PHYSICAL REVIEW E 93, 062211 (2016)

Tweaking synchronization by connectivity modifications
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Natural and man-made networks often possess locally treelike substructures. Taking such tree networks as
our starting point, we show how the addition of links changes the synchronization properties of the network.
We focus on two different methods of link addition. The first method adds single links that create cycles of a
well-defined length. Following a topological approach, we introduce cycles of varying length and analyze how
this feature, as well as the position in the network, alters the synchronous behavior. We show that in particular
short cycles can lead to a maximum change of the Laplacian’s eigenvalue spectrum, dictating the synchronization
properties of such networks. The second method connects a certain proportion of the initially unconnected nodes.
‘We simulate dynamical systems on these network topologies, with the nodes’ local dynamics being either discrete
or continuous. Here our main result is that a certain number of additional links, with the relative position in the
network being crucial, can be beneficial to ensure stable synchronization.
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I. INTRODUCTION

The study of dynamical processes on complex networks
has been one of the most active fields within network science,
where the ultimate goal is the precise evaluation of how
network topology affects dynamics [1]. The first numerical and
analytical approaches to this problem were mainly concerned
with the pure effect of the heterogeneity of the degree
distribution on the overall network dynamics [1]. A big
reason for the interest in this subject has been the detailed
description of the topology of real systems that the network
representation offers, a fact that motivates the search for a
better understanding of their dynamical behavior as well. Early
analytical developments, therefore, were mostly based on the
configuration model [2], which is able to construct networks
with a given degree distribution. While offering a benchmark
to study dynamical processes in networks with any kind of
degree distribution, the networks constructed using such a
model are generally locally treelike, i.e., with a vanishing
density of cycles [3]. On the other hand, it is known that real
networks in turn exhibit a much more sophisticated topology,
which encompasses features such as clustering, high-order
loops, degree-degree correlations, community organization,
etc. [3]. Thus, it is evident that studies based solely on the
configuration model oversee topological characteristics that
are essential for a thorough analysis of the function of real
networks.

To overcome this limitation and take into account higher-
order topological features, two strategies are commonly used,
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namely the adoption of networks constructed through stochas-
tic rewiring algorithms [4—6], or variations of the traditional
configuration model that allow the creation of networks
with tunable clustering or other kinds of subgraphs [7-9].
In the former, one starts with a random treelike network
and switches the edges according to some heuristics in
order to obtain a desirable network configuration, which
is then used as a substrate for the dynamics under study.
Although this approach enables precise control of a given
network property, as a function of which the dynamics can
be analyzed, other properties are dramatically changed [4-6].
The latter makes the assessment of the isolated contribution
of a particular topological property to the network dynamics
unfeasible, since the results can be potentially influenced by
spurious effects generated by the method. This limitation
can be surpassed by extensions of the configuration model.
However, depending on the subgraph structure modeled, the
computational complexity quickly escalates, imposing further
constraints on the analysis [8,9].

In this paper, we address the effect of particular structural
patterns found in real networks, namely cycles of different
lengths, by adopting a different approach. To control their
occurrence, and therefore evaluate their contribution to the
network dynamics, here we consider tree networks with
minimal link addition in such a way that the number and
the length of the cycles are precisely varied. In addition to
the thorough control of network structures being created, the
minimal link addition adopted here paves the way for new
strategies intended to enhance the stability of real networks.
The reason for that resides in the fact that the creation and
rewiring of links are usually costly tasks to be performed in
these systems [10].
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A prominent example is that of power grids, whose proper
functioning is vital for modern society. Since the connectivity
pattern of the surroundings of a given dynamical unit strongly
influences its stability [11-14], it is crucial that the inclusion
of new transmission lines is done in such a way to ensure, or
even enhance, the local and global stability of the network,
while spending minimal amounts of resources. Otherwise,
counterintuitive dynamical effects such as Braess’ paradox
lead to certain new links destabilizing synchronization by
increasing the largest Lyapunov exponent, eventually changing
its sign [11,13]. This is related largely to the appearance
of cycles in the network. Similar arguments also hold for
other spatially embedded man-made or natural networks
with constrained connectivity, for instance transportation or
neuronal networks.

