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Abstract
Anewmeasure to characterize the stability of complex dynamical systems against large perturbations
is suggested, the stability threshold (ST). It quantifies themagnitude of theweakest perturbation
capable of disrupting the system and switch it to an undesired dynamical regime. In the phase space,
the ST corresponds to the ‘thinnest site’ of the attraction basin and therefore indicates themost
‘dangerous’ direction of perturbations.We introduce a computational algorithm for quantification of
the ST and demonstrate that the suggested approach is effective and provides important insights. The
generality of the obtained results defines their vast potential for application in such fields as
engineering, neuroscience, power grids, Earth science andmany others where the robustness of
complex systems is studied.

Introduction

Complex systems science is strongly based on linear stability analysis considering small perturbations of
dynamical systems. In a seminal paper [1] this concept was extended even to the stability of synchronization in
complex networks leading to the efficientmaster stability formalism.However, for various applications often
the influence of large perturbations is also of crucial importance. Typical examples are climatological systems, in
particular ocean circulations. It is well accepted that the AtlanticMeridional OverturningCirculationmay be
sensitive to changes in the freshwater balance of the northernNorthAtlantic.When an anomalous freshwater
flux is applied in the subpolarNorthAtlantic, this circulation collapses inmany ocean-climatemodels [2].
Another example is power grids which are networks of connected generators and consumers of electrical power.
For proper function of such networks synchronization between all the nodes is essential. Local failures,
overloads or lines breaksmay cause desynchronization of nodes and lead to large-scale blackouts [3, 4].

The study of a system’s stability against large perturbations implies treating the following challenging
problem: definition of the class of ‘safe’, or admissible perturbations after which the system returns back to the
initial regime. In contrast, ‘unsafe’ perturbations switch the system to another, often unwanted, dynamical
regime. The definition of the class of safe perturbations of a nonlinear system is very complicated and basically
different from the linear stability analysis. The reason is that for large perturbations linearization is inadequate
and the perturbed dynamics is governed by nonlinear equationswhose analytical study is impossible in general.
Some analyticalmethods do exist, for example themethod of Lyapunov functions [5]. However, thismethod has
serious limitations since a Lyapunov function for a particular dynamical system is often not constructive. The
‘safe’ perturbation class can also be analytically estimated for some specific systems, e.g. networks of spiking
neurons [6]. Nevertheless, an important task is to develop numericalmethods of defining and describing the
class of safe perturbations [7].

From the viewpoint of nonlinear dynamics, established dynamical regimes of the system correspond to
attractors in the phase space. The class of safe perturbations is equal to the attraction basin, i.e. the set of the
points which converge to the attractor. A perturbation is safe if it brings the system to a point within the
attraction basin. Thefirst attempt to characterize attraction basins in complex networkswas undertaken in [8]
where the concept of basin stability was introduced. The basin stability equals
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S x x xd , 1B
Q
ò c r= ( ) ( ) ( )

whereQ is the set of possible perturbed states x, xr ( )with x xd 1
Qò r =( ) is the density of the perturbed states,

and xc ( ) equals one if the point x converges to the attractor and zero otherwise. The value S 0; 1B Î ( ]expresses
the likelihood that the perturbed system returns to the attractor. An important advantage of thismeasure is that
it can be easily calculated by theMonte-Carlomethod.Namely, one should just take a large number of random
points in the phase space and check howmany of themconverge to the attractor. IfM of N 1 points converge,
S M NB » .

Basin stability is an important characteristic extending the concept of linear stability for the case of large
perturbations. However,many real dynamical systems, especially complex networks, possess highly
dimensional phase spacewith complicated structure. Thismakes it problematic to characterize an attraction
basin by just a single scalar value.Moreover, basin stability depends on the perturbation classQwhich should be
chosen a priori.

