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We study synchronization of systems in which agents holding chaotic oscillators move in a

two-dimensional plane and interact with nearby ones forming a time dependent network.

Due to the uncertainty in observing other agents’ states, we assume that the interaction con-

tains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find

that a synchronization transition takes place by changing a control parameter. But this tran-

sition depends on the relative dynamic scale of motion and interaction. When the topology

change is slow, we observe an intermittent switching between laminar and burst states close

to the transition due to small noise. This novel type of synchronization transition and inter-

mittency can happen even when complete synchronization is linearly stable in the absence

of noise. We show that the linear stability of the synchronized state is not a sufficient condi-

tion for its stability due to strong fluctuations of the transverse Lyapunov exponent associ-

ated with a slow network topology change. Since this effect can be observed within the

linearized dynamics, we can expect such an effect in the temporal networks with noisy cha-

otic oscillators, irrespective of the details of the oscillator dynamics. When the topology

change is fast, a linearized approximation describes well the dynamics towards synchrony.

These results imply that the fluctuations of the finite-time transverse Lyapunov exponent

should also be taken into account to estimate synchronization of the mobile contact net-

works. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4962129]

Synchronization in time evolving networks has drawn

much attention recently. Especially, mobile contact net-

works, in which the nodes move around and the net-

work topology of interaction changes in time, are quite

important for its wide range of potential applicability

to chemotaxis, mobile communications, groups of ani-

mals, etc. Despite the importance of this topic, only

some research has been performed so far. One impor-

tant case that is needed to study is where the system

contains irregularity in the internal dynamics. Here, we

study the effect of noise on chaotic synchronization

in the mobile contact networks. We find a transition

between chaotic synchronization and desynchronized

states for any motion rate. However, when the topology

change is slow, we observe a switching between the

quasi-synchronized (laminar) and desynchronized

(burst) states close to the transition. We uncover that

this switching is caused by large fluctuations of the

transverse Lyapunov exponent due to a slow topology

change. Our result suggests that small noise is already

important because of these large fluctuations, and this

effect has to be taken into account for constructing an

efficient and robust mobile contact network. On the

other hand, in the case of fast motion of agents, the fluc-

tuations are relatively small, and the Lyapunov

exponent asymptotically converges to that of the fast

switching approximation (FSA).

I. INTRODUCTION

As already pointed out in Ref. 1, evolving complex

networks, i.e., the ones whose topology changes in time, are

one of the currently most important extensions of complex

networks studies.2 Various examples of such evolving net-

works can be found in person-to-person communication

networks,3–5 phone calls,6 consensus problems,7 and func-

tional brain networks.8 Among those evolving networks,

there exists a certain class in which nodes can move around

as agents and interact with the nearby ones. These networks

have been called in the literature as moving neighborhood

networks.9 This particular type of time-dependent network,

in which links are established by proximity, has been used in

models of agents in search of consensus,10 spreading dynam-

ics,11 motions of robots,12 vehicles,13 and groups of ani-

mals,11,14 in which cooperative dynamics12 emerges.

Among various possible interaction dynamics between

agents, synchronization15 is a fundamental type of emer-

gence. We assume here that each agent has an oscillator, and

that an interaction between nearby oscillators takes place.

Although synchronization in the complex networks has beena)fujiwara@csis.u-tokyo.ac.jp
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intensively studied mainly so far with fixed topology,16,17