This paper contributes in this direction by quantifying the
impact of cycles created under minimal link addition on the
global network behavior with a focus on stability. In general,
however, we expect that our approach translates to a broad
class of problems ranging from synchronization to percolation,
spreading processes [15,16], or control theory [17]. Regarding
the network dynamics, we consider the nodes as identical
oscillators operating in periodic or chaotic regimes in the
paradigmatic cases of logistic maps and Rossler oscilla-
tors. We evaluate the stability of the synchronous regimes
depending on the variation of the length of cycles in the
network topology. By employing the master stability function
(MSF) formalism [18], we map the problem into a spectral
analysis of the Laplacian matrix. This spectral approach has
also been successfully applied to reveal network-dependent
coherence [19]. Recently, Pade and Pereira showed that link
additions in directed networks can destabilize the synchronous
regime [20]. Furthermore, in the case of a removal of links or
altered link weights, changes to the synchronous state and its
stability are also found to relate to the Laplacian spectrum [14],
in leading order to the Fiedler eigenvector. In this paper, we
study undirected networks and link addition, considering the
whole stability interval of coupling values instead of only the
lower boundary.

Our results suggest that cycles of length 4 play a special
role in network dynamics. More precisely, we find that the
inclusion of links that create these motifs yields networks with
higher synchronizability in comparison with cycles of different
lengths. Furthermore, cycles of length 3 are found to have a
weak effect on the Laplacian spectrum, and, consequently,
on the stability of the synchronized state. Interestingly, this
peculiar innocuous effect of triadic connections on critical
dynamical properties has also been reported in other con-
texts [21-25].

This paper is organized as follows: In the next section, we
explain how we create different network topologies starting
from a tree. We present two different methods: (i) introducing
only one cycle of a given length, and (ii) adding several
random links. Moreover, we show in detail how different cycle
lengths change the properties of the network that control the
synchronizability. Thereafter, we study how the number of
random links added to the starting tree impacts the synchro-
nization of the network using two numerical models, namely
the time discrete logistic map and the continuous Rossler
system. Finally, we state the conclusions and perspectives.
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II. NETWORK TOPOLOGIES
A. Network manipulation

The network generation procedure is as follows. As a
starting point, we consider an undirected balanced tree graph
G(m,n), where m is the number of levels and # is the branching
number at each level. Therefore, the total number of nodes is
given by N = (n"*D — 1)/(n — 1) and the total number of
edges is N — 1. Due to the fact that the total number of edges
in a complete undirected graph is N(N — 1)/2, the remaining
unconnected number of pairs for the tree structure is given by
r = (N —2)(N — 1)/2. Notice that our starting network does
not have any cycles.

Having a highly structured—treelike—network with
known statistical characteristics allows us to control the
network topology in two different ways. One is targeting the
network topology directly by introducing cycles of a chosen
length. The other way lets us evaluate what happens if we
control the sparseness of the network by randomly introducing
a certain amount of additional edges. We are going to refer to
the introduction of cycles as the single link addition. Here
the length of the cycle is the control parameter. The other
method will be referred to as random link addition, and in this
case the control parameter is the probability p multiplying the
number of unconnected pairs 7. We want to point out that this
network generation method is very similar to those used to
generate small-world structures [26]. However, the substantial
difference is that our initial network is a balanced tree structure
instead of a regular lattice.

What we aim to evaluate is how the different lengths of
cycles and the choice of p values change the synchronization
features of the networks. We consider the resulting network
structure of our two methods as the adjacency matrix A;;, with
A;; = lifnodesi and j are connected, and A;; = 0 otherwise.
The number of connections, the degree, of node i is given
by k; = Zj Ajj. Further, we define the Laplacian L, L;; =
8ijk; — A;j. Its eigenvalues A; (A =0 < Ay <+ < Apax)
play an important role in characterizing the synchronizability
of the system and therefore measure comprehensively what
we want to determine [18], i.e., changes in the eigenvalue
spectrum of our designed networks. In particular, we are
interested in the minimal changes or best cycle lengths that
have maximum impact on the value of A, or Ay, (A = 0 if
the network is connected). The magnitude of the first nontrivial
eigenvalue A is related to the onset of synchronization, while
the magnitude of the maximum eigenvalue A, is connected
to the end of the synchronization interval [3,27].

B. Impact of cycle length

While we are going to study the random link addition later
when focusing on network dynamics, we start by studying just
the eigenvalue pair A, and A, as a function of the cycle length
after single link addition. Avoiding self-loops, the first cycle is
a3-cycle, i.e., anode’s neighbors in the network are themselves
connected. Using the illustration in Fig. 1 of a balanced tree
network G(m,3) (only m = 3 levels are shown), we see that
introducing a 3-cycle in this network means connecting two
nodes i and j that lie on one of the circles highlighting the
level number (see the dashed blue highlighted line in Fig. 1).
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FIG. 1. Sketch of a balanced tree network G(im,3). In the single
link addition procedure, we distinguish two cases, namely connecting
nodes in the same fundamental branch (“in,” - -) or in different
ones(“out,” =), i.e., every path between the nodes before the addition
contains the root node.

