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The dynamical behavior of delay-coupled networks of electrochemical reactions is investigated to

explore the formation of amplitude death (AD) and the synchronization states in a parameter region

around the amplitude death region. It is shown that difference coupling with odd and even

numbered ring and random networks can produce the AD phenomenon. Furthermore, this AD

can be restored by changing the coupling type from difference to direct coupling. The restored

oscillations tend to create synchronization patterns in which neighboring elements are in nearly

anti-phase configuration. The ring networks produce frozen and rotating phase waves, while

the random network exhibits a complex synchronization pattern with interwoven frozen and propa-

gating phase waves. The experimental results are interpreted with a coupled Stuart-Landau oscilla-

tor model. The experimental and theoretical results reveal that AD behavior is a robust feature of

delayed coupled networks of chemical units; if an oscillatory behavior is required again, even a

small amount of direct coupling could be sufficient to restore the oscillations. The restored nearly

anti-phase oscillatory patterns, which, to a certain extent, reflect the symmetry of the network,

represent an effective means to overcome the AD phenomenon. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4954040]

Oscillatory behavior underlies the functioning of many

biological (e.g., sleep-wake cycle) and engineered (e.g.,

power grid) systems. These processes often take place in

a network of units where the interaction is bidirectional

(symmetrical), and because of the finite propagation rate

along the coupling links there exists a delay. In such

systems, when the interaction occurs through the differ-

ence between dynamical variables (diffusive coupling),

the oscillatory behavior can disappear at sufficiently

strong coupling at certain coupling delays. This coupling

induced disappearance of oscillation, called as amplitude

(AD) or oscillations (OD) death, has a detrimental effect

in systems where oscillations are essential (such as in

brain, climate, or power grid). In this paper, we show

that the amplitude death phenomenon can be avoided,

when the ideal diffusive coupling between the units is

replaced or even minutely modified with a direct coupling

between the units. In the given examples, when the cou-

pling delay is large, a restoration of the oscillatory behav-

ior occurs through complex anti-phase oscillatory

synchronization patterns where the symmetry of the

coupling topology plays an important role in the restored

dynamics. The results are confirmed with both regular

(ring) and irregular (random) networks of chemical

reactions with nickel electrodissolution system and are

interpreted with a prototype oscillatory model. The find-

ings show that direct coupling among the units is favor-

able for generation of robust oscillatory patterns in

networked units.

I. INTRODUCTION

Experiments and numerical simulations with a pair of

coupled chemical oscillations showed two prominent dynam-

ical features: synchronization, in which the phase differences

of the oscillations can lock to a certain value (e.g., in-phase,

out-of-phase, or anti-phase), and oscillation (OD) or ampli-

tude (AD) death, in which the coupling results in stationary

behavior.1,2 The AD (or OD) behaviors have been reported

in a variety of chemical systems (e.g., coupled Belousov-

Zhabotinsky (BZ) reactors3–5 and electrochemical reac-

tions6,7) as well as in physics (e.g., thermo-optical oscilla-

tors,8 electronic circuits9,10) and biology (neuroscience).11

AD refers to the stabilization of the existing unstable (often

homogeneous) steady state, where the coupling units lose

oscillatory behavior and converge to the (nearly) identical

steady state. Such mechanism is common in identical

systems with delay,9 or in systems with sufficiently largea)izkiss@slu.edu
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heterogeneity without delay.12 With OD, new stable inhomo-

geneous steady states are generated, which are often located

at the opposing positions of the original limit cycle.4,10,11,13

In chemistry, such behavior was observed with BZ system4

and also with electrochemical oscillators with negative cou-

pling.6 The bifurcation scenarios that induce AD and OD in

coupled nonlinear oscillators have been well explored.14–16

In certain circumstances, harmful oscillations are

unwanted and should be suppressed. However, in many real-

istic situations, oscillatory behavior plays a constructive role.