many examples where synchronization of mobile elements

plays a crucial role have been reported recently, e.g., chemo-

taxis,18 mobile ad hoc networks,19 wireless sensor net-

works,7 the expression of segmentation clock genes,20,21 and

the acoustic communication of frogs.22

Theoretically, the analysis of time dependent network

topology is quite difficult and at the same time very challeng-

ing, and only few results have been reported so far. To our

knowledge, the first attempt of a detailed analytical treatment

was done by Skufca and Bollt,9 who introduced the concept

of the moving neighborhood networks and proposed the sta-

bility analysis based on the eigenvalues of the moving time

average of the Laplacian matrices. One simplifying case is

when the network topology changes faster than the time scale

of oscillator dynamics.23–26 The sufficient condition for the

fast switching approximation has been proven for chaotic

synchronization on time-dependent small world networks,23

deterministically time-dependent networks,26 and interacting

random walkers on networks.25 Another one is the analysis

using the Fokker-Planck equation formalism when the popu-

lation of agents is dense and arranged in a ring.27

In our recent studies,28,29 we have introduced a concep-

tual model for synchronization of non-chaotic mobile oscil-

lator networks where agents perform random walks in a

two-dimensional (2D) plane. We have found two different

mechanisms leading to synchronization, namely, local and

global synchronization, depending on the parameter values.

Our results suggest that the interplay between instantaneous

topology, agent motion, and interaction rules plays an impor-

tant role for synchronization of the mobile contact networks.

This framework has been recently applied to integrate and

fire oscillators.30,31 In these studies, the internal dynamics is

assumed to be regular and deterministic, neglecting noise

which appears for many reasons, e.g., thermal fluctuation

and error in observation of other agents.

In real systems, interaction is usually rather noisy and it

can affect the global dynamics. However, such noise is not

expected to produce a drastic effect when the dynamics of

the units is regular. The situation changes completely when

the internal dynamics has irregular properties, i.e., it has a

chaotic behavior. In the general framework of synchroniza-

tion, it is well known that synchronized behaviors are possi-

ble even if the internal dynamics is chaotic.32,33 Therefore, it

is important to study synchronization dynamics in such irreg-

ular systems in order to estimate the performance of a mobile

network. Here, we analyze synchronization phenomena of

the chaotic mobile oscillators with small random noise,

which is unavoidable in realistic systems.

This paper is organized as follows. In Sec. II, we

describe our model of mobile oscillator networks. We report

the numerical simulation of the chaotic mobile oscillator

network in Sec. III and show the novel type of synchroniza-

tion transition and intermittent behavior of the synchroniza-

tion error caused by the small noise in the parameter region

where synchronization is linearly stable. In order to explain

the intermittency and asymptotic dynamics close to com-

plete synchronization, we introduce linearized equations in

Sec. IV, and in Sec. IV A, we describe the conventional

averaging which is valid when the topology change is very

fast. The numerical results of the linearized equation are

compared with those of the nonlinear equation in Sec. IV B,

and we show that the linearized equation describes well

the asymptotic dynamics near the synchronized regime.

Section V is devoted to analyze the linearized dynamics in

terms of the product of the instantaneous Laplacian matri-

ces. Our results are summarized in Sec. VI.

II. MODEL

Our model consists of two parts: agents’ dynamics (topol-

ogy) and oscillator dynamics. The dynamics of agents is

described by a random walk of N agents moving in a 2D space

(size L� L) with periodic boundary conditions. Each agent

moves with the same speed v during time intervals of length

sM. The angle of the ith agent’s motion is niðtkÞ 2 ½0; 2p�, and

it changes randomly at discrete time steps tk (tkþ1 � tk ¼ sM).

The evolution of the ith agent’s position is written as

xiðtk þ DtÞ ¼ xiðtkÞ þ v cos niðtkÞDt mod L;

yiðtk þ DtÞ ¼ yiðtkÞ þ v sin niðtkÞDt mod L; (1)

where Dt � sM. Note that the motion of the agents is

diffusive.

We assume that each agent has an internal state uðtÞ
which evolves with a chaotic map F½uðtÞ�. Time update of

oscillators takes place at each discrete time step sP. We

assume that an oscillator i interacts with its nearby agent

j with the coupling strength r if the Euclidian distance dijðtÞ
between agents i and j is less than a threshold d

ui tþ sPð Þ ¼ F ui tð Þ
� �

� r
N

XN

j¼1

Lij tð ÞF uj tð Þ
� �

þ fi tð Þ; (2)

where LijðtÞ ¼ ½kiðtÞdij � cijðtÞ� is the time dependent

Laplacian matrix with cijðtÞ ¼ 1 for dijðtÞ < d (i 6¼ j) and

cijðtÞ ¼ 0 otherwise, and dij denotes the Kronecker delta.

