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We investigate the suitability of selected measures of complexity based on recurrence quantification 
analysis and recurrence networks for an identification of pre-seizure states in multi-day, multi-channel, 
invasive electroencephalographic recordings from five epilepsy patients. We employ several statistical 
techniques to avoid spurious findings due to various influencing factors and due to multiple comparisons 
and observe precursory structures in three patients. Our findings indicate a high congruence among 
measures in identifying seizure precursors and emphasize the current notion of seizure generation in 
large-scale epileptic networks. A final judgment of the suitability for field studies, however, requires 
evaluation on a larger database.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Recurrence plots (RPs) are graphical representations of times 
during which two states of a system are neighbors in phase 
space [1]. They have been widely used over the last 25 years as a 
tool to study changes and transitions in the dynamics of a system 
(even high-dimensional), or to detect synchronization and cou-
pling [2–4]. This has been achieved by using the visual aspects of 
structures encountered in RPs as well as different statistical quan-
tification approaches [2,3]. One important and widely used ap-
proach is recurrence quantification analysis (RQA), which is based on 
diagonally and vertically aligned recurrence points in the RP [5,6]. 
These lines characterize the temporal interdependences between 
individual observations or segments of the phase-space trajectory. 
Several substantial measures of complexity (MOC) have been de-
fined on the base of these temporal structures of the RP and 
are related to predictability, stationarity, or intermittency. RQA has 
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demonstrated its potential through many successful applications in 
different fields [7]. Among others, they were applied to electroen-
cephalographic (EEG) data from epilepsy patients as well as from 
epileptic rats. For example, Acharya and colleagues [8] have used 
RQA measures to classify EEG data from normal, during seizures 
(ictal), and between seizures states (inter-ictal). Further, RQA mea-
sures have been reported to exhibit sudden abrupt changes occur-
ring up to some minutes before seizure onsets [9–12]. The latter 
findings can contribute to better understand this neurological dis-
order that affects about 65 million individuals worldwide [13] as 
well as to develop alternative therapies, e.g. based on the predic-
tion of seizures [14–20], particularly for the 20–30% of patients 
that remain poorly treated or untreated [21]. It remains elusive, 
however, whether the described phenomena can be regarded as 
seizure precursors, since their statistical validity has not suffi-
ciently or not at all been investigated, and since the analyzed EEG 
recordings were of rather short duration.

Recently, another quantification approach has been introduced 
that combines time series recurrence with complex networks 
[22–24]. Here, the recurrence matrix is considered as the adja-
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cency matrix of an undirected and unweighted complex network. 
The resulting recurrence network (RN) can be characterized with 
well-known network measures, i.e., further diagnostic tools be-
come available for time series analysis [25,26]. In contrast to RQA, 
where the MOC characterize the dynamical properties of the system, 
these network-based measures capture the geometric properties
associated with a trajectory in phase space [24]. Such complemen-
tary information can be useful when studying regime changes [25], 
characterizing different dynamics [27,28], or even for the detection 
of coupling directions [29]. First applications in different scien-
tific disciplines have demonstrated the usefulness of these addi-
tional characteristics. Very promising findings have been discussed, 
e.g., by Lang and colleagues [30] in a RN-analysis of synchronous 
EEG time series from normal subjects and from epilepsy patients. 
Among other findings, the authors observed that RNs of normal 
subjects exhibited a sparser connectivity and a smaller cluster-
ing coefficient compared to those of epilepsy patients (cf. [31]). 
These findings have been confirmed by another study, reporting 
an increasing degree of structural complexity in the EEG of normal 
subjects compared to the EEG from epilepsy patients [32].

It has been suggested that the conceptual difference between 
RQA and RN measures may allow to capture complementary as-
pects of the underlying dynamics under investigation, and that 
the combined use of both quantification approaches may improve 
the detection of dynamical changes [24]. In certain applications, 
however, a higher performance of RN measures in comparison to 
that of RQA measures has been observed. For example, this has 
been reported in Ref. [33] where a classification of healthy women 
and preeclamptic patients based on cardiovascular time series has 
been performed with the aim of performing early prediction of 
preeclampsia. Another example is found in Ref. [27], where a clas-
sification of periodic and chaotic behavior is performed using short 
time series of observables from continuous-time dynamical sys-
tems.

We observed a lack of literature describing such a comparison 
of performance between RQA and RN measures when applied to 
time series from complex systems such as the brain, and in partic-
ular in the analysis of EEG data. In the present work, we compare 
selected RQA and RN measures for a specific problem of multivari-
ate EEG data analysis. In particular, we investigate the suitability of 
these measures for an identification of pre-seizure states in multi-
day, multi-channel, invasive EEG (iEEG) recordings.

