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The spatial distributions of system’s frequencies have significant influences on the critical coupling

strengths for amplitude death (AD) in coupled oscillators. We find that the left and right critical

coupling strengths for AD have quite different relations to the increasing spatial period m of the

frequency distribution in coupled oscillators. The left one has a negative linear relationship with m
in log-log axis for small initial frequency mismatches while remains constant for large initial fre-

quency mismatches. The right one is in quadratic function relation with spatial period m of the fre-

quency distribution in log-log axis. There is an optimal spatial period m0 of frequency distribution

with which the coupled system has a minimal critical strength to transit from an AD regime to re-

viving oscillation. Moreover, the optimal spatial period m0 of the frequency distribution is found to

be related to the system size
ffiffiffiffi
N
p

. Numerical examples are explored to reveal the inner regimes of

effects of the spatial frequency distribution on AD. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4958929]

Oscillation suppression, as one of the common collective

behaviors in coupled nonlinear oscillators, has been a hot

topic in nonlinear science, since it is related to many in-

ner regimes of self-organization and engineering applica-

tions such as vibration control. Various kinds of

oscillation quenching, as well as the transition processes,

have been observed in coupled nonidentical oscillators

with different kinds of coupling regimes. However, an in-

verse issue of reviving oscillation from such a quenching

state has attracted a new focus especially in biology sys-

tems such as rescuing patient whose heart suddenly stops

working properly due to cardiac arrest caused by the

heart’s electrical system malfunctions. Here, we study

how the frequency distributions with different spatial

periods influence the efficiency of reviving oscillation in

coupled nonidentical oscillators. We mainly find that

there is a size-related optimal spatial period with which

the coupled system can be rather easily revived from the

oscillation quenching states. The birth of this optimal

spatial period is found to be the outcome of the competi-

tion between the coupling and the spatial heterogeneity,

as well as the competition between the synchronization

and the oscillation quenching. We expect that our work

will contribute to better understanding of chaos control

and engineering applications such as vibration reduction

of buildings.

I. INTRODUCTION

Coupled dynamical systems are widely applied to ex-

plore various forms of self-organized behaviors,1–3 such as

synchronization4–7 and oscillation quenching. The competi-

tion between synchronization and oscillation quenching

may even generate rich patterns.8–11 Synchronization dy-

namics has been found to be related to the inner regimes of

many emergence phenomena since its original observation

by Huygens. Meanwhile, oscillation quenching12–14 refers

to the suppression of oscillation under various types of in-

teractions or intentional control and has attracted many

researchers’ interests because of its important application

on the control of chaotic oscillations and stabilization of

various unstable dynamics from the aspects of mechanical

engineering,15 synthetic genetic networks,16,17 or laser sys-

tems.18,19 Generally, two kinds of oscillation quenching

have been reported as amplitude death (AD) and oscillation

death (OD). AD refers to the stabilization of an already

existing homogeneous steady state (HSS) of zero, while

OD is manifested as a newly born inhomogeneous steady

state (IHSS) from the symmetry breaking of the couplinga)Electronic mail: wqliujx@gmail.com
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interaction. Moreover, AD has been recently observed to be

capable of transiting to OD via a Turing-type bifurcation

due to rich interactions.14,20,21 Based on the concepts of

control, various coupling schemes are found to be available

for the coupled system to transit to the oscillation quench

state, such as repulsive coupling,20,21 dissimilar (or conju-

gate) variables coupling,12,22,23 dynamical coupling,24,25

delayed time coupling,26–29 indirect coupling,30 mean field

diffusion31 and environmental coupling,32 and amplitude-

dependent coupling.33

Parameter mismatches are common between the inter-

acting units due to the diversity of the natural world. The

occurrence of oscillation quenching in coupled nonidentical

oscillator systems has been analyzed in many interacting net-

works such as global (all-to-all) networks,34 small-world net-

works,35 or scale-free networks.36,37 Oscillation quenching

is observed as a result of a competition of parameter mis-

matches and topologies in interacting networks. Even in

locally coupled networks,38,39 transition processes from par-

tial amplitude death (PAD) to AD are often exhibited be-

cause of a competition between frequency mismatches and

coupling-induced synchronization clusters in coupled non-

identical oscillators with randomly distributed frequencies.