Both AD and OD can be responsible for a loss of oscillatory

dynamics, which may lead to some disfunctioning in the

operation of the systems. In this sense, AD and OD are de-

structive and fatal to robustness of rhythmic behaviors,

which need to be circumvented. How to revoke AD and OD

to restore oscillations is of particular importance, which is

also deemed as a challenging issue.14 Recent investigations

have been devoted to unveil possible methods of avoiding

the onset of AD and OD,17–19 which aim to understand the

sustained oscillatory mechanisms of diverse nonlinear sys-

tems. An important conclusion is that addition of coupling,

which is based on the difference between variables, often

produces AD or OD behavior, while adding an even small

amount of direct coupling often regains the oscillations. This

technique was experimentally verified in a delayed global

coupling configuration with a chemical reaction system

(nickel electrodissolution)20 and an electronic circuit.21

While the majority of experiments with chemical oscil-

lators have been performed with a pair of elements, it is

possible to build network of units. With the networks, further

questions arise, e.g., what are the typical synchronization

patterns or which types of network topologies can support

AD or OD behavior. Important examples of chemical net-

works include BZ reactor systems,22–24 BZ droplets,25–28 BZ

beads,29–33 and chemomechanical34 and electrochemical

units.35–41 Three globally coupled periodic oscillatory BZ

reactors have been shown to exhibit the OD behavior.42 AD

has been reported in a population of globally coupled chaotic

electrochemical oscillators with delays in between those

required for desynchronization and enhanced synchrony.43

In this paper, we construct a network of chemical reaction

units with delay in order to explore the network effects on AD

and the synchronization patterns. Experiments are designed for

regular networks (rings with both even and odd number of ele-

ments) and random networks. We explore the capability of

these networks to produce the AD phenomenon with difference

coupling, and the type of synchronization patterns that can be

restored by changing the coupling types from difference (diffu-

sive) to direct. The experimental results are motivated by theo-

retical studies with networks of Stuart-Landau oscillators,

which predict the existence of AD behavior, and many of the

symmetry features of the regained oscillations. Finally, the

experimental results are compared to synchronization patterns

obtained in other chemical reaction systems.

II. THEORETICAL RESULTS

We perform the stability analysis of AD in a general net-

work of N delay-coupled Stuart-Landau oscillators

_Zj tð Þ ¼ 1þ iw� jZj tð Þj2
� �

Z tð Þ

þK

dj

XN

s¼1

gjs Zs t� sð Þ � aZj tð Þ
� �

; (1)

where j ¼ 1; 2; :::;N; Zj ¼ xj þ iyj and w¼ 10 are the com-

plex amplitude and the natural frequency of the single jth
oscillator, respectively, K is the coupling strength between

two neighboring nodes, and s is the propagation delay. The

network topology is described by gjs as follows: if two

nodes j and s are connected, then gjs ¼ gsj ¼ 1, otherwise

gjs ¼ gsj ¼ 0. Self-connections are forbidden, i.e., gjj¼ 0. dj

denotes the degree of node j, i.e., dj ¼
PN

s¼1 gjs. It is notable

that the coupling type in Eq. (1) is different from the normal

form of difference coupling adopted in networks of diffu-

sively coupled oscillators. Here, a feedback factor a ð0 �
a � 1Þ is introduced in the diffusive coupling. The coupling

with a recovers to symmetrical diffusion for a¼ 1 and direct

coupling for a¼ 0, thus the intermediate value of 0 < a < 1

links direct coupling and normal diffusive interaction.20

The condition for the onset of AD in the coupled

systems, Eq. (1), can be determined from a linear stability

analysis. The linearization equations of Eq. (1) around

Z1ðtÞ ¼ Z2ðtÞ ¼ � � � ¼ ZNðtÞ ¼ 0 are

_nj tð Þ ¼ 1þ iwð Þnj tð Þ þ K

dj

XN

s ¼ 1

s 6¼ j

gjs ns t� sð Þ � anj tð Þ
� �

; (2)

where n ¼ ðn1; n2; :::; nNÞT and G ¼ gjs

dj

� �
N�N

. The above lin-

earized equations can be expressed in a compact form

_nðtÞ ¼ ½IN � ð1þ iw� aKÞ�nðtÞ þ KðG� InÞnðt� sÞ; (3)

where � is the Kronecker product and Im represents the m�
dimensional unity matrix.

Note that G is a real symmetric matrix which can be dia-

gonalized. Assume that matrix A satisfies

A�1GA ¼ diagðq1; q2; :::; qNÞ; (4)

where qi’s are the eigenvalues of the matrix G, which can be

ordered as

1:0 ¼ q1 � q2 � � � � � qN � �1:0: (5)

The smallest value of qN satisfies the condition44,45

0 > � 1

N � 1
� qN � �1:0: (6)

Let nðtÞ ¼ ðA� InÞgðtÞ, Eq. (3) can be decoupled into the

following N independent equations:

_gjðtÞ ¼ ð1þ iw� aKÞgjðtÞ þ Kqjgjðt� sÞ: (7)

