crash of the systems. A few such cases in both random
and real-life networks are illustrated in Fig. 4. As we can see, in
the pseudo-steady state, the networks appear to be rather stable,
with only a few nodes leaving in each time step. After a long
period, however, the systems suddenly crash, sometimes within
only a few steps. In some systems, e.g., LiveJournal, the pseudo-
steady state may even appear more than once (more details will
be discussed later). Note that, when q gets close to qth, the spe-
cific time when the crash starts can be rather sensitive to small

fluctuations in the network structure. An example is given in Fig.
4A, where we show results in 10 random networks with the same
parameters but different seeds for random number generation.
Therefore, in this section, we shall only present our results for a
single simulation case.
We reveal that the pseudo-steady state and sudden crash of

the networks are caused by the emergence, growth, and final
crash of a giant cluster composed of “vulnerable nodes,” where a
vulnerable node is defined as the node that will fulfill the con-
ditions of leaving the network if it loses one more neighbor. It is
known that the vulnerable clusters composed by connected vul-
nerable nodes play an important role in a global cascade (27), as
the departure/loss of a single node in such a cluster may trigger
the cascading departure/loss of the whole cluster, which may
further result in the crash of the entire system. It is, however,
shown that a basic rule for leaving can lead to the emergence of a
giant vulnerable cluster in complex networks.
Fig. 5 illustrates, in more detail, the growth and decline of

vulnerable clusters. The simulations are carried out on a random
exponential network, as defined in Theoretical Analysis on Net-
work Evolution. To make comparisons, we choose two sets of
parameters: ks = 14, q = 0.37, and f = 0.1 and ks = 14, q = 0.38,
and f = 0.1. Although q= 0.37 leads to a network crash, q= 0.38
allows the network to survive; choosing such parameters thus
enables us to closely observe a phase transition of the system. We
find that, for the case where the network finally crashes, the
number of vulnerable nodes slowly accumulates during the
pseudo-steady state (Fig. 5B). The average relative size of all of
the vulnerable clusters meanwhile remains between 10−4 and
2× 10−4, meaning having only one or two nodes (Fig. 5D). This
finding shows that most vulnerable clusters are tiny pieces scattered
within the network. The size of the largest vulnerable cluster also
remains rather small most of the time (Fig. 5C). Shortly before the
sudden crash starts, however, there is a sharp increase in the size of
the largest vulnerable cluster (Fig. 5C), when vulnerable clusters
quickly connect together (Fig. 5D). At the moment when a sudden
crash starts, almost all of the vulnerable nodes merge into a single
cluster. For example, in the 69th time step, among 683 vulnerable
nodes, 632 of them merge into the largest vulnerable cluster. The
sudden emergence of the giant vulnerable cluster prepares a suffi-
cient condition for the sudden crash to be easily triggered.

Measuring the Resilience of Some Real-Life Systems Against the KQ
Cascade. It is interesting to evaluate the resilience of a few real-
life systems against the KQ cascade. In this section, we report
numerical simulation results on three different OSNs, namely,
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the Orkut, LiveJournal, and YouTube networks (32). A summary of
the basic information on these networks can be found in Methods.
Fig. 6 shows the dynamics of the cascade size in these networks

with different values of ks and q. It is interesting to observe that
Orkut demonstrates the strongest resilience against the KQ cascade
among the three networks, whereas YouTube turns out to be the
most fragile one. The conclusions, however, have to be taken with a
pinch of salt because, as always, the data we have only reflect a
fraction of the corresponding real-life networks, and it is not known
how the network sampling was done in the first place. Some dis-
cussion of how much evaluating the resilience of a random sampling
of a complex network may help to reveal the resilience of the whole
system is presented in SI Appendix, SI Appendix 6: Can Random
Sampling of a Network Reflect the Resilience.
Another interesting observation is that, in real-life networks,

there may be multistage phase transitions of the cascade size:
The cascade size may go through multiple pseudo-steady states
before the final crash. This, however, has never been observed in
our extensive simulations on uncorrelated random networks. We
believe that such phenomena are related to community struc-
tures (33) and degree correlations (34) existing in real-life net-
works. For example, the cascading departure/loss of a large
number of individuals may have barely any impact on certain
communities with dense intracommunity connections. It may be
worth mentioning that such observations have been made in
many OSNs: Friendster’s popularity was not significantly af-
fected in Southeast Asia, especially the Philippines, throughout
its fast decline; Orkut was especially popular in Brazil; and
LiveJournal has 52% of customer visits from Russia (35). A related
result in ref. 36 reports that, in a loosely coupled two-community
network, system cascade may have one peak in each community,
separated in time. Our simulation study shows that, in networks
with fixed nodal degrees, multistage pseudo-steady state vanishes
with the elimination of the community structures and degree cor-
relations. Details are reported in SI Appendix, SI Appendix 7: Effects
of Community Structures and Degree Correlations.