Zou et al.40,41 and Ghosh et al.42 proposed the notion of re-

viving oscillations of coupled nonidentical oscillators from

AD theoretically and experimentally, which is meaningful in

control of dynamics in many biological systems such as the

cardiac arrest due to cessation of the normal sinus rhythm

of pacemaker cells,43 or the mimic brain death involving a

temporary loss of parts of brain function.44 By considering

the control of AD on the coupled oscillators, we extend the

research on exploring effects of spatial period of frequency

distributions on AD and come to a conclusion that two criti-

cal coupling strengths (lower or upper-bounded value) of

complete AD exhibit a universal distribution (power law or

a log-normal) for all possible spatial distributions of fre-

quencies.45,46 However, in some cases, the spatial distribu-

tions of frequency are not in random forms but in regular

forms such as the linearly39 or periodically distributed cases

as numerically discussed in Ref. 47. It was found that the

desynchronization-induced AD in coupled oscillators with

a linear trend of frequency distribution can be eliminated

by inducing a small deviation of the frequency distribu-

tions. Wu et al. found that the synchronization is easier to

realize when each pair of neighbor nodes has large frequen-

cy mismatches in coupled oscillators with periodical fre-

quency distribution.48 Moreover, the distributions of the

initial frequency have obvious effects on the patterns of the

pendulum wave49 which is a simple but rich phenomenon

in pendulum. Since the spatial period of the frequency dis-

tribution is a basic character of the periodical frequency

distribution, it is therefore meaningful to raise the question

whether and how the spatial period of the frequency distri-

bution influences the AD regimes in coupled nonidentical

oscillators. In this contribution, we try to explore what is

the optimal spatial period of the frequency distribution with

which the coupled nonidentical oscillators can be revived

to oscillate from the AD state.

II. MODEL

In this paper, we study a coupled nonidentical oscillator

system consisting of N Stuart-Landau oscillators as follows:

_zjðtÞ ¼ ð1þ ixj � jzjðtÞj2ÞzjðtÞ þ �ðzjþ1ðtÞ
þ zj�1ðtÞ � 2zjðtÞÞ; j ¼ 1;…;N; (1)

where i is the imaginary and zj(t) is a complex variable. The

coupled oscillators initially have a regular monotonic trend

of the natural frequency distribution wj

xj ¼ x1 þ ðj� 1Þdx; j ¼ 1; 2;…;N;

x0 ¼ xN; xNþ1 ¼ x1; (2)

where x1 is arbitrarily set as 1 and dx is the frequency mis-

match of neighbor oscillators. Without coupling (�¼ 0), each

oscillator has a limit cycle with a different oscillating fre-

quency xj. In a periodical boundary condition of zNþ1ðtÞ
¼ z1ðtÞ; z0ðtÞ ¼ zNðtÞ, the coupled oscillation system with a

frequency distribution as in Eq. (2) can be taken as a spatial

frequency distribution with period m (m¼ 1). Since the cou-

pled system has V-shaped AD domains in the parameter space

of dx� �,45 the coupled system transits from oscillation

regimes to AD and returns to oscillation again with the incre-

ment of coupling strength � when the frequency mismatch is

properly presented larger than a critical value dxc (related to

the system size N). There are two critical coupling strength

values as �c1 and �c2 (�c2>�c1), respectively. To explore

effects of the spatial period m of the frequency distribution on

the AD domain, we calculate the critical values of �c1 and �c2

for all different possible spatial periods m. To generate fre-

quency distribution with a given spatial period m, the nodes in

the coupled chain initially with the spatial period m¼ 1 are

firstly divided into N/m groups in sequence (note that we

choose m to be submultiple of N in order to form N/m groups

with equal numbers of nodes in each group), then each group

has m nodes numbered as j¼ 1,2,…,m. Regroup the nodes

into m groups by selecting the nodes with the same index into

the jth group. Figures 1(a) and 1(b) present a schematic dia-

gram of spatial frequency distribution in the coupled oscilla-

tors with N¼ 16, where the spatial frequency distribution

periods m are 1, 2, 3, respectively.