Here, kiðtÞ represents the degree of the ith node, i.e., the

number of oscillators that are connected with i. fi is a noise

term which has no time correlation and is uniformly distrib-

uted in ½0; fmax�, where fmax ¼ 10�10 in the whole paper.

Note that the noise is independent for different i. If we

neglect the noise term, there exists a complete chaotic syn-

chronized state uiðtÞ ¼ u0ðtÞ for all i, where u0 is a chaotic

orbit which satisfies u0ðtþ sPÞ ¼ F½u0ðtÞ� in Eq. (2). Since

the noise is very small in our case, we expect that there

exists a synchronized state in which the synchronization

error, DuðtÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jðujðtÞ � �uðtÞÞ2=N
q

, is of the order of

the noise intensity. This synchronized state is never

observed if it is linearly unstable, but as we see below the

linear stability is not a sufficient condition to observe a syn-

chronized state.

In the present paper, we study the asymmetric tent map

FðuiðtÞÞ ¼
uiðtÞ=a for 0 � uiðtÞ < a

ð1� uiðtÞÞ=ð1� aÞ for a � uiðtÞ � 1

(
(3)
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for the internal dynamics. The Lyapunov exponent for the

internal dynamics without interaction is analytically

achieved as

k ¼ ½�a log a� ð1� aÞ logð1� aÞ�=sp: (4)

For more details about synchronization of the two asymmet-

ric tent maps, see Ref. 15.

In the rest of the paper, we fix the parameter values as

a¼ 0.94, L¼ 100, sM ¼ 1, v¼ 5, and r ¼ 1:7 and vary sP

and d, which are the relevant parameters characterizing the

interaction.

III. NUMERICAL RESULTS

In this section, we present numerical results obtained

by solving Eqs. (1) and (2). Figure 1 shows the time evolu-

tion of the overall synchronization error DuðtÞ for different

sP with d¼ 32, where �uðtÞ ¼
P

jujðtÞ=N. If ui distributes

uniformly in ½0; 1�, we get Du ¼ ð2
ffiffiffi
3
p
Þ�1 � 0:29. Thus, Du

� Oð10�1Þ implies that the system is not synchronized. For

sP ¼ 1 (Fig. 1(a)), the system is not synchronized in most

of the simulation time, but sometimes the synchronization

error takes a small value which implies that all oscillators

are almost synchronized. Such a switch between the quasi-

synchronized (laminar) and non-synchronized (burst) states

is observed typically close to a chaotic synchronization

transition point (on-off intermittency),34 because the cha-

otic oscillation stays near the synchronized state for a long

time, but the mechanism observed here is different. This

point will be discussed in Section IV. As sP is increased

(Fig. 1(b)), we observe longer durations of the synchronized

state. For larger sP, sP ¼ 11 and sP ¼ 100, the synchroniza-

tion error decays exponentially from the initial stage and

keeps the synchronized state. Therefore, we can conclude

that the synchronization transition takes place in the sP

region 3 < sP < 11.

Figure 2(a) plots hDui, the long-time average of Du
averaged over different 124 initial conditions of randomly

distributed uið0Þ and position of agents. The result is

plotted in the parameter regions where hDui > 10�3 is sat-

isfied after some initial transient. If this condition is satis-

fied, we regard that the system is not synchronized. This

figure suggests that hDui depends mainly on d in the non-

synchronized region, and its dependence on sP is much

smaller.