In this paperwe suggest a newmeasure to characterize stability against large perturbation, the stability
threshold (ST).Wewere inspired by the observation that for real systems it is often important to know the
maximalmagnitude of perturbationwhich the system is guaranteed towithstand, like themaximal voltage jump
for a stabilizer or themaximal bullet energy for a bulletproof vest. In the following, in section 1we introduce the
ST in detail and explain how to calculate it. In sections 2 and 3 its potential is demonstrated for two paradigmatic
model systems. In section 4we relate the twomeasures, the ST and the basin stability. In section 5we briefly
summarize and discuss our results.

1.Definition and quantification of stability threshold

Wedefine ST as theminimalmagnitude of a perturbation capable of disrupting the established dynamical
regime, i.e. to push the systemout of the attraction basin. In the phase space, ST is theminimal distance between
the attractor and the border d of its attraction basin, i.e.

a b a binf dist , , , 2 s d= Î Î{ ( )∣ } ( )

where dist ,(· ·) is the distance between the points in the phase space. Further, we use the Euclideanmetric to
calculate the distance.However, any othermetrics can be used aswell.

To better understand the physicalmeaning of ST consider the system settled to the attractor as depicted in
figure 1. Let a Î and b dÎ be points corresponding to ST such that a bdist , s=( ) . Consider now a
perturbation of the systemwhich results in a quick change of its state. Namely, let the system state change from
the unperturbed one xu to the perturbed one xp so that the perturbation x x xp uD = - has themagnitude
q x= D∣ ∣. If q s< , the perturbation can never kick the systemout of the attraction basin ( x1D infigure 1). But
if q s> and the system is near the point a just before the perturbation, itmay be kicked out of the basin if the
direction of the vector xD is close to the vector D b a= - ( x2D infigure 1). The above reasoning shows that

Figure 1. Stability threshold (ST) and its quantification. Attractor , its attraction basin  and STσ. The trace of the algorithm
converging to the pointM is shown by black dots. Other LOCTpointsM2 andM3 are also shown. In the the zoomed part, safe and
unsafe perturbations are shown.Dotted lines are perturbations, solid black lines are trajectories of the perturbed system.
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besides the value ofσ, the direction of the corresponding vectorD is critical. This vector corresponds to themost
‘dangerous’ direction of perturbations inwhich the distance to the basin border is the shortest.

Let us now come to the question of quantification of the ST. For this purpose we suggest a two-stage
algorithmwhose basic principles are described below and also illustrated infigure 1.

(i)At thefirst stagewe identify some pointK1 on the border of the attraction basin. For this purpose we
choose an arbitrary pointK0 in the vicinity of the attractor and start tomove from the attractor until leaving the
basin. The point K1 is found then by the bisectionmethod.

(ii)At the second stage wemove along the basin border. On each stepwe draw a tangential hyperplane to the
border at the current pointKn. In the hyperplanewefind the point closest to the attractor andmake a step
towards this point and so obtain the newpoint Kn 1+ . Such steps bring us closer and closer to the attractor and
finally converge to the pointM on the borderwith theminimal distance to the attractor.

The second stage relies on smoothness of the border for only in this case it can be approximated by a
tangential hyperplane. Further we assume the border is smooth (defined by a function of classC1)which is the
case formany realistic systems.

The suggested algorithm allows us to determine the localminima of the distance between the attractor and
the basin border, whichwe call further ‘local threshold’ (LOCT) points. Starting fromdifferent initial points we
get different LOCTpoints M M M, , , m1 2 ¼ (figure 1). Between them, the one closest to the attractor is the ‘global
threshold point’ corresponding to the ST: min , , m1s s s= ¼( ), where Mdist ,j j s = ( ).

This brute-force search to obtain all the localminima does not seem to be a very effective strategy. However,
the effectiveness of themethod is essentially improved in a parametric study, i.e. when the systemproperties are
studied versus its parameters. Note that such tasks are typical since all realistic systems depend on parameters
and usually onewants to knowwhat happens if they are varied. Suppose that for a certain parameter value
p p0= we have found all LOCTpoints M p M p, , m1 0 0¼( ) ( ). In a robust system, the phase space structure
changes continuously when p is changed. Thus, the coordinates of LOCTpoints depend continuously on p. So,
when p is changed by a small value p p p0D = - one should start the algorithm from the points M pj 0( ). Since
the actual positions ofMj(p) are close, the algorithm converges to themquickly. In thismanner one can
effectively trace the positions of LOCTpoints over the parameter value.