III. THEORETICAL ANALYSIS

The AD states of system (1) can be predicted by analyz-

ing the stability of the fixed points jzjj ¼ 0; j ¼ 1; 2;…;N in

the coupled oscillators. By introducing a perturbation gj(t)
into these fixed points jzjj ¼ 0; j ¼ 1; 2;…;N, the evolution

of the perturbations is governed by

_gjðtÞ ¼ ð1� 2�þ ixjÞgjðtÞ þ �gjþ1ðtÞ þ �gj�1ðtÞ: (3)

With the definition of the column vector gðtÞ ¼ ðg1ðtÞ;
g2ðtÞ;…; gnðtÞÞ0 (where 0 is the transpose symbol), Eq. (3)

can be rewritten as

_gðtÞ ¼ BgðtÞ; (4)

where the symmetric B is described as

094813-2 Deng et al. Chaos 26, 094813 (2016)
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B ¼

1� 2�þ ix1 � 0 … … 0 �

� 1� 2�þ ix2 � 0 … … 0

0 � 1� 2�þ ix3 � 0 … 0

… … …

� 0 … … 0 � 1� 2�þ ixN

0
BBBBBB@

1
CCCCCCA
:

Assume that B can be diagonalized by a matrix P

P�1BP ¼ diagðk0; k1;…; kN�1Þ; (5)

where kk; k ¼ 0; 1;…;N � 1 are the eigenvalues of B. A nec-

essary condition for stable AD of Eq. (2) is that all real parts

of the eigenvalues ReðkkÞ < 0; k ¼ 0; 1;…;N � 1. Then, the

AD domain is completely determined by the critical lines of

all ReðkkÞ � 0; k ¼ 0; 1;…;N � 1.

IV. NUMERICAL ANALYSIS

Based on the above theoretical analysis, it is difficult to

work out the expression of the eigenvalue k of matrix B
when the system size N is large. Therefore, we have to nu-

merically get the AD domain for different spatial periods m
of frequency distribution. Let us first consider AD in coupled

oscillators with a spatial frequency distribution in period m
(m¼ 1). The maximal real parts of the eigenvalues of matrix

B versus the coupling strength � are presented in Fig. 2(a)

with the frequency mismatches being dx¼ 0.1, 0.2, 0.3, 0.4,

respectively, for arbitrary N¼ 30. Notice that there is no AD

when the frequency mismatches dx are small (for example,

dx< 0.12 as N¼ 30 and m¼ 1), since the maximal real parts

of the eigenvalues of B are all positive for all coupling

strength �. However, the V-shaped curves of Rek versus �
move down and intersect with the horizontal axis at two crit-

ical coupling strengths with the increment of the frequency

mismatches dx, which results in an enlargement of the AD

domain. In order to explore the effects of the spatial

frequency distribution on the two critical coupling strengths,

we have to consider the situation of large frequency mis-

matches dx, so that we can record all left and right critical

coupling strengths �c1 and �c2 for all possible spatial periods

m of frequency distribution. Figs. 2(b) and 2(c) present the

relationship curve between the critical coupling strengths

(�c1 and �c2) of the AD domain and the frequency mis-

matches dx. The left critical coupling strength �c1 decreases

with the increment of dx for �c1¼C1dxc, C1¼ 0.75,

c¼�2.5, while the right critical coupling strength �c2

increases with the increment of dx for �c2¼C2dxc, C2¼ 20,

c¼ 2.