For the synchronized state, defined as the state in

which hDui < 10�3 is satisfied, a fast reaching of syn-

chronization is often required for the application to real

systems.19,20,35,36 We plot the synchronization time Ts,

i.e., the time at which DuðTsÞ < 10�3 is achieved for the

first time (Fig. 2(b)), but eventually it can exit this

regime. This result suggests that for a fixed d the syn-

chronization time is larger for larger sP, whereas the

system can be desynchronized for smaller sP. Therefore,

there exists an optimal value of sP, where the fastest

synchronization is obtained, in an intermediate region

of sP.

FIG. 1. Time evolution of the synchro-

nization error DuðtÞ for different sP.

All results are for d¼ 32. (a) sP ¼ 1,

where the system is not synchronized

(Du � 10�1), but sometimes the syn-

chronization error can be very small.

(b) sP ¼ 3. The synchronized state

lasts longer than (a). (c) sP ¼ 11, and

(d) sP ¼ 100. After the initial transient,

synchronization is achieved. The noise

is not strong enough to break the

synchronized state. Note that the FSA

(see Sec. IV A) describes the dynamics

leading to the synchronization for

these cases.

FIG. 2. Dependence on d and sP of (a) the average synchronization error

hDui in the non-synchronized regime and (b) the average synchronization

time in the synchronized regime. We define those regions if all realiza-

tions of 124 different initial conditions settle down to the same state, and

we did not plot in the intermediate parameter region of the bistable

regime, where both the synchronized and non-synchronized states are

observed.
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IV. LINEARIZED EQUATION

Next, we study the linearization approximation in order to study the stability of the synchronized state. We set

uiðtÞ ¼ u0ðtÞ þ duiðtÞ. If dui is small enough, we can linearize the evolution equation (2) with the Jacobian of

F½u0ðtÞ�; @F½u0ðtÞ�, around the synchronized state u0ðtÞ as

dui tþ sPð Þ ¼ @F u0 tð Þ
� �

dui tð Þ � r
N

XN

j¼1

Lij tð Þduj tð Þ

2
4

3
5; (5)

or

dui tþ sPð Þ ¼

dui tð Þ � r
N

XN

j¼1

Lij tð Þduj

2
4

3
5
,

a for 0 � u0 tð Þ < a

�dui tð Þ þ r
N

XN

j¼1

Lij tð Þduj

2
4

3
5
,

1� að Þ for a � u0 tð Þ � 1:

8>>>>>>><
>>>>>>>:

(6)

Due to the zero row sum property of the time dependent Laplacian matrix Lij, it always has at least one zero eigenvalue.

dui parallel to the zero eigenvector corresponds to the perturbation along the synchronization manifold. The linear stability of

the chaotic complete synchronization is estimated by the transverse Lyapunov exponents K for the non-zero eigenvalues of Lij

which are perpendicular to the synchronization manifold. The linear stability condition for the chaotic complete synchroniza-

tion state is that all transverse Lyapunov exponents are negative.32,37

A. Fast switching approximation

Based on the linearized equation (5), we can apply the fast switching approximation (FSA).23–26 It is valid under the fol-

lowing assumption: When the time scale of network variations is much shorter than that of the interaction dynamics, the

instantaneous Laplacian matrix is replaced by a time averaged matrix whose elements are just the probability for a given link

to exist, instead of 1’s and 0’s corresponding to real connections. This happens for large sP, in which case the correlations of

an agent’s position at two consecutive time steps t and tþ sP are negligible. In such a situation, at each time step, the probabil-

ity of a link to exist is just

q ¼

pd2=L2 d � L

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2 � L2
p

=Lþ d2 p� 4 cos�1 L

2d

� �� �,
L2 L

2
< d � Lffiffiffi

2
p

1 d >
Lffiffiffi
2
p :

8>>>>>>><
>>>>>>>:

(7)