Cascade Decline of Friendster: A Possible Explanation. The crash of
Friendster offers an interesting case with relatively abundant
data. In a recent study (11), it was found that, if we adopt the

simple k-cascade model and let the threshold value of k increase
continuously from 3 in July 2009 to 67 in June 2010 at a rate of
about 6 per month, a good match between simulation results and
historical records of Friendster’s crash could be achieved. A
puzzling question remains, however: Although it is known that
Friendster made a fatal mistake in 2009 when it changed its
website interface, making it more difficult to use and hence in-
creasing the threshold value ks, it is not clear how this threshold
value could have gone up continuously when Friendster did not
make a second mistake.
We apply the proposed cascade model to the Friendster net-

work, which consists of 65,608,366 nodes and 1,806,067,135
connections (11). As obtaining the exact number of Friendster
users over time is difficult, following the work in ref. 11, we use
the Google search volume to approximate the popularity evo-
lution of Friendster. Specifically, the curve is still figured by
obtaining the search volume of “www.friendster.com.” Two ref-
erence points are set, one in June 2009, when Friendster began
to decline as users were not happy with the changed interface
(probably also due to the fast growth of Facebook) (11), and the
other in July 2010, when Friendster was reported to have only
about 10 million active users left, less than 10% of its peak size.
A trial-and-error approach shows that, when we set ks = 20,
q= 0.2, and f = 0.15, simulation results based on the proposed
model match well with the real-life data (Fig. 7). Note that, as
mentioned above, for those cases where systems crash mainly
due to strong competition, a smaller value of q may imply a
higher competition pressure from a stronger competitor. Al-
though q= 0.2 may appear to be quite a low value, adopting such
a value is not without basis: Even when Friendster was still at its
peak user size in 2009, the Google search volume of “Facebook”
was already more than 20 times higher than that of “Friendster”
(37), as illustrated in Fig. 7A. People thus may have had good
reason to believe, back in 2009–2010, that although Friendster
was larger, Facebook would certainly boom (and such belief
helped Facebook actually to boom). Also note that, at that time,
many users may have registered their accounts in both Friendster
and Facebook; leaving Friendster at q= 0.2 therefore did not
necessarily mean that they had to lose 80% of their online social
connections; instead, it might only have meant getting rid of
some inconveniences once and for all.
With only a snapshot showing the aggregated connections of

all of the ever-existing users until the moment the snapshot was
taken, it is not a surprise that we have to adopt a trial-and-error
approach to estimate the ks and q values. Nevertheless, it is
encouraging to see that, without making the assumption that the
ks value increases over time, a good match between simulation
results and real-life data can be achieved. When detailed data
showing network topology in different stages of system decline
are available, our model may allow a more accurate estimation of
parameter values and, consequently, a more accurate reflection/
prediction of system dynamics.
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Fig. 6. Cascade size of a few real-life networks. Cascade size of (A) Orkut
online social network, (B) LiveJournal online social network, and (C) You-
Tube network. The cascade size is shown in color scale.
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Discussion
In this work, we have introduced a network-based system dy-
namics model for describing the crash of complex systems and the
pseudo-steady state in some cases. In the proposed model, a
network node may choose to leave either when the number of
connections it has becomes too low or when it has lost more than a
certain proportion of its neighbors. We have derived a theoretical
analysis for the crash process on a random graph with an arbitrary
nodal degree distribution and an arbitrary leaving probability.
Based on the proposed model, a pseudo-steady state and sudden
crash phenomenon could be steadily observed in certain ranges of
parameters and be easily explained. Further, the resilience of
some real-life networks has been evaluated, and a possible ex-
planation for the sudden crash of Friendster has been presented.
The proposed model may find wide applications in helping

understand and predict the declines of various complex systems,
especially complex social systems. Studies on such applications
would be of future research interest, in particular:

i) Research areas may heat up and cool down. Although “early
movers” may leave a research area when important work has
been done or low-hanging fruit has been collected, many
others may only make up their minds to leave when their
colleagues are leaving (similar to q cascade) or when they
have lost their collaborators (similar to k cascade). Dynam-
ics of the decline of a research area needs to be studied.