2. Data and methods

2.1. Patient characteristics and data

We analyze iEEG recordings from five epilepsy patients (see 
Table 1 and Fig. 1) who underwent presurgical evaluation of drug-
resistant epilepsy at the University of Bonn Epilepsy Program [34]. 
The patients signed informed consent that their clinical data might 
be used and published for research purposes. Further, the study 
protocol had received prior approval by the ethics committee of 
the University of Bonn.

The iEEG data was recorded from chronically implanted in-
trahippocampal depth and/or subdural grid and strip electrodes 
(on average of 54 contacts) with a total recording time of 929 h 
during which 32 seizures (five to seven seizures per patient) oc-
curred. The data was band-pass-filtered between 0.1 and 70 Hz, 
sampled at 200 Hz using a 16 bit analog-to-digital converter, and 
referenced against the average of two recording contacts outside 
the focal region. Reference contacts were chosen individually for 
each patient. Some recording gaps have been encountered and they 
were mainly due to diagnostic procedures that required the patient 
to be temporarily disconnected from the recording system.
Table 1
Clinical data. ID: patient identification number; age (yrs.) and gender: female (f), 
male (m); Depi: duration of epilepsy (yrs.); FH: focal hemisphere, left (L), right (R); 
FR: focal region, MT mesial aspects of temporal lobe, LT lateral aspects of temporal 
lobe; Nrs: number of recording sites; Nsz: number of seizures; Drec: duration of 
iEEG recording (hrs).

ID age/gender Depi FH FR Nrs Nsz Drec

1 37/f 5 R MT 70 7 169
2 55/m 10 L LT 20 6 232
3 44/f 44 L LT 52 5 220
4 22/m 19 L LT 62 7 167
5 35/f 6 R LT 70 7 141

Fig. 1. Example of iEEG data from an inter-ictal (a) and a pre-ictal/ictal period (b) 
of patient 3 from recording sites within the epileptic focus (red), from its neighbor-
hood (orange), and from a remote brain region (green). The latter two time series 
were shifted to enhance readibility, and amplitude values were normalized to zero 
mean and unit variance. The gray-shaded area marks the initial phase of the seizure. 
(For interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

2.2. RQA- and RN-based measures of complexity

The basis of the MOC that we here used to characterize the 
iEEG is the recurrence plot (RP). It was introduced to visualize the 
time-dependent behavior of the dynamics of a system and partic-
ularly the recurrences of the phase-space trajectory to a certain 
state [1,2]. Let us consider x as an exemplary univariate time se-
ries with T sampling points and let xi denote the value of x at 
discrete time i. In order to observe the recurrences of states from 
this time series, we compute the T × T matrix

Ri, j = �(ε − |xi − x j|), i, j = 1, . . . , T (1)

where �(·) is the Heaviside function, ε is a predefined threshold, 
and | · | denotes absolute value. In general, Eq. (1) can be applied 
on phase-space trajectories in Rm (where m is the dimensional-
ity and the absolute value is replaced by a norm [2]), but here we 
apply it on time series directly (i.e., without embedding of time 
series in the phase space, similarly to Ref. [35]). This choice is mo-
tivated by the fact that several recurrence properties are invariant 
under embedding [36] and by the highly non-stationary character 
of brain dynamics [37–39], which complicates the choice of ap-
propriate embedding parameters. Moreover, embedding can cause 
spurious correlations which affect mainly the recurrence analysis 
of stochastic signals [40].

An RP is a graphical representation of the above defined ma-
trix R. For the coordinate (i, j) of an RP we choose black color to 
plot a point if Ri, j = 1, i.e., in the recurrent case, and white color 
otherwise. An example is shown in the left part of Fig. 2 for 10.24 s 
of an iEEG recording. The white and black points can form differ-
ent lines and structures, which are related to the properties of the 
underlying dynamics.
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Fig. 2. (a) Exemplary recurrence plot of 10.24 s iEEG recording (T = 2048 data points). The corresponding recurrence matrix was calculated using the recurrence threshold 
ε = 0.3. (b) Enlargement of the area marked by the red rectangle (lower left corner). The green, blue and magenta double arrows exemplify a white vertical, black vertical, 
and black diagonal line, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Among these lines and structures encountered in an RP, we 
consider in our analysis the white vertical, black vertical, and black 
diagonal lines, respectively (see right part of Fig. 2). These lines 
are commonly used in RP-based analyses [2,5–7]. The lengths of 
white vertical lines are an estimator of the recurrence time [41,
42]. A black vertical line marks a time length in which a state does 
not change or changes very slowly, and is thus related to laminar 
states. A black diagonal line occurs when a segment of the trajec-
tory runs parallel to another segment, and is thus related to the 
divergence of states [2]. By counting how many times a length of 
a line occurs in an RP, we evaluate the frequency distributions of 
the respective lengths of these three types of lines. From the fre-
quency distributions, we compute the following MOC: determinism
(DET), laminarity (LAM), and mean recurrence time (MRT) [2].