From this expression, one can construct an average Laplacian

matrix L̂ij ¼ ðNdij � 1Þq. All non-zero eigenvalues of this

average Laplacian are degenerated gi ¼ g ¼ Nq ð8i 	 2Þ.
We then get the transverse Lyapunov exponent via FSA for

d � L=2 as

KFS ¼ kþ 1

sp
log 1� rpd2

L2

� �
; (8)

by replacing Lij in Eq. (5) with L̂ij and considering the

linear growth rate of the non-zero eigenmodes, where k is

the Lyapunov exponent of the internal dynamics given

in Eq. (4). In the parameter set in this paper, 1� rpd2=
L2 > 0 holds for d < d0 ¼ L=

ffiffiffiffiffiffi
rp
p

� 43:27. Note that an

oscillation arises when the interaction is too strong. For

1� rpd2=L2 < 0, such an oscillation can be seen in Eq. (8)

where the transverse Lyapunov exponent via FSA becomes

complex. It is evident from the derivation of Eq. (8) that

this happens in a discrete system where the coupling

strength r is not proportional to the time step. Since this is

not a situation of physical interest, the numerical simula-

tions have been performed for d values below d0.

B. Comparison between linearized equation and
asymptotic dynamics to synchronized state

Now, we compare the numerical results of the linearized

equation with those of the original nonlinear equation when

the state goes to the synchronized state. When the synchroni-

zation error is small, we expect that the dynamics is well

approximated by the linearized equation (6). The upper pan-

els of Fig. 3 show the time evolution of the average phase

difference DuðtÞ for different values of sP by numerically

solving the full nonlinear equation (2); they are close-ups of

094824-4 Fujiwara, Kurths, and D�ıaz-Guilera Chaos 26, 094824 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  193.174.18.5 On: Mon, 28 Nov

2016 09:50:20



Fig. 1. Du evolves in time from Du � 10�1 and saturates

around the noise level Du � fmax ¼ 10�10.

We plot in the lower panels of Fig. 3 the results of the

linearized model (6). Blue lines in the upper panels of Fig. 3

represent the exponential curves whose slope is estimated

from the linearized equation in the lower panels. For small

sP (Fig. 3(a)), fluctuations of the transverse Lyapunov expo-

nent are large, and they can enhance the synchronization

error f�1
max even if the long-time average of the exponent is

negative. Since Du � fmax holds even when the system is

synchronized, such large fluctuations cause the switching

from laminar to burst states in the presence of small noise.

For large sP, fluctuations of the transverse Lyapunov expo-

nent are small and such a switch is not observed. Note that

the synchronization achievement is faster for sP ¼ 10 than

for sP ¼ 100.

Figure 4 shows the dependence of the transverse

Lyapunov exponent K on sP for d¼ 30. It is positive for

sP � 0:5, but negative for sP � 0:5. The dependence of K on

d and sP is plotted in Fig. 5(a). For noise free non-chaotic

systems,28,29 K converges to a certain value for the small sP

limit, but in the present case, where the internal dynamics is

chaotic, it diverges. As we increase sP, the time scale of the

topology change is faster than that of the oscillator dynamics

and K is well approximated by FSA. In this case, we have

K � s�1
P and it takes longer to be synchronized for larger sP.

From these two asymptotics, we can predict that there exists

an optimal parameter region which yields the fastest syn-

chronization for intermediate sP values, which is indeed

shown in Fig. 2(b).

In order to clarify that the switching between the laminar

and burst states is caused by large fluctuations of the trans-

verse Lyapunov exponent, we plotted the largest enhancement

of the synchronization error gm � maxt0Duðt0Þ=DuðtÞ, where

t < t0 < tþ s. Due to the noise term in the evolution equation,

Du stays around the noise strength f0. Thus, if Duðt0Þ=DuðtÞ
ðt < t0Þ is as large as f�1

max, the synchronization error can be

O(1) and the synchronized state breaks down even if it is

FIG. 3. Comparison of the time evolution of the synchronization error for the original nonlinear equation (2) versus the linearized equation (6) for sP ¼ 1 ((a)

and (d)), sP ¼ 11 ((b) and (e)), and sP ¼ 100 ((c) and (f)). Upper panels are close-up of Fig. 1 for the corresponding parameter values from the nonlinear equa-

tion. Lower panels represent the results of the linearized equation for the same parameter values to the upper panels. The slope of the blue lines corresponds to

the transverse Lyapunov exponent K. In panel (d), although K is negative, its fluctuation is so large that Du can grow temporarily. The arrows indicate such an

example of the temporal growth of Du.