It was found that the frequency distribution had great

influences on the critical coupling strengths of AD in a ring

of coupled nonidentical oscillators, where the left (right) crit-

ical coupling strengths for AD obey a power-law (a log-nor-

mal) distribution for all possible frequency distributions.45

Here, we focus on AD domain of a special frequency distri-

bution which has a spatial period m. To figure out how the

spatial period m influences the two critical coupling strengths

of the AD domain, we rearrange the frequency of the cou-

pled oscillators in different spatial periods m and calculate

the maximal real part of the eigenvalues (Rek) of B versus �
for all frequency distribution with spatial period m. Fig. 3(a)

presents examples of Rek versus � for m¼ 1, 4 with initial

frequency mismatch dx¼ 1 and system size N¼ 16. �c1

remains to be 0.5, while the values of �c2 are quite different

with �c2¼ 2.17 for m¼ 1 and �c2¼ 19.68 for m¼ 4. To make

FIG. 1. The spatial frequency distribution of N¼ 16 oscillators (a) for m¼ 1

and m¼ 2, respectively, (b) for m¼ 1 and m¼ 4, respectively.

FIG. 2. (a) The real part of the eigenvalue of the matrix B (Rek) for the fre-

quency mismatches between neighbor oscillators dx¼ 0.1, 0.2, 0.3, 0.4, re-

spectively, with N¼ 30 and m¼ 1. (b) and (c) The relation between the

frequency mismatches between neighbor oscillators dx and the critical val-

ues for AD �c1 (left), �c2 (right) in log-log axis, respectively.
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it clearer, we record all the critical values of �c1 and �c2 for dif-

ferent spatial periods m with different initial frequency mis-

matches. Figure 3(b) gives the dependence of the left critical

values of �c1 versus m (note that all m are selected being the

submultiple of the number N) for arbitrarily selected large

number N¼ 360 and dx¼ 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, re-

spectively. Obviously, with small initial frequency mismatches

(for example, Dx¼ 0.02), the left critical coupling strength �c1

linearly decreases in log-log axis to a constant value 0.5 with

the increment of m. For larger initial frequency mismatches

(for example, Dx¼ 0.5), �c1 decreases to 0.5 when m is larger

than 2. Therefore, the spatial period m has no obvious

influence on �c1 when the initial frequency is larger than a cer-

tain value, since AD is reached when the coupling is larger

than 0.5 (this value is theoretically presented in Ref. 38) for all

m. However, the right critical coupling strength �c2 first

decreases then increases with the increment of m. There is a

minimal value of �c2 at m¼ 15 in N¼ 200 coupled oscillators,

which indicates that the spatial period m of the frequency dis-

tribution significantly influences �c2. �c2 has a relationship of

quadratic function with the spatial period m of the frequency

distribution in log-log axis. There is an optimal spatial period

m0 of the frequency distribution with which the coupled system

has a minimal critical strength to transit from an AD regime to

reviving oscillation. Moreover, this relationship keeps for dif-

ferent initial frequency mismatches. Increasing initial frequen-

cy mismatch tends to move the whole curve up in �c2 versus �
diagram as shown in Fig. 3(c) for Dx¼ 0.2, 1, respectively.

Considering size effects of the coupled system as men-

tioned in our previous work,39 we calculated the curves of

�c2 versus m for different system sizes of N¼ 30, 60, 90,

240, respectively, as shown in Fig. 4(a). The curves in log-

log axis move up with the increment of size N while main-

taining a v-shape. There are minimal values of �c2 when

m¼m0 with m0 being related to the system size N for all dif-

ferent system sizes N. Fig. 4(b) presents all m0 for different

system sizes N which fit well with the curve m0 ¼
ffiffiffiffi
N
p

. By

rescaling the variables �c2 and m to �0c2 ¼ �c2=N3 and

m0 ¼ m=
ffiffiffiffi
N
p

, we find that the curves of �0c2 versus m0 for all

N in Fig. 4(a) coincide well with each other which can be de-

scribed as follows:

log �0c2

� �
¼ �0 þ Ae�

log m0ð Þ2

2r2 (6)

with r¼ 0.662, �0¼ 0.63, and A¼�2.47. There is an opti-

mal rescaled spatial period m0 ¼ 1 (i.e., m ¼
ffiffiffiffi
N
p

) of the

FIG. 3. (a) The real part of eigenvalue of the matrix B (Rek) versus the cou-

pling strength � for m¼ 1 (black solid dots) and m¼ 4 (red circle), respec-

tively, with N¼ 16, dx¼ 1. (b) The left critical value �c1 versus the spatial

period m for dx¼ 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, respectively, and

N¼ 360. (c) The right critical value �c2 versus the spatial period m in double

log axis for N¼ 240 and d¼ 0.2 (black line), 1 (red line).