Assuming that all the perturbations obtain gjðtÞ / ekt,

we have the following N characteristic equations for the sta-

bility of AD:
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k ¼ 1þ iw� aK þ Kqje
�ks; j ¼ 1;…;N; (8)

whose roots can be analytically expressed as

k ¼ 1

s
W sqjKe� 1þiw�aKð Þs
� �

þ 1þ iw� aK; (9)

where W is the Lambert function defined as the inverse of

GðKÞ ¼ KeK.46 If all the real parts of roots of Eq. (8) are

negative, AD is stable. In fact, it can be shown that the AD

regions are determined by only the largest and the smallest

values of q0ðq1 ¼ 1Þ and qN.47 Further, the boundaries of the

AD regions are derived as the following four curves:

sa ¼
cos�1 aK � 1

K

� �

w�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � aK � 1ð Þ2

q ; (10)

sb ¼
2p� cos�1 aK � 1

K

� �

wþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � aK � 1ð Þ2

q ; (11)

sc ¼
2p� cos�1 aK � 1

KqN�1

� �

w�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KqN�1ð Þ2 � aK � 1ð Þ2

q ; (12)

sd ¼
cos�1 aK � 1

KqN�1

� �

wþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KqN�1ð Þ2 � aK � 1ð Þ2

q ; (13)

where sa and sb are from q0, and sc and sd from qN�1.

In what follows, we will validate the above analysis by

considering both a ring network and an Erdos-Renyi (ER)

random network.

A. N delay-coupled oscillators in a ring network

For ring networks with a nearest-neighbor coupling, qN

can be analytically obtained as

qN ¼
�1:0; if N is even;

cos 1� 1

N

� �
p

� �
; if N is odd:

8><
>: (14)

As a typical example, here we only consider a ring network

with N¼ 11 nodes to illustrate our study. The analytical criti-

cal curves given by Eqs. (10)–(13) are depicted in Figs. 1(a)

and 1(b) for a¼ 1 and a ¼ 0:995, respectively. The open

circles denote the results obtained by numerically integrating

the coupled system, Eq. (1), where the AD phenomenon is

found. The figure shows that the AD regions in the ðK; sÞ
plane are well bounded by the critical curves indicated by

Eqs. (10)–(13). (At the natural frequency considered here,

w¼ 10, there are no other AD regions at larger values of the

delay.)

Figure 1(c) further depicts several AD islands for differ-

ent values of a in the parameter space of ðK; sÞ. We found

that the AD island monotonically decreases as the value of a

gradually decreases from unity. To quantify the above size

variation of AD islands, we introduce a normalized size ratio

R ¼ Sa=Sa¼1, where Sa means the area of the AD island for a
and Sa¼1 for that of a¼ 1. By definition, R¼ 1 for a¼ 1.

For 0 � a < 1, R is numerically calculated and shown in

Fig. 1(d). We observed that R monotonically decreases as

a decreases from a¼ 1, and remains at zero for all

a < amin ¼ 0:75.

Figure 2(a) further illustrates the time series of the real

parts of coupled Stuart-Landau oscillators with K¼ 5

and s ¼ 0:2. The coupling was turned on at t¼ 50, after

which the oscillations amplitude quickly decreased, i.e., AD

occurred. After the coupling is switched from the diffusive

(a¼ 1) to direct (a¼ 0) at t¼ 250, the established AD is

indeed revoked. The enlarged view of the time-series for

direct coupling a¼ 0 is shown in Fig. 2(b). We find that the

restored limit-cycle oscillations are nearly anti-phase type,

where the phase difference between neighboring oscillators

is 12p
11

.

The direct coupling with a¼ 0 efficiently inhibits the

occurrence of AD in the whole parameter space of time

delay and coupling strength. Hence, we can conclude that

the direct coupling with a¼ 0 tends to favor the oscillatory

FIG. 1. AD regions with a ring of N¼ 11 nodes of Stuart-Landau oscillators.

(a) and (b) AD regions in the parameter space of ðs;KÞ for a ring network

with N¼ 11 nodes for a¼ 1 and a ¼ 0:995, respectively. The regions of AD

are enclosed by the four critical curves sa, sb, sc, and sd. The open circles

represent the numerical simulations, which confirm the theoretical bounda-

ries. (c) AD islands in the parameter space of ðs;KÞ for N¼ 11 Stuart-

Landau oscillators on a ring network with a¼ 1, 0.995, 0.99, and 0.9,

respectively. (d) The normalized ratio of the area of AD island

R ¼ SðaÞ=Sða ¼ 1Þ versus a. R monotonically decreases with decreasing a
from unity, and retains at zero for a < amin ¼ 0:75.
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activity over the difference coupling with a¼ 1 in ring

networks.

B. N delay-coupled oscillators in an Erdos-Renyi
network

Now we consider delay-coupled oscillators in an irregu-

lar network. Generally, for irregular networks, the smallest

eigenvalue qN of the corresponding matrix G cannot be ana-

lytically derived. However, qN can be obtained numerically.