FIG. 4. Transverse Lyapunov exponent K for d¼ 30. Blue line represents

the prediction of the fast switching approximation (8). In the inset, the char-

acteristic time T ¼ 1=jKj is shown in a log-log scale. The average is taken

over 124 realizations.

FIG. 5. (a)Transverse Lyapunov exponent K in the d-sP plane. (b) Largest

growth of the synchronization error gm � maxt0Duðt0Þ=DuðtÞ. Note that gm

can be defined only if K < 0.
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linearly stable. Figure 5(b) shows that large fluctuations are

observed in the parameter region where the transverse

Lyapunov exponent is negative but small.

V. SOLUTION OF THE LINEARIZED EQUATIONS

In order to get insight into the collective behavior of the

set of mobile oscillators, we can proceed with the approximate

linearized dynamics (5), since it describes very well the expo-

nential decay of the average synchronization error to the syn-

chronized state. This method has been recently proposed in

Refs. 28 and 29 for the non-chaotic phase oscillators and

shown that this method describes the asymptotic dynamics

appropriately. Here, we give a full description of the method

and extend it to the chaotic internal dynamics case.

We introduce the normal modes of the Laplacian matrix

L, but in our current case, they are time dependent because

the network topology (and hence L) changes with time. If

hlðtÞ are the normal modes corresponding to the eigenvalue

glðtÞ at time t and UjlðtÞ is the orthogonal matrix of the trans-

formation from the original coordinates to the normal ones,

being its columns of the normalized eigenvectors of the

Laplacian matrix, we can write

ujðtÞ ¼
XN

l¼1

UjlðtÞhlðtÞ; (9)

at any time step. Multiplying both sides of Eq. (5) by the

transpose UT
liðtþ sPÞ from the left, we get

hlðtþ sPÞ ¼
X
i;m

UT
liðtþ sPÞUimðtÞ@F½u0ðtÞ�½1� rgmðtÞ�hmðtÞ

�
X

m

OlmðtÞ@F½u0ðtÞ�½1� rgmðtÞ�hmðtÞ; (10)

where @F½u0ðtÞ� stands for the Jacobian of F (see Eq. (5)).

Note that OlmðtÞ ¼
P

iU
T
liðtþ sPÞUimðtÞ is an orthogonal

matrix with a unit determinant. Then, after an arbitrary num-

ber n of time steps, we get

hlnðtþ nsPÞ ¼
Yn�1

q¼0

@F½u0ðtþ qsPÞ�

�
XN

lq¼1

Olqþ1lq ½1� rglq �

2
4

3
5hl0ðtÞ; (11)

where lq denotes the suffix corresponding to an eigenmode at

time tþ qsP. The product of these matrices separately

describes the transformation of the normal modes of the

instantaneous networks by Olqþ1lq and the decay or growth of

each eigenmode by @F½u0ðtþ qsPÞ�ð1� rglqÞ.
The number of zero eigenvalues of an instantaneous

Laplacian matrix is equal to the number of connected com-

ponents. In our case, it is easy to understand that even if

LijðtÞ’s have multiple zero eigenvalues, the product of the

matrices can have less zero eigenvalues and eventually be

reduced to a single one, because all random walkers meet in

the finite system size if we wait for a long time. This implies

that the system which is instantaneously disconnected is

eventually in contact.38

Empirically, we find that, for large enough n, the eigen-

values of the product of matrices for n time steps (11)

converge to certain values in such a way that the ith eigen-

mode shows an exponential growth or decay with the rate

h@Fðu0Þið1� r�giÞ, where �gi represent the eigenvalues of

an effective Laplacian matrix (0 ¼ �g1 � �g2 �… � �gN).