One can still argue that tofind all the LOCTpoints even for one parameter value p0may be a practically
impossible task for complex high-dimension systems.However, it is important to emphasize that this task is
significantly simplified if the system is a network, i.e. it is composed ofmany low-dimensional subsystems. In
this case the coupling strength is a natural choice for the parameter p one can trace the systemover. For the case
of no coupling (p=0) the high-dimension phase space of thewhole system is just a direct product of the low-
dimension subspaces. In each of these subspaces the LOCTpoints can be found relatively easily which allows to
spot them in the full space aswell. Further one can gradually increase the coupling and trace the points.

Another issue is the possible emergence of newLOCTpoints.We have an effectivemethod to trace once
found points over the parameter, but how can one assure that no other points have emerged closer to the
attractor? This problem is typical for the global extremum seeking in the case when full sampling of the space is
impossible [9]. Although there is noway to guarantee that the found ST point is indeed the globalminimum,
there is away tomake the probability of that arbitrarily close to one. For this sake one has to check sufficiently
many random initial points andmake sure that none of them gives a better result.We revisit this issue at the end
of section 4wherewe provide an estimate of the number of trials one should run to decrease themistake
probability below a given level.

2. Stability threshold of pendulum

Nowwe showhow the ST approach can be applied to study some paradigmatic dynamical systems. First we
consider a classic pendulumunder an external forceP:

t t
P

d

d
,

d

d
sin . 3

q
w

w
aw q= = - + - ( )

Here, θ andω are the deviation angle and the angular velocity, andα describes friction.Noteworthymodels
similar to (3) are often used to describe the dynamics of nodes of power grids, i.e. generators or consumers
[4, 10]. The phase space of themodel is a cylinder S R1 1´ and includes two attractors: a stable steady state
O Parcsin , 0( ) and a stable limit cycle L (figure 2(a)). In the context of power grids, the steady state corresponds
to the state when the generator operates in synchronywith the grid, and the limit cycle corresponds to an
undesired asynchronous regime.

Next we use the concept of ST to study the attraction basin of the steady stateO. The identified LOCTpoints
are depicted by red dots infigure 2(a). Themost important ones areM1 corresponding to positive perturbations
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andM2 corresponding to negative ones. Because of the complex shape of the attraction basin other LOCTpoints
exist further from the attractor, e.g. M .3 Figure 2(b) demonstrates the LOCTs O Mdist ,j js = ( ) associatedwith
these points in dependence on the parameter P.One can see that for P P 0.15*< » the point closest to the
attractor is M ,1 while for P P*> the closest point isM2. Thus, the ST equals 1s for P P*< and 2s for P P*> ,
i.e. themost dangerous are positive perturbations for smallP but negative perturbations for largeP.

It is interesting to compare both basinmeasures: ST and basin stability. For this sake SB is plotted versus P in
figure 2(c).We calculate it for three different classes of perturbations: positive perturbations (SB1 for
Q ;1 p p= - ´[ ] 0; 3[ ]), negative perturbations (SB2 for Q ; 3; 02 p p= - ´ -[ ] [ ]), and perturbations of both
signs (SB0 for Q Q Q1 2È= ).WhenP increases, the basin stability for all classes of perturbations decreases as
well as the ST. Thus, bothmeasures indicate that the systembecomes less robust. However, basin stability fails to
detect which perturbations aremore dangerous: SB2 is sufficiently larger than SB1 for all values ofP.