Once qN is numerically calculated, the AD regions can be

plotted from Eqs. (10) to (13). As an illustrated example,

here we construct a small-size ER random network with

N¼ 11 nodes, whose topology is schematically illustrated on

the upper-right corner in Fig. 3. The qN for this irregular ER

network is numerically found to be �0.8677. To test the va-

lidity of the theoretical predictions, we used Eqs. (10)–(13)

for the ER network to calculate the AD regions; Fig. 3 shows

the results for a ¼ 0:99. The AD regions are enclosed by the

intersected area determined by the four critical curves sa, sb,

sc, and sd, respectively. The theoretical AD region agrees

well with numerical experiments denoted by the open

circles.

Several AD islands of the irregular ER network for dif-

ferent values of a are further depicted in Fig. 4(a), which are

obtained by directly plotting the curves given by Eqs.

(10)–(13), and further confirmed by direct numerical integra-

tion. From the results shown in Fig. 4(a), again we find that

by decreasing the value of a from unity, the AD island

quickly shrinks in a quite similar way as previously observed

in the ring network of delay-coupled oscillators in Fig. 1(c).

The dependence of the normalized size ratio R of AD islands

on a for the ER network is displayed in Fig. 4(b). We

observe that R monotonically decreases as a decreases from

unity, and acquires R¼ 0 for all a < amin ¼ 0:72. This indi-

cates that the phenomenon of AD does not occur for any val-

ues of K and s if a < 0:72.

We further depict the time series of real parts of coupled

Stuart-Landau oscillators in Fig. 5(a), where the values of

K¼ 5 and s ¼ 0:2 are fixed. Again, after the coupling is

effective for t> 50, oscillations amplitude quickly diminish

for the ideal diffusive coupling with a¼ 1, where all the

units are attracted to the origin in the phase space, i.e., AD

occurs. However, AD is inhibited for the direct coupling

with a¼ 0 for t � 160, and the complex patterns of regained

oscillations are observed, which are shown by the enlarged

view of the time-series for direct coupling a¼ 0 in Fig. 5(b).

Therefore, AD is impossible to be induced by the direct

coupling in ER networks of delay-coupled nonlinear oscillators.

From the above observations, we can lead to the following con-

clusion that, in the irregular ER networks of delay-coupled

oscillator, the direct coupling with a¼ 0 is efficient to restore

oscillatory behavior that are suppressed by the ideal diffusive

coupling with a¼ 1.

FIG. 2. AD and regained oscillations in N¼ 11 delay-coupled oscillators in

a ring network with K¼ 5 and s ¼ 0:2. (a) The plot of time series of real

parts of coupled Stuart-Landau oscillators, where the coupling strength is

K¼ 0 for 0 < t < 50 and K¼ 5 for t � 50, and the value of a is switched

from a¼ 1 to a¼ 0 at t¼ 250. Once the coupling is turned on for t> 50 with

a¼ 1, oscillation amplitudes decrease to zero, and increase again for a¼ 0.

(b) Enlarged view of the time-series for direct coupling with a¼ 0 showing

nearly anti-phase oscillations between two neighboring oscillators with the

phase difference of 12p
11

.

FIG. 3. AD regions in the parameter space of ðs;KÞ for an ER random

network with N¼ 11 nodes for a ¼ 0:99. The ER random network structure

is depicted in the upper-right corner. The regions of AD are bounded by

the four critical curves sa, sb, sc, and sd. The open circles representing the

numerical simulations confirm the theoretical boundaries.

FIG. 4. AD regions for the ER random network. (a) The AD islands used in

Fig. 3 for a ¼ 1; 0:99; 0:95, and 0.92, respectively. (b) The size ratio R of

AD islands as a function of a for the employed ER random network. R
monotonically decreases as a decreases from unity, and becomes zero for all

a < amin ¼ 0:72.
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III. EXPERIMENTAL RESULTS

A. Construction of networks of delay-coupled
chemical oscillatory units

The network was constructed from discrete units, each

of which is a 0.69 mm diameter nickel wire, immersed in

3 mol/l sulfuric acid solution at a temperature of 10 	C (see

Fig. 6). The electrode array, in which the elements are

spaced in 2 mm distance within an epoxy resin, was utilized

as the working electrode (WE). The circuit potential of each

electrode (VjðtÞ) can be set independently with a multichan-

nel potentiostat (Gill-IK64, ACM Instruments) with respect

to a reference electrode (RE, Hg=Hg2SO4=sat:K2SO4); the

counter electrode was a 1.6 mm diameter Pt wire. (All poten-

tials are given with respect to the RE.) The currents of the

electrodes (IjðtÞ), which are proportional to the rate of the

metal dissolution process, were monitored as the observable

variables with a National Instruments multifunction data ac-

quisition card card (NI PXI-6255). A Labview based real-

time data acquisition interface collected the currents and

generated the circuit potentials with the chosen feedback

equations that represent the interactions between the ele-

ments. The dissolution reaction exhibits oscillatory behavior

due to the negative differential resistance of the process with

constant circuit potential V0 ¼ 1:13 V and external resistance

of 2500 X. The oscillations occur through a Hopf

bifurcation.48

B. Comparison of global vs. local coupling with two
oscillators

In a two-oscillator setting, local coupling between the

elements can be implemented by setting the circuit potential

(VjðtÞ) according to Eq. (15)