Furthermore, we use MOC that characterize complex networks, 
in particular the average shortest path length (APL) and network tran-
sitivity (Cl). The analogy between the recurrence matrix and the 
adjacency matrix of an undirected and unweighted complex net-
work [23,24] allows us to apply complex network measures on RPs 
in order to quantify the geometrical properties of the system’s at-
tractor encoded in the RP. For more details on this approach we 
refer to Refs. [23,24,43]. A brief description including the mathe-
matical equations of the MOC considered in the present work is 
given in the appendix.

Using a sliding-window analysis, we calculated time profiles of 
the above mentioned MOC separately for each iEEG time series 
from each channel. Non-overlapping windows of 4096 data points, 
corresponding to a duration of 20.48 s, were used in accordance 
with previous studies [44,45]. This window length can be consid-
ered as a compromise between the required statistical accuracy 
for the calculation of a measure and the approximate stationarity 
within a window’s length [46,47]. A fixed value of the threshold 
ε = 0.3, Eq. (1), was chosen following the discussion in Refs. [40,
48] and the data in each analysis window were normalized to zero 
mean and unit standard deviation.

2.3. Investigating the suitability of MOC for an identification of 
pre-seizure states

We tested whether time profiles of the MOC carry potential 
information about seizure precursors by estimating their classifi-
cation performance in terms of their ability to distinguish between 
inter-ictal and pre-ictal (before a seizure) periods. Following Mor-
mann and colleagues [44], we here assumed the existence of a 
pre-ictal period with a duration of 30 min [49,50]. In order to 
exclude effects from the post-ictal period (after a seizure), data 
recorded within 1 h after the electrical onset of a seizure was dis-
carded from the analysis. Eventually, we defined inter-ictal periods 
to include all data except from the pre-ictal, ictal, and post-ictal 
periods. In cases where the time interval between two successive 
seizures was less than the assumed pre-ictal duration plus one 
hour, the maximum amount of data available from the seizure on-
set back to the end of the post-ictal phase of the preceding seizure 
was used. Applying these selection criteria reduced the number of 
seizures accessible for our analysis to 26.

For each channel, we then investigated whether the MOC am-
plitude values allow us to distinguish between inter-ictal and pre-
ictal periods. To do so, we tested the separability of the pre-ictal 
Ppre and inter-ictal Pint distributions of MOC amplitude values in 
terms of sensitivity and specificity using receiver operating charac-
teristic (ROC) statistics. With this statistics, a threshold for ampli-
tude values is continuously shifted across Ppre and Pint. The ROC 
curve is obtained by plotting sensitivity (ratio of true positives to 
total number of positives) against one minus specificity (ratio of 
true negatives to total number of negatives).1 The capability of 
the considered MOC to distinguish between inter-ictal and pre-
ictal periods was then quantified using the area under the ROC 
curve (AUC). For identical distributions Ppre and Pint (i.e., periods 
are indistinguishable) AUC = 0.5, while for distributions that are 
completely non-overlapping, values of 0 or 1 are attained, depend-
ing on the ROC hypothesis used for the definition of sensitivity 
and specificity (pre-ictal decrease: AUC > 0.5; pre-ictal increase: 
AUC < 0.5). We performed analyses for both ROC hypotheses and 
selected the larger one thus achieving an AUC value that is always 
≥ 0.5 by construction.

Next, in order to test whether the predictive performance — 
as quantified by the largest AUC value — is better than random, 
we employed the concept of seizure time surrogates [51]. With 
this Monte-Carlo-based resampling technique, the original seizure 
times are replaced with times randomly chosen in the inter-ictal 
interval (seizure time surrogates) using the total number of origi-
nal seizures and the distribution of inter-seizure intervals as con-
straints. In addition, seizure time surrogates were not allowed to 
coincide with original seizure onset times or to fall into a recording 
gap. For each patient and each channel, ROC analysis was repeated 
for 100 seizure time surrogates (the available data from patient 
3 allowed to generate 20 seizure time surrogates only), and the 
significance of a given predictive performance was determined by 
calculating the fraction of AUC values obtained with seizure time 