We also checked that the efficiency of our algorithm is essentially improved by tracing LOCTpoints over the
parameter. For this sakewe identified the position of the pointM1 for P 0.1; 0.4Î [ ] for three different setups:
parameter step P 0.02D = (16 datapoints), without tracing; the same parameter step, with tracing; smaller step

P 0.01D = (31 datapoints), with tracing.Without tracing, the search started each time from the same point.
With tracing, the search for the new parameter value started from the position found for the previous parameter
value. The total computation timeTc equals 9×10−3 (a.u.) for thefirst setup, 19×10−4 for the second setup,
and 24×10−4 for the third setup. Thus, with tracing the computation time decreases approximately five times.
For higher-dimensional systems the improvement is evenmuch higher. Note also thatTc in the third setup
increases by less than 30%with respect to the second setup, although the number of datapoints is twice as large.
The reason is that with a smaller parameter step the positions of the LOCTpoints change less and they are found
faster.

3. Stability threshold of complex networks

The second example is a network of coupled one-dimensionalmaps.We chosemaps for two reasons: first,
because of simpler implementation, and second, to demonstrate the generality of our approach. The network on
Nnodes is governed as follows:

x t ax t bx t c x t x t1 . 4i i i
j

N

ij j i
2

1
åk+ = + + -
=

( )( ) ( ) ( ) ( ) ( ) ( )

Figure 2. Stability of the pendulum (3). (a)Phase space for 0.04a = ,P=0.1. The green area is the attraction basin of the steady state
O, the red curve is the limit cycle L. LOCTpoints are depicted by red dots, traces of the algorithmby black. (b) Local stability
thresholds 1s (red), 2s (blue), and 3s (black) versusP. (c)The basin stability values SB1 (red), SB2 (blue) and SB0 (black) versusP, mean
values and variances.
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Here, a0 1< < is the systemparameter,κ stands for the global coupling coefficient and cij are the elements
of the couplingmatrix. Coupling between twonodes i and j equals cijk . The network has the only attractor, the
stablefixed point O 0, 0, , 0¼( ). However, after a large perturbation the system trajectoriesmay go to infinity.

For network (4), a natural way tofind LOCTpoints is to trace themover the coupling coefficientκ. For
0k = , the nodes are uncoupled and each of them is governed by themap x t ax t x t1i i i

2+ = +( ) ( ) ( ), which
has a stablefixed point x 0i = with the attraction basin x a1 1i- < < - . The borders of this interval define
two LOCTpoints in the network phase space: M x j i x a0 , 1i j i= ¹ = -+ ( )( ) corresponds to positive

perturbation of the node i, and M x j i x0 , 1i j i= ¹ = --( )( ) to negative ones.We start from these points for
0k = , then gradually increaseκ and trace their positions.We also periodically check for emergence of new

LOCTpoints, but failed to detect any.
We study various networkswith N2 100  and different types of topology: all-to-all, random [11],

small-world [12], scale-free [13], and cluster networks [14]. In all the cases, the behavior of LOCTpoints is quite
similar.Whenκ increases, the positions of the points change, so that the coordinates xj ( j i¹ ) ofMi± are no
longer zeros.However, for weak coupling the coordinates of LOCTpoints obey x xi j∣ ∣ , i.e. the corresponding
perturbationmainly concerns the node i. For largerκ the situation changes and LOCTpointsmay have several
coordinates of the same order. Typical LOCTpoints are illustrated infigure 3(a).

Now let us consider LOCTs O Mdist ,i is = ( ) associatedwith LOCTpoints. A typical dependence of these
thresholds onκ is illustrated infigure 3(b). For all i, is+ growswithκ, while is-decreases. Some of the points
Mi+may disappear at certainκ aswell. A detailed study shows a remarkable feature of the LOCTs is: they turn

out to be strongly correlatedwith the values of total connections strength to the node ci j

N
ij1åk k= =
. In

figure 3(c) the LOCTs is are plotted versus ik for various nodes, coupling coefficients, network sizes and
configurations. The correlation is large, especially for small ik . Notice that for 0.6i *k k » positive