In addition, note that the branching on level m =1 of the
original network is highlighted as the shading of the three
areas. Ignoring the trivial level m = 1, all of the 3-cycles that
we can create lie within the same shaded area and do not break
the symmetry of the network. This also means that they are
linking two nodes within the same branch of the tree network
(shaded areas with the same color in Fig. 1), and we call these
links in-links. On the other hand, if a link connects nodes
belonging to different branches (e.g., the dash-dotted red line
in Fig. 1), we denote it as an out-link. In this case, the shortest
cycle created by an out-link is a 4-cycle.

In Fig. 2(a), we can see how distinguishing between in-
and out-links can be used as a tool to generate cycles of
different lengths [shown for G(5,3)]. Starting from the center
of the network, we number all nodes and their levels based
on their distance. In this matrixlike plot we find that, for
example, linking two nodes in the first level (1-out) creates
a 3-cycle. Similarly, a 3-cycle can be created by linking from
the second level (2-out) back to the center (0-out). As we can
see in G(5,3), 11-cycles are the longest possible cycles in this
network. Note also that the average path length is changed
by the introduction of different cycles. Especially short cycles
will impact the average shortest path length, while long cycles,
e.g., out-links connecting leaf nodes, are likely to only have a
small effect.

Since we are focusing on changes of the Laplacian’s
eigenvalues, it is worth pointing out that adding links in any
undirected network always positively increases the magnitude
of these eigenvalues. From a synchronization point of view, for
instance, we are interested in the maximum possible change
Almax of the maximum Laplacian eigenvalue. In Fig. 2, we
show how much the different cycles change the magnitude
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FIG. 2. (a) Minimal and (b) maximal increase A A, of the largest
Laplacian eigenvalue A, for various wiring choices. For reference,
the integers denominate the length of the (a) shortest and (b) longest

cycle possible for each configuration. For the link classification “in
vs “out,” see Fig. 1.

of X, and An.x. Again, we present these changes in terms of
in- and out-level connections. We want to highlight some of
these changes. First, we note that of the possible 3-cycles, the
one with the strongest impact on the eigenvalues isonm = 1,
while m > 2 has less of an impact. In particular, connecting
to neighboring leaf nodes in level 5 does not change the
upper limit of the spectrum, while the largest sensitivity to
topological changes is observed close to the root node. This
tendency is repeated again in the 4-cycles, where the strongest
impact is found when 2-out is connected to a note on m = 1
while already connections from 3-out to m = 2 do not lead to
such a large change. For the 3- and 4-cycles, we summarize
this topological effect in Fig. 3.

If we ignore the additional information on where the cycle is
within the network, it is valid to ask about the general impact of
the cycle’s length on changes in the eigenvalues. This informa-
tion can be found in Fig. 4 for the distribution of changes in the
largest Laplacian eigenvalue of G(5,3). It is not surprising that
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FIG. 3. Increase of the maximum Laplacian eigenvalue A, for
connections (a) on the same level creating cycles of length 3 and
(b) between different levels creating cycles of length 4.

long cycles play almost no role in small-sized networks, while
4-cycles are dominating the change. Furthermore, 3-cycles
induce changes in the spectrum comparable to long cycles,
suggesting that such topological patterns have a weak impact
on network dynamics as well. This is somewhat remarkable
given how pervasive 3-cycles are in real-world networks [3]. It
was verified (not shown here) that changes in AA .« due to the
share of long cycles increase with the system size, but 4-cycles
are still dominating. 3-cycles were consistently found to be
responsible for smaller changes in the spectrum than 4-cycles.
This has also been addressed by Lodato et al. comparing the

0.40

0.30

£0.20
<

3 4 5 6 7 8 9 10 11
Cycle length

FIG. 4. The average change of the maximum Laplacian eigen-
value is given as bullets while the shaded area indicates the width of
the distribution between the minimal and the maximal change within
the possible cycles in the network.
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FIG. 5. Relative occurrence of cycle lengths when randomly
connecting two nodes in a G(5,3) balanced tree.

synchronizability of 4-node subgraphs, quantified by the ratio
Amax/M2 of the Laplacian eigenvalues [28]. Their analysis
showed that 4-node motifs containing a single 3-cycle have
lower synchronizability than motifs with the same number of
nodes and links containing a 4-cycle. Interestingly, a single link
addition that creates two 3-cycles in a 4-node motif does not
increase its synchronizability. Therefore, their result suggests
that networks with a higher number of 4-cycles are more prone
to exhibit a synchronized state.