1 The definitions of sensitivity and specificity are based either on the ROC hy-
pothesis of a pre-ictal decrease (H↓; MOC amplitude values from Ppre are lower than 
those of Pint) or on a pre-ictal increase (H↑; vice versa). For H↓ , the terms ‘posi-
tive’ and ‘negative’ correspond to whether an amplitude value is below, respectively 
above the threshold, while the terms ‘true’ and ‘false’ indicate whether values be-
low the threshold belong to Ppre and values above the threshold belong Pint or not. 
For H↑ , these correspondences need to be adjusted accordingly.
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Fig. 3. Time profiles of the measures of complexity DET, LAM, MRT, APL, and Cl 
(from top to bottom) estimated from iEEG data of patient 3. Data recorded from 
within the epileptic focus (red), from its neighborhood (orange), and from a re-
mote recording site (green). Moving average over 60 windows corresponding to 
20.48 min. There was a recording gap on day 3. Seizures are marked by black verti-
cal lines, and tics on x-axes denote midnight. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

surrogates, which exceeded AUC values obtained with the original 
seizure times.

Eventually, we controlled for falsely rejected null hypotheses 
due to multiple testings (1370 hypothesis tests for five MOC and 
for a total of 274 channels) by applying the Benjamini–Hochberg 
procedure [52] with a false discovery rate of 0.1.

3. Results and discussion

In Fig. 3 we show, as an example, time profiles of the MOC cal-
culated from iEEG data of patient 3, which were recorded from 
within the epileptic focus (as defined by the pre-surgical workup), 
from its neighborhood (not more than two electrode contacts 
apart), and from a remote recording site. The temporal variability 
of the RQA-based measures DET and LAM appears to increase with 
an increasing distance to the epileptic focus, while the reverse ap-
pears to hold for MRT. The temporal means of these MOC decrease 
with an increasing distance to the epileptic focus, and similar ob-
servations could be made for all other patients. This finding is in 
line with previous studies that employed other measures of com-
plexity [53–62]. In contrast, no such clear dependence of the tem-
poral mean could be observed for the RN-based measures APL and 
Fig. 4. Frequency distributions of the inter-ictal (dashed lines) and pre-ictal (solid 
lines) values of the measures of complexity DET, LAM, and MRT (from top to bot-
tom) estimated from iEEG data of patient 3. Data from a recording site near the 
epileptic focus carrying predictive information.

Cl, although their evolutions exhibit some periodic temporal struc-
ture that appears to be related to daily rhythms. Indeed, estimating 
their power spectral densities (Lomb–Scargle periodogram [63]) 
revealed a strong component at about 24 h (data not shown) par-
ticularly for recordings from remote sites and near the epileptic 
focus when using APL and for recordings from remote sites and 
from within the epileptic focus when using Cl. Similar observations 
could be made for all other patients, and comparable dependences 
on daily rhythms had been reported for global and local statistical 
measures of functional epileptic brain networks [19,45,64].

With the methods described in Sec. 2.3, we observed statisti-
cally significant differences between MOC values from the pre-ictal 
and inter-ictal periods in three out of five patients. In patient 1, 
both LAM and MRT indexed the dynamics of the same remote 
brain site (one recording site) to carry information predictive of 
impending seizures. Both MOC attained lower values during the 
30 min pre-ictal periods than during inter-ictal periods. In patient 
3, all RQA-based MOC provided predictive information (pre-ictally 
increased values, see Fig. 4) from the dynamics near the epileptic 
focus (two recording sites). In addition, APL identified other nearby 
brain sites (two recording sites) to carry potential seizure precur-
sor dynamics (pre-ictally decreased values). With both APL and Cl 
remote but adjacent brain regions (one recording site each) could 
be identified, however, either through pre-ictally increased (APL) 
or decreased values (Cl). In patient 4, all RQA-based MOC provided 
predictive information (pre-ictally decreased values) from the dy-
namics of the epileptic focus (one recording site), of nearby (one 
site) and of remote brain regions (five sites). In addition, similar in-
formation could be achieved with Cl from the dynamics of remote 
brain regions (three sites).

When judging the predictive performance of RQA- and RN-
based measures, we note first that the RQA-based measures DET, 
LAM, and MRT pinpointed the same brain region to carry predic-
tive information in all patients. Although these MOC assess differ-
ent characteristics of an RP, they here provided redundant spatial 
information. Nevertheless, seizure precursors were mostly found in 
brain regions off the epileptic focus, which would favor the recent 
concept of seizure generation in an epileptic network rather than 
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from a circumscribed area of the brain (epileptic focus) [19]. Pre-
ictal alterations of these MOC (increase vs. decrease) exhibited a 
high interindividual variability, rendering an interpretation of the 
pre-seizure brain dynamics difficult.