VjðtÞ ¼ V0 þ K½�Ikðt� sÞ � a�I jðtÞ�; (15)

where j; k ¼ 1; 2ðj 6¼ kÞ are the oscillator indices, V0 is the

constant base potential, �I jðtÞ is the offset corrected current of

the electrodes (�I jðtÞ ¼ IjðtÞ � oÞ, o is the time averaged cur-

rent determined before the experiments, K is the coupling

(feedback) strength, and s is the coupling delay (see Fig. 6(b)).

Figure 7 presents an experiment, in which AD can be

induced with this coupling scheme. As shown in Fig. 7(a)

for t < 100 s, without coupling (K¼ 0) the two electrodes

generate oscillatory current with slightly different frequen-

cies (x1¼ 0.343 Hz and x2¼ 0.348 Hz). (The heterogeneity

FIG. 5. AD and regained oscillations in N¼ 11 delay-coupled oscillators in

the ER network with K¼ 5 and s ¼ 0:2. (a) The plot of the time series of

real parts of coupled Stuart-Landau oscillators, where the coupling strength

is K¼ 0 for 0 < t < 50 and K¼ 5 for t � 50, and the value of a is switched

from a¼ 1 to a¼ 0 at t¼ 160. When the coupling is turned on for t> 50,

oscillations are quenched if a¼ 1, which are clearly restored for a¼ 0. (b)

Enlarged view of the time-series for direct coupling a¼ 0 showing complex

patterns of regained oscillations.

FIG. 6. Schematics for the electrochemical apparatus and network topolo-

gies. (a) WE: An array of Ni wires as the working electrode. CE: Pt counter

electrode. RE: Reference electrode (Hg/Hg2SO4/sat. K2SO4). The potentio-

stat measures the currents and set the individual circuit potential, which is

the summation of a base potential (V0) and a feedback perturbation (dV).

The feedback perturbation for each electrode depends on the currents of

the electrode, which introduces the desired network interactions among the

electrodes. The individual resistances attached to the wires (Rind ¼ 2500 X)

are required to obtain the oscillations in the chemical system. Different net-

work topologies were used: (b) two elements with local coupling, (c) two

elements with global coupling, (d) ring network with even (10) nodes, (e)

ring network with odd (11) nodes, and (f) random ER network with 11

nodes.

FIG. 7. Experiments: AD and regained oscillations with local coupling of

two oscillators. (a) Current vs. time of the two electrodes for an experiment

without coupling (phase drifting, t < 100 s), with difference coupling (AD

behavior, 100 s < t < 500 s, K ¼ �0:1 V=mA, s ¼ 1:0 s, a¼ 1) and direct

coupling (regained oscillations, 100 s < t < 500 s, a¼ 0). (b) Enlarged view

of the time-series for direct coupling (a¼ 0) showing anti-phase oscillations.

V0¼ 1.120 V.
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comes from slightly different surface conditions, e.g., oxide

layer thickness and composition.) When the coupling was

turned on (100s < t < 500s) with a delay of about one third

of the oscillatory cycle (s ¼ 1:0 s, K ¼ �0:1 V=mA) AD

was soon induced with difference coupling (a ¼ 1). As

shown in Fig. 7(a), the amplitude of the oscillations was

suppressed in less than 50 s. At t¼ 500 s, the a parameter

was switched to a ¼ 0 (direct coupling) and the oscillations

were quickly restored. As a result of the direct coupling, the

restored oscillations maintain a stable synchronized anti-

phase state. (An enlarged view of the time-series when a ¼ 0

is depicted in Fig. 7(b).)

The experiments thus verify our theoretical prediction20

that the local difference coupling between elements causes

AD, and the oscillations can be regained with direct coupling

in anti-phase configuration. We note that the theory predicts

the existence of AD at small time delays with opposing cou-

pling sign;20 in that state the regaining of oscillations occurs

through in-phase synchronization. We have not been able to

observe this state in the experiments. It is unclear (and

puzzling) why this state is unavailable experimentally. It is

possible that the presence of heterogeneity and higher order

nonlinearities (which are not yet considered in the theoretical

treatment) could contribute the disappearance of the AD. In

further experimental investigations, we consider the parame-

ter region where AD occurs at large delay (about one third to

one half of the oscillatory period).