According to this behavior, the transverse Lyapunov expo-

nent K will be

K ¼ k� log 1� r�g2ð Þ
sP

: (12)

K obtained with this method should agree with the numerical

simulation even for smaller sP where the FSA does not hold.

This was verified for the noise free non-chaotic system

where k¼ 0 holds.28

All the dynamical properties of the evolution of the sys-

tem lie then in the product of these matrices, and our proce-

dure could be generalized to describe the synchronization

dynamics in the general case of the non-fixed topology sys-

tems where the Master Stability Function (MSF) formal-

ism17,39,40 is applicable. It is also important to note that our

procedure is general and does not depend on the precise way

the network is changed or has restrictions on the commuta-

tivity41 or on the simultaneous triangularizability42 of the

graphs.

In our previous studies,28,29 we have shown that the syn-

chronization mechanism depends on the dominant time

scales, namely, one of the oscillator dynamics and one of the

motion of agents. For the case of the non-chaotic oscilla-

tors,28,29 the time scale of the oscillator dynamics is different

below and above the percolation transition (d¼ dc)
43,44 of

the instantaneous topology. We consider three asymptotic

cases individually: derivation of FSA when the time scale of

the topology change is much shorter than the oscillator

dynamics. In the opposite case, deviation from FSA caused

by local synchronization is studied for the two asymptotic

cases d 
 dc and d � dc. This procedure is an extension of

the previous studies28,29 to the case where the local dynamics

shows the chaotic behavior.

A. Fast switching approximation

When the characteristic time scale of the agents’

motion is much shorter than the signal interval, we obtain

FSA if the motion of the agents is independent of each

other. In such a case, the agents move a sufficiently

long distance during sP, and LijðtÞ and Lijðtþ sPÞ are

regarded as independent. Thus, their eigenvalues, glðtÞ
and glðtþ sPÞ, are uncorrelated. We write gkq

¼ hgi þ Dkq
,

where hgi is the average eigenvalue of the Laplacian

matrices and hDkq
i ¼ 0. Then, we get

Qn�1
q¼0ð1� rgkq

Þ
¼ ð1� rhgiÞn

Qn�1
q¼0 nkq

, where nkq
¼ ½1� rDkq

1�rhgi�. We can

expect
Qn

q¼1ð1� rglqÞ � enh logð1�rgÞi for every possible

combination of lq’s in Eq. (11) if we neglect the fluctua-

tion of g’s.
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Since the average eigenvalue of the Laplacian matrix is

the average degree, we get hgi ¼ ðN � 1Þq, where q is

defined by Eq. (7). Expanding the transverse Lyapunov

exponent in powers of r, we have

K ¼ kþ r
sP

N � 1ð ÞqþO r2ð Þ; (13)

which is equal to KFS (8) plotted in Fig. 4, and which has

been derived in a different way in Ref. 24, up to the lowest

order in r.

B. Multiple cluster local synchronization

We consider now the case for d below the percolation

threshold dc. There exist multiple disconnected clusters, and

the characteristic time of the agent’s motion is larger than

that of synchronization inside the cluster. Thus, local syn-

chronization is achieved.28,29 If sP is small enough, the non-

zero eigenmode hlðtÞ with glðtÞ 6¼ 0 vanishes before the net-

work topology changes if its MSF is negative, implying that

local synchronization is achieved. Even if we decrease the

signal interval sP and hence increase the number of signals,

we cannot get a further decrease in the synchronization error

between the disconnected clusters, and the synchronization

error can be enhanced for the chaotic internal dynamics case.