Second, RN-based measures APL and Cl identified precursory 
structures in two patients only, and particularly Cl clearly de-
creased during the 30 min pre-ictal periods. If Cl is interpreted as 
a global measure of the effective dimensionality of the underlying 
attractive set [65], its pre-ictal decline is in line with previous ob-
servations using other dimensionality estimates [66]. As with the 
RQA-based measures, APL and Cl also identified seizure precursors 
in brain regions off the epileptic focus.

Third, taking into account the redundancies provided by RQA-
based MOC, both RQA- and RN-based measures had a comparable 
predictive performance, which compares to the one seen previ-
ously for other linear and nonlinear univariate measures [44].

4. Conclusion

We investigated the suitability of selected measures of com-
plexity based on recurrence quantification analysis (RQA) and re-
currence networks (RN) — characterizing dynamical and geomet-
rical properties of a system — for an identification of pre-seizure 
states in multi-day, multi-channel, invasive EEG recordings from 
five epilepsy patients. We employed a number of downstream sta-
tistical techniques to avoid spurious findings due to various in-
fluencing factors and due to multiple comparisons. With these 
approaches, statistically significant precursory structures could be 
identified in three patients. Findings indicate a high redundancy in 
predictive information that can be achieved with RQA-based mea-
sures. In the two patients for which RN-based measures identified 
precursory structures, these measures did not provide additional 
information about brain regions from which possible precursors 
emerge. We thus conclude that the combined use of both quantifi-
cation approaches does not appear to improve the detection of dy-
namical changes preceding seizures in the human epileptic brain. 
Clearly, a final judgment of the suitability of these recurrence-
based time series analysis approaches for seizure prediction studies 
needs to be evaluated on a larger data base.
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Appendix A. Measures of complexity

The following measures of complexity have been used and their 
description is detailed in Refs. [2,23,24,41,42]:

1. Determinism (DET) is the percentage of recurrence points 
which form a diagonal line of minimal length lmin. It quanti-
fies the predictability of the system. Processes with stochastic 
behavior will render a DET value which tends to 0, while it 
will be equal to 1 for purely periodic processes.

DET =
∑T

l=lmin
lP (l)

∑T
i, j=1 Ri, j

, (A.1)

where P (l) denotes the frequency distribution of the lengths l
of the diagonal lines in the RP.

2. Laminarity (LAM) is the percentage of recurrence points which 
form a black vertical line of minimal length vmin. It represents 
slowly changing states and, thus, the occurrence of laminar 
states in the system. High values of LAM are an indication of 
dynamics that is trapped more often to certain states.

LAM =
∑T

v=vmin
v P (v)

∑T
v=1 v P (v)

, (A.2)

where P (v) denotes the frequency distributions of the lengths 
v of black vertical lines.

3. Mean recurrence time (MRT) is the average length of white ver-
tical lines in the RP.

MRT =
∑T

w=1 w P (w)
∑T

w=1 P (w)
, (A.3)

where P (w) denotes the frequency distribution of the lengths 
w of white vertical lines. MRT estimates the main time-scale 
of variations (e.g., for an harmonic oscillation it corresponds to 
the period length) [67].
In accordance with previous works [2], the minimal lengths 
were chosen as lmin = 2 and vmin = 2.

As mentioned in section 2, by considering the phase space 
vectors as nodes of a network and their recurrences in the 
phase space as links, an analogy between the recurrence 
matrix and the adjacency matrix of an undirected and un-
weighted network can be built. The network is represented by 
an adjacency matrix A, which is the recurrence matrix from 
which the identity matrix is subtracted (Aij = Rij − δi j ; where 
δi j is the Kronecker delta used to avoid self-loops in the net-
work).

4. Average shortest path length (APL) is the average length of short-
est paths between all pairs of nodes in the network and is 
given by:

APL = 1

T (T − 1)

T∑

i, j=1

dij, (A.4)

with the minimum number of links dij that have to be crossed 
to move from node i to node j. Disconnected pairs of nodes 
are not included in the average. In recurrence networks, APL 
characterizes the average phase space separation of states [24].

5. Network transitivity (Cl) considers the average probability that 
two neighbors of any state are also neighbors and is given 
by:

Cl =
∑T

i, j,k=1 A jk Aij Aik
∑T

i, j,k=1 Aij Aik

. (A.5)

Cl can be interpreted as a global measure of the underlying 
attractive set’s effective dimensionality [65].
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