Concerning the random link addition, it is of great interest
to estimate the probability for cycles of a particular length
being created. As we can see from the relative occurrence of
cycle lengths plotted in Fig. 5, it is more likely that we choose
longer cycles, i.e., on average a randomly chosen link would
create a 9-cycle. Therefore, we can expect that large changes
associated, for example, with some of the 4-cycles will be less
likely to dominate the eigenvalue spectrum, while the sum of
changes resulting from several longer cycles will make up the
main effect that changes the eigenvalue spectrum.

III. MASTER STABILITY FUNCTION

By means of the above-mentioned methods, we obtain the
adjacency matrices of the networks containing our prototypical
dynamic systems. We investigate two paragons of dynamical
systems theory, namely Rossler oscillators, as an example of
an autonomous continuous system, and the well-established
logistic map as a discrete one. Our main tool allowing us to find
relationships between the network spectral properties and the
stability of synchronous regimes of the considered dynamical
systems is the master stability function (MSF) approach [29].

To illustrate the method, we assume first a continuous
(autonomous) dynamical system of, for instance, coupled
oscillators described by a state vector x; at site i in a network:

N

X; =F(Xi)+UZAin(Xi7Xj), (D

j=1

where F is the individual oscillator’s dynamics, H is the
coupling function between coupled elements, A;; is an element
of the network’s adjacency matrix, and o is the overall
coupling strength. To assess whether our networks allow for
stable solutions of complete synchronization, i.e.,x; =s Vi =
1,...,N, we need to obtain the MSF. For identical oscillators,
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this function is given by [29]
MSFg u(e;) = DF(s) — o; DH(s), 2

where o; = o A; with Laplacian eigenvalues A;, and DF and
DH are the Jacobian of the system and of the coupling
function. If we assume for a moment that the argument « is a
continuous (in general complex) variable, the real roots of the
maximum Lyapunov exponent A p,x of MSFr i(«) determine
the boundaries o; and «,, of the stability interval. Note that for
periodic systems, there is only one root ¢, as oy = 0. To have a
stable solution, the coupling o needs to be chosen in such a way
thatoy <oy <o, Vi =1,...,N for Ay to be negative and
hence to have an asymptotically stable synchronous regime
(cf. Fig. 6).

As discussed in the preceding section, the most crucial
nontrivial Laplacian eigenvalues to be fit in the stability
interval are the second minimum A, and the largest A« ones,
since the rest of the eigenvalues are distributed between them.

In the following, we apply this approach to the Rossler
system as oscillatory units that are coupled through their x
coordinates:

N
Xi = —Yi — % +UZAij(xj — Xi),

=1
yi = x; +ayi, 3)
zi=b+z(x —c).

Computing MSFg g(«), we find that DF and DH are given
by

0.8}
0.4 ==
0.0 b=
] 0.0
| 2.0}
| a0} .
. | -6.0} ®) ]
0.0 1.0 2.0 30 40 00 1.0 2.0 3.0 40

|

0.8} o 0.8} o= |
= 04 SHRI =0.1 ] 04 -g 013-
0.0 T | 0.0 e
0.0 0.0
L |
£0.4) | -0.4]
< 0.8} @] 0.8/
0.0‘2‘.00"4.0‘60 0.0 4.0 ‘60

FIG. 6. Coupled logistic map in (a) periodic and (b) chaotic
regimes, and Rossler oscillators in (c) periodic and (d) chaotic
regimes. The upper plots depict the nonzero eigenvalues of the
Laplacian L for different probability p of link addition (see the text for
details). The shaded area denotes the existence of stable synchronous
solutions. In all panels, the initial topology was G(3,3).
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For our investigations, we choose the parameters such that
we have one set in the periodic regime (¢ = 0.1, b = 0.2, and
¢ =5.7) and one in the chaotic regime (a = 0.2, b = 0.2,
and ¢ = 5.7 [30]). Notice that the MSF in general only
yields a valid linearization in a neighborhood around a point
(x*,y*,z%)T from the synchronization manifold, which we
determine from numerical simulations of the system. We
obtain o, = 9.998 84 and (oy,r,,) = (0.198769,4.998 78) for
the periodic and chaotic cases, respectively.