Therefore, we expect that K converges to a finite value for

sP ! 0 if the internal dynamics is non-chaotic,28,29 but it

diverges for the chaotic internal dynamics (Fig. 4).

We assume that the MSF of all eigenmodes except the

zero mode is negative. In such a case, hlðtÞ corresponding to

a non-zero eigenmode glðtÞ 6¼ 0 vanishes before the topology

changes. Therefore, the transition from the zero eigenmodes

to the non-zero ones dominates the synchronization dynam-

ics. We introduce

�Oij �
Oij if gi ¼ 0 and gj ¼ 0

0 otherwise:

	
(14)

Then, the evolution of the zero eigenmodes is approximately

written as

hlnðtþ nsPÞ � h@Fðu0Þin
Yn

q¼1

X
lq

�Olqþ1lq

	 

hl0ðtÞ: (15)

It is assumed in this approximation that the non-zero eigen-

mode decays before the topology changes, and the transition

from a non-zero mode to zero mode has been neglected.

Note that �Olqþ1lq ’s are no longer orthogonal.

The product of matrices in (15) can be diagonalized, and

the ith eigenmode is expected to show an exponential growth or

decay with the rate h@Fðu0Þið1� KiÞ, where Ki represent the

eigenvalues of the product of �Oij (0 ¼ K1 � K2 �… � KN ).

The transverse Lyapunov exponent for this approximation

KML can then be estimated as KML ¼ k� logð1� K2Þ=sP. It is

important to note that KML does not depend on sP if the sP is

small enough. The reason is as follows. If the network topology

is unchanged between time t and tþ sP, �Oij is 1 if gi ¼ gj ¼ 0

and is 0 otherwise. Once local synchronization is achieved,

interactions do not contribute to the decay rate, and KML does

not depend on sP for the non-chaotic oscillator case. This result

also implies the divergence of the transverse Lyapunov expo-

nent as K / s�1
P (sP ! 0) if k > 0.

C. Single cluster local synchronization

For d � dc, the motion is slow, and hence, the whole

network is almost always connected which implies that g2ðtÞ
is finite. If the network topology remains unchanged for a

long time, the gl (l 	 3) decay much faster than g2 before

topology changes. Therefore, we can approximate the trans-

verse Lyapunov exponent using the average of the second

smallest eigenvalue as

KSL ¼ kþ h log 1� rg2ð Þi
sP

: (16)

This is a good approximation for d sufficiently above the per-

colation threshold.28 The inequality hg2i � hgi implies that

KSL 	 KFS holds. For d � L, every non-zero eigenvalue

degenerates and hg2i � hgi ¼ ðN � 1Þq holds. This implies

that we recover FSA for larger d.

VI. CONCLUSIONS

In this paper, we have studied synchronization of the

mobile oscillators which are irregular in the internal dynam-

ics. We have found here a synchronization transition which

was not observed in Ref. 28 by changing the parameter val-

ues relevant to the interaction between agents. Moreover, we

uncovered a switching between the laminar and burst states

close to the transition point. We have found that it is caused

by the large fluctuations of the transverse Lyapunov expo-

nent, and it can happen even if the synchronized state is line-

arly stable. This exhibits deviation from the fast switching

approximation.23–26 This can be induced already by a very

small noise. Therefore, it is very important to take into

account this effect in applications, because small noise is

inevitable in any real system.

Our study suggests that very small noise can be

enhanced by a chaotic dynamics and break synchronization.

Due to the noisy dynamics, there exists an optimal parameter

value of sP in the intermediate region: if sP is too small, syn-

chronization is unstable, and the synchronization time is

long for large sP. This is a result that we have to taken into

account for the application to construction of synchronous

devices of the noisy mobile oscillators.

In this study, the agents’ motion is homogeneous and

independent of that of other agents. We will approve that such

a synchronization transition is possible in real systems whose

agent dynamics is inhomogeneous in forthcoming studies.
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