ii) Collective intelligence systems such as Wikipedia may have
an increasing coordination cost when growing in scope (38).
Whether and how participants of a collective intelligence
system may decide to leave due to increasing coordination
cost are surely worth careful studies.

iii) Decentralized adoptions of new technologies, such as voluntary
installations of solar panels on house roofs, may be subject to
certain constraints. For example, there may be an upper bound
to the penetration level of grid-tied photovoltaic power (39).
Certain policies therefore may have to be installed to restrict
the adoption of the technology. Predicting whether adopting
such policies might result in decline or even crash of the tech-
nology adoption is of significant importance.

It would also be of future research interest to figure out how
much a model of system crash dynamics might help to identify

tipping points of a system (40), and to model system dynamics
when individuals’ decisions to leave involve certain kinds of more
sophisticated Bayesian reasoning (41).

Methods
Theoretical Analysis: Main Idea. The main idea of the theoretical analysis is to
model the degree transition in every step as a Markov process: By taking each
pair of original−current nodal degrees as a state and calculating the state
transition in each time step, we can reproduce the evolution process of the
network. Specifically, we construct (i) a degree transition matrix Di where
the element Di

jk denotes the probability that a node with an original degree
j becomes a degree-k node at the beginning of the ith time step and (ii) a
matrix Ui where the element Ui

jk denotes the probability that a node with an
original degree j has a degree k at the beginning of the ith time step and it
does not leave the network in this time step. We have

Ui
jk =Di

jkμðk, jÞ, [1]

where μðk, jÞ reflects the probability that a node with an original degree j
and a degree k at the beginning of the ith time step does not leave the
system in this time step,

μðk, jÞ=
�
1 k≥ ð1−qÞj   and  k≥ ks,
1− fiðkÞ otherwise,

[2]

where, as mentioned in Results, fiðkÞ denotes the probability that a node ful-
filling the conditions to leavemay actually leave the network in the ith time step.
As some nodes will lose a proportion of their neighbors in the leaving process,
their degrees need to be recalculated. Use the matrix Ti to keep record of the
transition within this time step, where Ti

k′k denotes the probability that a node
with a degree k′ at the beginning of the ith time step ends up with a degree k at
the end of this step. The degree transition matrix Di+1 hence can be calculated as

Di+1 =UiT i . [3]

The whole KQ-cascade process can be reproduced by iterative calculation of
Eqs. 1 and 3. The detailed calculations of these matrixes are discussed in
SI Appendix, SI Appendix 1: Analytical Approach.

This analysis can be easily extended to amore general case where network
nodes leave the network following an arbitrary criterion ϕ as long as the new
criterion can be reflected by properly changing μðk, jÞ in Eq. 2 accordingly.
Such extensions would allow an easy coverage of a wide range of existing
work, e.g., the classic k-core problem.

Numerical Simulations. For an easy reference, Table 1 summarizes the real-life
networks adopted in the numerical simulations. Note that, although the
data of Friendster contain 117 million identifications (IDs), only 65 million of
them have a connection record, as reflected in Table 1; the other 52 million
IDs are for private users with confidential connection information.

In both the synthetic and real-life networks, numerical simulations are
carried out in the following steps:

i) Initialization: record the degree of each node as its original degree. Set
values of the parameters ks and q.

ii) First time step: for any node with its original degree lower than ks,
remove it at a constant probability f. Update the record of each node’s
degree as its current degree.

iii) Iterations in the following time steps: check all nodes’ current degrees
as recorded at the beginning of the time step. If a node has a current
degree lower than ks or has lost more than q proportion of its original
degree, it has a probability f to leave the network. The records of the
nodes’ current degrees are only updated when all of the nodes have
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Fig. 7. Cascade decline of the Friendster. (A) Comparison between the
Google search volumes of “Friendster” and “Facebook.” In January 2009, the
search index of “Facebook” was 27, whereas, for “Friendster,” it was 1.
(B) Themonthly Google search volume for “www.friendster.com” (triangles) and
simulation results adopting the proposed model (circles). The size of 1 corre-
sponds to the user size at the peak time (excluding those users with zero degree),
which was about 68 millions. Decline started at a size of 0.94 (i.e., 64 million) in
June 2009 and stopped at a size of 0.15 (about 10 million) in June 2010.