FIG. 4. (a) The right critical value �c2

versus the spatial period m for N¼ 30,

60, 90, 240, respectively, for dx¼ 0.5.

(b) The value of m0 versus the system

size N, where m0 is the spatial frequen-

cy distribution period with which the

system has minimal value of �c2. The

fitted line has a function of m0 ¼
ffiffiffiffi
N
p

.

(c) The rescaled variable �0c2 versus the

rescaled variable m0 for N¼ 30, 60, 90,

240, respectively. (d) A total of 200

samples of right critical values �c2 ver-

sus the spatial period m for coupled

oscillators with random variations on

the initial frequency distributions for

N¼ 36.
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frequency distribution with which the coupled system has a

minimal value of the �c2. That is to say, when the spatial pe-

riod m of the frequency distribution is
ffiffiffiffi
N
p

, the coupling

strength needed for reviving oscillation from AD is minimal.

For simplicity, the initial frequency mismatches between

each neighbor nodes are all set constantly as dx in Eq. (2). It

is natural to explore the question whether the existence of

the optimal spatial frequency distribution can be robustly

maintained to random initial frequency distributions. By ap-

plying random variations n on the initial frequencies of each

node as described in Eq. (7), we change the frequency mis-

match dxj between each pair of neighbor nodes

wj ¼ x0 þ ðj� 1Þdxþ n; j ¼ 1; 2;…;N;

n 2 ½�dx=2; dx=2�: (7)

Let us consider an example of N¼ 36 coupled oscillators.

The values of �c2 are presented in Fig. 4(d) corresponding to

200 sets of different random noise n for each given spatial

period m of frequency distribution. Though the critical val-

ues of �c2 needed to revive the AD change according to

the noises n for each given m, there is still an optimal spatial

period m0¼ 6 with which the coupled oscillator has the

smallest �c2 to revive the AD.

V. REGIMES ANALYSIS BASED ON THE NUMERICAL
RESULTS

It is interesting to reveal the regimes of how the spatial

period of the frequency distribution influences the left and

right critical coupling strength of AD. According to the anal-

ysis presented in Ref. 51, it is well known that coupled oscil-

lators with mismatches dx have a v-shaped curve in the

parameter space of dx versus �. There are two critical values

of coupling constant, �c1 and �c2, when the parameter mis-

match dx is larger than a critical value dxc.
45 The coupled

oscillators may approach AD when �> �c1 and leave the AD

state due to the realization of synchronization when �> �c2.

First, let us explore how the spatial periods m influence the

left critical coupling strength �c1. Since the coupling strength

is not strong enough to form synchronous clusters when the

coupling strength is near �c1, the critical coupling strength

for AD is then determined by the frequency mismatch be-

tween two neighbor oscillators. Initially, the mismatch be-

tween two neighbor oscillators (the boundary oscillators are

excluded) is dx when m¼ 1. As m increases, the mismatch

between two neighbors will increase to be m * dx (based on

the spatial frequency distribution). Therefore, the mismatch

between two arbitrary neighbor nodes keeps increasing with

the increment of spatial period m which leads to linear decre-

ment of �c1 in log-log axis (based on the results in Fig. 2(b)).

Moreover, when dx is larger than a critical value dxc (relat-

ed to number of coupled oscillators), the coupled system will

become AD for all �> 0.5.51 Therefore, the values of �c1 re-

main constant of 0.5 when m * dx is larger than the critical

value dxc for all m.