As a second application, we use the time-discrete logistic
map as an oscillator given by

X =0—0)f(x

Z Ayl

f(xf) =rx,(1 —x,), (6)

where the local node dynamics f(x!) is the logistic map (r €
[0,4]), o € [0; 1] is the coupling strength between the units,
and A is an adjacency matrix.

The logistic map is one-dimensional, therefore the Jacobian
of Eq. (5) is the derivative of f with respect to x;, and the
associated MSF is given by

MSF f(0r;) = (1 — o) f(x}), (7)

where «; = oA;; A; are the eigenvalues of the Laplacian, as
stated above.

For our research, we choose the control parameter of the
logistic map, r, such that we have one periodic case (r = 3.83,
period 3) and one chaotic case (r = 4.0). For the periodic
case, Amax again has only one root, which is found to be «, =
2.45157 (Fig. 6). The roots for the chaotic local dynamics are
found to be o; = 0.50038 and «,, = 1.499 62.

We demonstrate the stability of the coupled oscillators
representing the nodes of our networks. We study the syn-
chronization behavior of two different node types: the nodes’
dynamics are given either by a logistic map or the continuous
Rossler system. Both systems are analyzed in the periodic
and chaotic dynamical regimes. As we can see in Fig. 7, the
eigenvalues X, and A« change with a different rate depending
on the parameter p, which controls the random link addition.
While the initial growth of XA;,x dominates for low p-values,
it seems to saturate for high values where we observe most of
the change for A,.

Hence, if just a few links are added at random locations,
the initial growth of A, leads to a spreading of the Laplacian
spectrum, with the potential to cross the upper limit «, of
the synchronization interval. This can be counteracted by
lowering the coupling o, i.e., small changes in the network
should be accommodated by reducing o to safely pertain in
the synchronous interval.

In summary, Fig. 6 depicts the qualitative results for
MSFs of the two test systems; the shaded areas denote the
synchronous region. In the white regions, the synchronous
regime is unstable. As mentioned above, increasing p-values
leads to an increase in the edges, and similarly the Laplacian
eigenvalues increase as well.

(i) The lower boundary for the periodic cases is oy = 0 [cf.
Figs. 6(a) and 6(c)], so that one only needs to consider the
upper limit to ensure stable synchronization.
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(i) The lower boundary of the chaotic case is positive.
Therefore, both limits must be considered [cf. Figs. 6(b)
and 6(d)].

As we can see in all four cases, there is a maximum
number of links that we can add before the system reaches
the upper threshold of the synchronization region. Clearly, if
we choose p = 0.8, some « values are no longer within the
shaded synchronization regions in all panels of Fig. 6 (see the
highlighted pentagons above each graph). More interesting is
the situation for the oscillators being chaotic [cf. Figs. 6(b)
and 6(d)]. We can see that without adding any links (p = 0),
the network does not support synchronization. Increasing
the number of links leads to networks that can support
synchronization, but again too many links will increase the
eigenvalues by too much, and we cannot find synchronization
anymore. Comparing these results with Fig. 7, we see that p
needs to be big enough to increase A, above the level where
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the lower bound is already in the synchronization region, while
Amax 18 still below the upper threshold of the band.

IV. CONCLUSION

Since large natural or man-made networks are locally
treelike, we have focused on small trees as the starting point
of constructing our network. We have seen that even including
one edge can substantially alter the synchronization behavior
of the system, and that short cycles connecting different
levels of the tree have the largest impact on the eigenvalues of
the Laplacian, especially if they are created close to the root
node. We have highlighted a way to add cycles of defined
length in our trees, which gives us the option to design
networks having a particular synchronization behavior.

Using the master stability framework, we were able to
analyze how random link addition alters the synchronization
phenomenon using the logistic map as well as the Rossler
oscillator. The most striking example that we studied is the
synchronization behavior of nodes having chaotic dynamics.
While without additional links the networks are unable to
synchronize the dynamics of the nodes, adding some links
to the networks alters the global dynamics essentially, and
the systems can synchronize. Moreover, we have found that
adding too many links causes desynchronization.

In conclusion, our work provides a method to optimize net-
works in such a way that they can become synchronized in an
improved manner. Given that synchronization is of the utmost
importance in many networks, e.g., power grids [12,25,31,32],
neuronal networks [25,33,34], and communication net-
works [34], our findings may be used to increase the stability
of the synchronization regime by adding short cycles.
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