Table 1. Basic information of the networks evaluated in
this work

Network name User no. Link no. Ref.

Friendster 65,608,366 1,806,067,135 11
Orkut 3,072,441 117,185,083 32
LiveJournal 3,997,962 34,681,189 32
YouTube 1,134,890 2,987,624 32
Gowalla 196,591 950,327 42

These are network samples downloaded from the respective sources.
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decided whether to stay on or to leave, at the end of each time step.
Repeat the iterations until the network diminishes or no more nodes
can leave the network.

For each synthetic network with f < 1, we carry out 100 independent re-
alizations: First we generate 10 random networks and then carry out 10
rounds of simulations on each of these networks. Unless otherwise specified,
we present the average of these 100 independent realizations. When f = 1,
in each of the 10 random networks, only a single round of simulation is
needed. For the real-life networks, when f < 1, we also carry out 10 rounds
of simulation and present the average results. Note that, in all of the figures,
the error bars are rather small; hence they are omitted.

Also note that different values of f only speed up or slow down the
network evolution process; they have no influence on the crash threshold
and the cascade size at the steady state. For the synthetic networks, we
typically adopt small values such as f = 0.1 or f = 0.2 to generate smoother
curves. For real-life networks, we let f = 0.5 to speed up the computation.

ACKNOWLEDGMENTS. This work is partially supported by the Ministry of
Education (MOE), Singapore, under Research Grants RG 69/12, RG 28/14,
MOE2013-T2-2-006, and MOE2014-T2-1-028. Part of this work is an outcome
of the Future Resilient Systems project at the Singapore-ETH (Swiss Federal
Institute of Technology in Zurich) Centre, which is funded by the National
Research Foundation of Singapore under its Campus for Research Excellence
and Technological Enterprise program.

1. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks:
Structure and dynamics. Phys Rep 424(4-5):175–308.

2. Song C, Havlin S, Makse HA (2006) Origins of fractality in the growth of complex
networks. Nat Phys 2:275–281.

3. Forey PL (1998) History of the Coelacanth Fishes (Chapman & Hall, London).
4. Zhi Y, et al. (2007) Inter-specific competition, Spartina alterniflora is replacing spar-

tina anglica in costal China. Estuar Coast Shelf Sci 74(3):437–448.
5. Fairbank JK, Liu KC (1980) Late Ch’ing, 1800−1911, Part 2, The Cambridge History of

China (Cambridge Univ Press, Cambridge, UK), Vol 11.
6. Sahney S, Benton MJ, Falcon-Lang HJ (2010) Rainforest collapse triggered Pennsyl-

vanian tetrapod diversification in Euramerica. Geology 38(12):1079–1082.
7. Angus I, Butler S (2011) Too Many People? Population, Immigration, and the

Environmental Crisis (Haymarket, Chicago).
8. Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evi-

dence for global amphibian population declines. Nature 404(6779):752–755.
9. Stuart SN, et al. (2004) Status and trends of amphibian declines and extinctions

worldwide. Science 306(5702):1783–1786.
10. Gaddis JL (2006) The Cold War: A New History (Penguin, New York).
11. Garcia D, Mavrodiev P, Schweitzer F (2013) Social resilience in online communities:

The autopsy of Friendster. Proceedings of the First ACM Conference on Online Social
Networks (Assoc Comput Machinery, Boston), pp 39–50.

12. Domínguez-García V, Muñoz MA (2015) Ranking species in mutualistic networks. Sci
Rep 5:8182.

13. Wenning GK, Colosimo C, Geser F, Poewe W (2004) Multiple system atrophy. Lancet
Neurol 3(2):93–103.

14. Krishna PV, Saritha V, Sultana HP (2014) Challenges, Opportunities, and Dimensions
of Cyber-Physical Systems (IGI Global, Hershey, PA).