In a previous publication,20 a delayed global coupling

scheme (see Fig. 6(c)) was proposed to investigate the effects

of interactions on the oscillatory behavior. (We note that

while without delay the local and global coupling schemes

for two oscillators are equivalent, with delay they are differ-

ent, as shown below.) The global coupling scheme can be

implemented as

VjðtÞ ¼ V0 þ K½h�Iðt� sÞi � a�I jðtÞ�; (16)

where the delayed current corresponds to a spatial mean of

the individual currents: h�IðtÞi ¼ ½�I1ðtÞ þ �I2ðtÞ�=2. This cou-

pling configuration produces very robust AD with difference

coupling (a¼ 1); the results are shown in Figs. 8(a) and 8(b).

In Fig. 8(a), the AD domains were experimentally monitored

by changes in s at K ¼ �0:5 V=mA. The amplitude suppres-

sion is easily obtained in the global coupling configuration.

In Fig. 8(a), s is varied by 0.1 s every 150 s. This scheme can

achieve AD over a range of Ds¼ 1.5 s. For comparison, a

similar experiment was performed with the local coupling

scheme (Eq. (15)) in Fig. 8(c); the AD range was diminished

to Ds ¼ 0:5 s. In these experiments, we picked a feedback

gain (K ¼ �0:5 V=mA), where both coupling schemes pro-

duce robust AD for a large range of K (about K¼�0.1 to

�0.7 V/mA at s¼ 1.0 s for both techniques). These results

indicate that the global coupling scheme produces larger AD

regions, and thus regaining oscillations in this configuration

could be more crucial. This experimental result confirms the

theoretical and numerical results of delayed coupled Stuart-

Landau oscillators.20

Another important parameter in AD realization is the

distance to the Hopf bifurcation that generates the

oscillations. The theory and numerical simulations pre-

dicted49 that for AD to occur, the oscillation should be suffi-

ciently close to the Hopf bifurcation. Figs. 8(b) and 8(d)

show the AD experiments for the global and local coupling

schemes, respectively, for oscillation further away from the

Hopf bifurcation. While the global coupling scheme pro-

duces AD, which can be restored with direct coupling, the

local coupling scheme cannot produce AD. (We have per-

formed a careful parameter search and did not find any cou-

pling delay and coupling strength that would produce AD.)

These observations further confirm the theoretical predic-

tions49 that for AD to occur the oscillator must be close to

the Hopf bifurcation points and reinforce the idea that the

global coupling scheme produces AD in larger parameter

regions than the local coupling scheme.

Next, we will consider the coupling schemes in between

local and global coupling, i.e., network topologies; in these

examples, the oscillations will occur relatively close to the

Hopf bifurcation (i.e., similar to that in Fig. 8(c)) where AD

occurs with difference coupling (a¼ 1).

C. Amplitude death and restored oscillations with ring
network topology

The local coupling topology described in Eq. (15) can be

extended to multi-oscillator systems with network topologies

VjðtÞ ¼ V0 þ K
XN

k¼1

gj;k½�Ikðt� sÞ � a�I jðtÞ�; (17)

where N is the number of oscillators, and the parameters

gj;k ¼ gk;j define the network topology (as in Eq. (1)). First,

we consider a ring network of N¼ 10 oscillators. Fig. 9

shows that AD is obtained with the difference coupling

(50 s < t < 450 s, a¼ 1) with coupling parameters similar to

those used with two elements in Fig. 7. Different from two

coupled oscillators, the amplitude suppression in Fig. 9(a)

occurred in a slower manner, requiring around 200 s; it takes

FIG. 8. Experiments: AD domains for two oscillators with global and local

coupling. (a) Global coupling induced AD close to Hopf bifurcation (s steps

of 0.1 s every 150 s, a¼ 1, V0¼ 1.130 V). (b) Global coupling induced AD

far away from Hopf bifurcation. (100 s < t < 300 s, s ¼ 1:0 s, a¼ 1,
V0¼ 1.180 V). (c) Local coupling induced AD close to Hopf bifurcation (s
steps of 0.1 s every 150 s, a¼ 1, V0¼ 1.130 V). (d) Local coupling cannot pro-

duce AD far away from Hopf bifurcation (100 s < t < 300 s; s ¼ 1:0 s, a¼ 1,
V0¼ 1.180 V). K ¼ �0:5 V=mA.
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about four times longer to reach the AD state in the ring of

ten elements than for two. A spatiotemporal plot of the early

stages of AD can be seen in Fig. 9(b) which shows that AD is

achieved in an anti-phase pattern, where each element tends

to oscillate in approximate anti-phase configuration to their

neighbors. The adjustment of the phases of the oscillations is

accompanied with a fast amplitude decrease as the AD state

is reached. When the difference coupling is switched to direct

coupling (a¼ 0 at t ¼ 450 s), the oscillations are regained

(Fig. 9(a)) and the spatiotemporal patterns (Fig. 9(c)) exhibit

an anti-phase synchronization pattern.