Now let us focus on the effects of the spatial period of

the frequency distribution on �c2 which is determined by the

effects of spatial period of frequency distribution on

synchronizability. To make the picture clearer, we consider

an example of coupled Landau-Stuart oscillators with an ar-

bitrary system number N¼ 16. Figures 5(a)–5(d) present the

average frequencies versus � of the coupled oscillators with

different spatial frequency periods m¼ 1, 2, 4, 8 for an arbi-

trarily given small frequency mismatch dx¼ 0.2. Obviously,

the critical coupling constants �c2 to realize synchronization

are �c2¼ 4.25, 1.60, 1.10, 1.90 for m¼ 1, 2, 4, 8, respective-

ly. The coupled oscillators with the frequency distribution

period m¼ 4 have a minimal value of �c2. By carefully

checking the transition process to synchronization according

to the average frequency of the oscillators, we find that the fi-

nal synchronization is realized by combining the smaller

synchronous clusters into larger ones. The initial frequency

distribution dramatically influences the numbers and the dis-

tributions of the small synchronous clusters. When m¼ 1,

the coupled oscillators tend to form four synchronous clus-

ters with different synchronous frequencies as shown in Fig.

6(a). Each of them is a collection of four neighbor oscilla-

tors. Moreover, the synchronous frequency of each cluster

increases in the sequence from left to right, which makes it

difficult to be combined into larger cluster with the competi-

tion of each cluster, since the left and the right neighbor of

each cluster have different frequencies (the left one is

smaller, while the right one is larger than itself). Therefore,

it needs a rather large coupling strength to transit from four

clusters to three, then to two clusters till one cluster.

However, when m¼ 2, the coupled oscillators first form 4

synchronous clusters with synchronous frequencies being

high and low values alternately which gradually combine to

three and then 2 clusters till the full synchronous state as

shown in Fig. 6(b). Compared to m¼ 1, the left and right

neighbors of each cluster have similar frequencies, which

make it easier to transit to a larger synchronous cluster. For

m¼ 4, it is easy to form 8 synchronous clusters with their

synchronous frequencies being in high and low values alter-

nately. Compared to m¼ 2, each cluster has a smaller size,

which makes it easier to form larger clusters which have

smaller mismatches of the synchronous frequencies as shown

in Fig. 6(c). For m¼ 8, the initial frequencies of each pair of

FIG. 5. (a)–(d) The average frequency versus coupling constant � for spatial

frequency distribution period (a) m¼ 1, 2, 4, 8, respectively. The nodes with

the same color are within the same spatial period.
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nodes have high and low values alternately; the coupling can

easily make the system form two large clusters. However,

compared to m¼ 4, the two clusters have larger frequency

mismatch than that of m¼ 4 as shown in Fig. 6(d). Totally,

we find that when m¼ 4 (
ffiffiffiffi
N
p

with N¼ 16), the coupled

oscillators first form many small synchronous clusters with

each pair of neighbor clusters being in high and low frequen-

cy alternatively, which makes it the easiest (need the lowest

coupling strength) to form the larger synchronous clusters.

Therefore, the smallest critical coupling constant is needed

to form a whole synchronous cluster.

Moreover, the transition process to synchronization of

the coupled chaotic oscillators is similar to that of coupled

period oscillators, such as the coupled Rossler oscillators

dx=dt ¼ �wy � z; dy=dt ¼ wx þ ay; dz=dt ¼ f þ zðx � cÞ
(a ¼ 0.165, f¼ 0.2, c ¼ 10, dx¼ 0.02, the coupling term is

on the variable x). Figures 7(a)–7(d) present the average fre-

quencies of the coupled Rossler oscillators for m¼ 1, 2, 4, 8,

respectively, which have the similar transition process as in

Figs. 6(a)–6(d). For m¼ 1, the coupled chaotic oscillators

first form four synchronous clusters with each containing dif-

ferent increasing synchronous frequencies in the sequence

from left to right which is similar to that in Fig. 6(a).

However, 8 nearly synchronous clusters are formed with

each containing the synchronous frequency in high and low

values alternatively for m¼ 4 which is right similar to that

in Fig. 6(c). Therefore, the effects of spatial frequency period

m on the �c2 are common in either coupled period or chaotic

oscillators.