15. Sieczka P, Sornette D, Holyst JA (2011) The Lehman Brothers effect and bankruptcy
cascades. Eur Phys J B 82:257–259.

16. Podobnik B, et al. (2015) The cost of attack in competing networks. J R Soc Interface
12(112):20150770.

17. Bernheim BD (1994) A theory of conformity. J Polit Econ 102(5):841–877.
18. Bikhchandani S, Hirshleifer D, Welch I (1992) A theory of fads, fashion, custom and

cultural change as informational cascades. J Polit Econ 100(5):992–1026.
19. Chen Y-F (2008) Herd behavior in purchasing books online. Comput Human Behav

24(5):1977–1992.
20. Wilson CM, Price CW (2006) Do consumers switch to the best supplier? Oxf Econ Pap

62(4):647–668.
21. Villas-Boas JM (2015) A short survey on switching costs and dynamic competition. Int J

Res Mark 32(2):219–222.
22. Raafat RM, Chater N, Frith C (2009) Herding in humans. Trends Cogn Sci 13(10):

420–428.
23. Dorogovtsev SN, Goltsev AV, Mendes JFF (2006) k-Core organization of complex

networks. Phys Rev Lett 96(4):040601.

24. Dasgupta K, et al. (2008) Social ties and their relevance to churn in mobile telecom
networks. Proceedings of the 11th International Conference on Extending Database
Technology: Advances in Database Technology (Assoc Comput Machinery, Boston), pp
668–677.

25. Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S (2010) Catastrophic cascade of
failures in interdependent networks. Nature 464(7291):1025–1028.

26. Saavedra S, Stouffer DB, Uzzi B, Bascompte J (2011) Strong contributors to network
persistence are the most vulnerable to extinction. Nature 478(7368):233–235.

27. Watts DJ (2002) A simple model of global cascades on random networks. Proc Natl
Acad Sci USA 99(9):5766–5771.

28. Hackett A, Melnik S, Gleeson JP (2011) Cascades on a class of clustered random net-
works. Phys Rev E Stat Nonlin Soft Matter Phys 83(5 Pt 2):056107.

29. Erdös P, Rényi A (1959) On random graphs, I. Publ Math (Debrecen) 6:290–297.
30. Catanzaro M, Boguñá M, Pastor-Satorras R (2005) Generation of uncorrelated ran-

dom scale-free networks. Phys Rev E Stat Nonlin Soft Matter Phys 71(2 Pt 2):027103.
31. Spanjers W (2008) Loss of confidence and currency crises. Int J Econ Res 5:219–237.
32. Yang J, Leskovec J (2012) Defining and evaluating network communities based on

ground-truth. Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics
(Assoc Comput Machinery, Boston), pp 1–8.

33. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl
Acad Sci USA 103(23):8577–8582.

34. Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89(20):208701.
35. Alexa (2014) Traffic Rank for Livejournal.com. Available at www.alexa.com/siteinfo/

livejournal.com. Accessed November 30, 2014.
36. Galstyan A, Cohen P (2007) Cascading dynamics in modular networks. Phys Rev E Stat

Nonlin Soft Matter Phys 75(3 Pt 2):036109.
37. Google (2014) Google Trend: Search terms Friendster vs. Facebook. Available at

https://www.google.com/trends/explore?date=all&q=friendster,facebook. Accessed
November 30, 2014.

38. Kittur A, Suh B, Pendleton A, Chi EH (2007) He says, she says: Conflict and co-
ordination in Wikipedia. Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Assoc Comput Machinery, Boston), pp 453–462.

39. Eltawil MA, Zhao Z (2010) Gird-connected photovoltaic power systems: Technical and
potential problems—A review. Renew Sustain Energy Rev 14(1):112–129.

40. Dakos V, Bascompte J (2014) Critical slowing down as early warning for the onset of
collapse in mutualistic communities. Proc Natl Acad Sci USA 111(49):17546–17551.

41. Baltag A, Christoff Z, Hansen JU, Smets S (2013) Logical models of informational
cascades. Working paper (Vrije Universiteit Brussel, Brussels). Available at www.vub.
ac.be/CLWF/SS/CASCADES-COLLEGE.pdf.

42. Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: User movement in loca-
tion-based social networks. Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Assoc Comput Machinery,
Boston), pp 1082–1090.

Yu et al. PNAS | October 18, 2016 | vol. 113 | no. 42 | 11731

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

SO
CI
A
L
SC

IE
N
CE

S

http://Livejournal.com
http://www.alexa.com/siteinfo/livejournal.com
http://www.alexa.com/siteinfo/livejournal.com
https://www.google.com/trends/explore?date=all&q=friendster,facebook
http://www.vub.ac.be/CLWF/SS/CASCADES-COLLEGE.pdf
http://www.vub.ac.be/CLWF/SS/CASCADES-COLLEGE.pdf