A detailed analysis of the restored oscillations in a ring

of 10 electrochemical oscillators is shown in Fig. 10. The

synchronization pattern, where each element is in nearly per-

fect anti-phase configuration to its neighbor, is visualized in

current time-series (Fig. 10(a)), a color-coded spatio-tempo-

ral plot (Fig. 10(b)), and phase snapshots (Fig. 10(c)). This

state represents an anti-phase frozen state, in which there is

no rotation around the ring. Although the pattern shown in

Figs. 10(a)–10(c) represents the most common form of syn-

chronization, in some experiments we obtained another pat-

tern shown in Figs. 10(d)–10(f). In this state, the phase

difference is slightly larger than p between the neighboring

elements. Because the phase difference is larger than p, ev-

ery other element has a similar phase difference. As a result,

we can conceive that there are two pseudo-rotational waves

along the ring: one wave propagates along the odd nodes,

while the other on the even nodes in a symmetrically spatial

phase distribution among the oscillators. (The set of arrows

inside the ring in Fig. 10(f) simplifies the dynamic visualiza-

tion of the two rotational waves in this context.) Moreover,

as clearly shown in Fig. 10(f), elements at the opposing posi-

tion along the ring [(1, 6), (2, 7), (3, 8), (4, 9), (5, 10)] are

nearly in-phase. This synchronization pattern thus represents

an anti-phase rotating wave state, in which two waves are

circling around the ring.

The patterns obtained with N¼ 10 oscillators can be dis-

rupted by odd number elements; therefore, we also looked at

the behavior with N¼ 11. Fig. 11 shows AD observed in

FIG. 9. Experiments: AD and regained oscillations in a ring network with

10 oscillators. (a) Current vs. time of the 10 electrodes labeled as blue (odd)

and red (even) without coupling (phase drifting, t < 50 s), with difference

coupling (AD behavior, 50 s < t < 450 s, K ¼ �0:1 V=mA, s ¼ 1:0 s, a¼ 1)

and direct coupling (regained oscillations, 450 s < t < 600 s, a¼ 0). (b)

Spatiotemporal plot for transient to AD (K ¼ �0:1 V=mA, s ¼ 1:0 s, a¼ 1).

(c) Spatiotemporal plot of the restoration of oscillations (a¼ 0).

V0¼ 1.123 V.

FIG. 10. Experiments: Synchrony patterns for the restored oscillations in a ring network with 10 oscillators with anti-phase frozen ((a)–(c)) and rotating ((d)

and (e)) waves. ((a) and (d)) Current vs. time of the 10 electrodes labeled as blue (odd) and red (even) with direct coupling (K ¼ �0:1 V=mA, s¼ 1.2 s, a¼ 0).

((b) and (e)) Spatiotemporal plot of the restoration of oscillations. ((c) and (f)) Snapshot of the phases of the oscillations. V0¼ 1.180 V.
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electrochemical experiments with a ring network of 11 oscil-

lators with difference coupling (a¼ 1 for 50 s < t < 450 s).

(The same set of parameters described with N¼ 10 in Fig. 9

was utilized in this experiment.) In Fig. 11(a), we see that,

similar to the N¼ 10 case, AD is again reached in a long tran-

sient time of about 200 s. A spatiotemporal plot of the transi-

tion to the AD state in Fig. 11(b) reveals the lack of a clear

anti-phase relationship between the elements; nonetheless, as

time progresses an anti-phase wave starts to develop. By

changing the coupling from difference (a¼ 1) to direct (a¼ 0,

t> 450 s), the oscillations are quickly restored (Fig. 11(a)).

While with N¼ 10 the restoration of the rhythm occurred

quite uniformly (all elements started to oscillate at about the

same time), with N¼ 11 the process is more heterogeneous

(see Fig. 11(c)).

The synchrony pattern of the restored oscillations is

shown in Fig. 12. Because of the presence of odd number of

oscillators, now we can see a clear wave that rotates with a

larger than p phase difference along the ring. Every other

element has similar phases in such a way that the wave prop-

agates in an alternation between odd (elements 1, 3, 5, 7, 9,

11) and even (2, 4, 6, 8, 10) nodes in each 2p-rotation. We

thus see that because a non-rotational wave is not possible

with N¼ 11, we typically obtain an anti-phase rotational

wave with the restored oscillations.