VI. DISCUSSION AND CONCLUSION

Totally, we have discussed the oscillation quenching and

reviving dynamics in coupled oscillators with special periodi-

cal frequency distribution. Although the frequency distribu-

tion in our model is an idealized one, there are still some

nature systems and application in this aspect, for example,

Ref. 50 has experimentally explored the effects of frequency

distribution on chimera state in chemical oscillators.

Moreover, when it is extended to more general cases of ran-

dom frequency distribution,45 a physical quantity called

“roughness” R of a given frequency configuration can effec-

tively be defined (Eq. (8)) and used to exhibit the effects of

frequency distribution on synchronization48 and AD regimes.

R ¼ 1

N

XN

i¼1

xjþ1 � xjð Þ2: (8)

Since there are variations of critical coupling strengths for

all random frequency distributions and corresponding

FIG. 6. The average frequency distri-

bution of each node i for different cou-

pling strengths of coupled Stuart-

Landau. (a) m¼ 1, �¼ 0 (black

squares), �¼ 0.4 (red dots), �¼ 0.9

(blue circles), (b) m¼ 2, �¼ 0 (black

square), �¼ 1.3 (red dots), �¼ 1.4

(blue circles), (c) m¼ 4, �¼ 0 (black

square), �¼ 0.3 (red dots), �¼ 0.4

(blue circles), (d) m¼ 8, �¼ 0 (black

square), �¼ 0.5 (red dots), �¼ 0.8

(blue circles).

FIG. 7. The average frequency distribution of each node i for different cou-

pling strengths of coupled Rossler. (a) m¼ 1, �¼ 0.1 (red dots), �¼ 0.2 (blue

circles), (b) m¼ 2, �¼ 0.1 (red dots), �¼ 0.2 (blue circles), (c) m¼ 4, �¼ 0.1

(red dots), �¼ 0.2 (blue circles), and (d) m¼ 8, �¼ 0.22 (red dots), �¼ 0.25

(blue circles).
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roughness R. By averaging the critical coupling strengths �c1

and �c2 of AD domain for a certain range of roughness R, we

find the two averaged critical coupling strengths both de-

crease with the increment of average roughness R as shown

in Figs. 8(a) and 8(b). The spatial frequency distributions

still obviously influence the critical coupling strengths of the

AD domain. This work has extended our formal results45 by

considering the effects of more detailed spatially periodical

frequency distribution on AD regimes.

In conclusion, the spatial frequency distributions in cou-

pled oscillators have dramatic influences on the critical cou-

pling strength of the AD. Considering a kind of periodically

distributed parameter of frequency in the coupled Landau-

Stuart oscillators, we find that the spatial periods m of the

frequency distribution have different effects on the left and

right critical coupling strength for AD. (1) The left one has a

power law relationship with the spatial period m for small

initial frequency mismatches but remain constant for large

initial frequency mismatches. (2) The right one has a qua-

dratic function relation with the spatial period m in log-log

axis. There is an optimal period m0 ¼
ffiffiffiffi
N
p

for which the cou-

pled oscillators have the smallest right critical coupling

strength �c2 for reviving oscillation from AD. Among the

regimes for the effects of the spatial period m on the left crit-

ical coupling strength �c1 is that the increment of spatial peri-

od m tends to enlarge the frequency mismatches between

two neighbor nodes which then decrease the critical coupling

needed to realize AD. However, the regimes of the effects of

spatial period m on the right critical coupling strength are the

outcome of competition between the synchronization clusters

and the frequency mismatches. With the optimal period of

m0 ¼
ffiffiffiffi
N
p

, the coupled system easily forms small synchro-

nous clusters which have two neighbors with a similar fre-

quency. The coupling from the two neighbors makes it easier

to form large synchronous clusters which revives the coupled

oscillators from AD regimes to oscillating regimes. Our

results may have potential applications in physics and biolo-

gy; for example, rich pattern formations are expected in the

coupled pendulum by setting up proper length of each pen-

dulum in a coupled ring.
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