D. Amplitude death and restored oscillations with
random network topology

Finally, our experimental setup also allows the construc-

tion of random networks; we implemented the same ER

network that was used in the simulations. The effectiveness to

reach AD was also tested for this topology. Similar to the

regular network, AD can also be achieved with the difference

coupling, as shown in Fig. 13(a) (50 s < t < 450 s) with

a¼ 1. Compared to the behavior of the regular ring network,

the AD was achieved in a relatively short time (about 100 s);

FIG. 11. Experiments: AD and regained oscillations in a ring network with

11 oscillators. (a) Current vs. time of the 11 electrodes labeled as blue (odd)

and red (even) without coupling (phase drifting, t < 50 s), with difference

coupling (AD behavior, 50 s < t < 450 s, K ¼ �0:1 V=mA, s ¼ 1:0 s,

a¼ 1), and direct coupling (regained oscillations, 450 s < t < 600 s, a¼ 0).

(b) Spatiotemporal plot of the AD (K ¼ �0:1 V=mA, s ¼ 1:0 s, a¼ 1). (c)

Spatiotemporal plot of the restoration of oscillations (a¼ 0). V0¼ 1.123 V.

FIG. 12. Experiments: Synchronization pattern for restored oscillations in a ring network with 11 elements. (a) Current vs. time of the 11 electrodes labeled as

blue (odd) and red (even) with direct coupling (K ¼ �0:1 V=mA, s¼ 1.2 s, a¼ 0). (b) Spatiotemporal plot of the restoration of oscillations. (c) Snapshot of the

phases of the oscillations. V0¼ 1.180 V.

FIG. 13. Experiments: AD and regained oscillations in ER random network

with 11 oscillators. (a) Current vs. time of the 11 electrodes labeled as blue

(odd) and red (even) without coupling (phase drifting, t < 50 s), with differ-

ence coupling (AD behavior, 50 s < t < 450 s, K ¼ �0:1 V=mA, s ¼ 0:65 s,

a¼ 1) and direct coupling (regained oscillations, 450 s < t < 600 s, a¼ 0). (b)

Spatiotemporal plot of transient to AD (50 s < t < 90 s, K ¼ �0:1 V=mA,

s ¼ 1:0 s, a¼ 1). (c) Spatiotemporal plot of the restoration of oscillations

(500 s < t < 550 s, a¼ 0). V0¼ 1.145 V.

094808-8 Nagao et al. Chaos 26, 094808 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  193.174.18.5 On: Wed, 10 Aug

2016 12:28:34



the spatiotemporal plot (Fig. 13(b)) reveals that it takes differ-

ent times for the elements to reach the AD state, but it is diffi-

cult to discern a pattern in the process. The oscillations can be

very quickly restored with direct coupling (t> 450 s in Fig.

13(a)) and the restoration of oscillations occurred in a hetero-

geneous transient pattern (Fig. 13(c)). The synchrony pattern

in the regained oscillations is shown in Fig. 14. Although it is

difficult to find a definite structure in the pattern, we can iden-

tify some general trends. Elements that are coupled to each

other tend to have different phases (e.g., close to anti-phase

synchrony). Every other element along the ring segment (1, 3,

5, 7) is nearly in-phase, while every other element along the

ring segment (2, 4, 8) has similar phase with a small offset,

which is similar to a frozen anti-phase state. Element 11 is a

“dead-end” connected to element 5, and complements the

ring-segment with the frozen anti-phase synchrony. Finally,

the remaining segment elements (10, 8, 6) form a rotating

wave-like structure. Note that these identified pattern seg-

ments form complex loops in the network with one element in

between them. We can thus conclude that the random network

displays co-existence of fractured synchrony with both anti-

phase frozen and rotating waves in subnetworks favorable for

the development of the synchrony pattern.

IV. CONCLUSIONS

We demonstrated through theoretical analysis and chem-

ical experiments that difference delayed coupling in a net-

work of oscillatory elements close to a Hopf bifurcation can

produce AD behavior. The investigated ring and random net-

works are thus capable of facilitating the coupling signal

propagation for the amplitude dampening. When the coupling

was changed from diffusive to direct, the AD state loses sta-

bility and oscillatory patterns are obtained. The experiments

show that destruction of the AD state occurs through nearly

anti-phase synchrony patterns, where the neighboring oscilla-

tors typically have large phase difference (�p). The patterns

can be either frozen (e.g., anti-phase relationship) or propa-

gating (larger than anti-phase relationship).

The observed rotating waves show similarities to those

observed with BZ microdroplet system.28 We note that in

that example the patterns are obtained with nearly zero delay

coupling through the inhibitor variable. The rotating waves

presented here were obtained with delayed coupling of the

currents of the electrodes, which relate the activator varia-

bles of the electrochemical system (the electrode potentials).

With non-delayed coupling in the electrochemical system

(with the use of a resistance network interface), in-phase fro-

zen or rotating waves have been observed.40 In a distributed

electrochemical system with a ring electrode, a rotating

multi-cluster state was observed with strong local positive,

and weak negative local coupling.50 The experimental results

presented here thus contribute to the large variety of funda-

mentally different rotating waves that can be observed in

chemical reaction systems.
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