Figure 3. Stability of the network (4). (a)Coordinates of a typical LOCTpoint Mi+ (i 5= ) for two values ofκ—small (blue) and large
(red). (b) LOCTs is versusκ. Blue thin curves for is+, green thin curves for is-. Red thick curve is the STσ. (c) LOCTs is versus
nodal coupling strength ik for various nodes, coupling coefficients and network configurations. Blue dots for is+, green for is- (d)
The basin stability versusκ. The inset shows the same dependency in logarithmic scale. Red curve for numerical results, blue thin line
for the estimate (5).
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perturbations have a lower threshold than negative ones, and this threshold increases with .ik This finding leads
to an easy and intuitively clear rule: the stronger the node is connected to the network the harder it is to tear it off.
However, too strong coupling ( i *k k ) is undesirable, since it increases susceptibility to negative
perturbations.

The global ST of the network is defined by the lowest LOCT. Figure 3(b) illustrates a typical dependence of
the ST onκ.

4. Stability threshold and basin stability

It is interesting to compare the twomeasures of stability against large perturbations, the ST and the basin
stability for the same network (figure 3(d)). As the perturbation classQwe use a hypersphere of radius q=0.8
with constant density ρwhichmeans that we consider perturbations of amplitude q and randomdirection. [15]
Onemay see that S 1B = when the ST exceeds q for 0.26qk k> » . This confirms that the ST indeed
characterizes theweakest perturbation that can disrupt the network.

From figure 3(d) onemay acquire thewrong impression that the basin stability reaches unitymuch earlier
thanκ reaches qk . The reason is that SB approaches unity very quickly whenσ approaches q. This can be seen in
the inset offigure 3(d)which has a logarithmic scale. This feature seems to be typical for high-dimensional
dynamical systems. Indeed, consider an arbitrary dynamical system in theN-dimensional phase space settled
into the attractor with the ST .s Consider the perturbation classQ consisting of perturbations with the
amplitude q. For q s< , the setQ resides inside the attraction basin  , therefore S 1B = . For qs = , the setQ
contacts the border of the basin d . For q s> some part of the setQ gets out of the basin  and SB becomes
smaller than one (figure 4(a)). The probability of the perturbed state to be out of the basin is proportional to the
surface area s of the protrusive part (gray in the figure), so S s1 B- ~ . To estimate the surface area, one can
approximate both surfacesQ and d by quadratic forms near the site of their intersection. Then, the transverse
size of the protrusive part can be estimated as d q s~ - , and the surface area s dN 1~ - . This leads to the
estimate

S q1 . 5B
N 1

2s- ~ - -( ) ( )

The corresponding slope is given by the blue line in the inset offigure 4(d) and agrees with the numerical results.
The scaling law (5) suggests that for high-dimensional systems it is very unlikely that the systemwill be

disrupted by a randomperturbation ofmagnitude just above the ST. From the other side, a wisely designed
perturbation can disrupt the system even being slightly above the ST.

From computational prospective, the estimate (5) shows that attempts to estimate the ST frombasin stability
is inefficient for high-dimensional systems. Indeed, on the example fromfigure 4(d) one can see that it is very
complicated to detect the exact point where the basin stability reaches exactly unity. The probability to randomly
hit a point which is ε above the ST is of the order of N 1 2e -( ) , so the time to determine the thresholdwith the
accuracy ε by the brute-force strategy grows inversely. In contrast, themethod suggested herein allows us to
reach the LOCTpoint and determine the ST in quite a few steps.

The estimate (5) can be also used to determine the probability of awrong conclusion about the ST. Suppose
we have a potential ST, i.e. a globalminimumpointM1 with Mdist ,1 1 s = ( ) andwant to check if there exists

Figure 4. (a)Estimate of basin stability for perturbations slightly exceeding the ST. (b)The posterior probability P B M1( ∣ ) versus the
prior probability P(B) for various values ofαdenoted on the figure.
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another LOCTpointM2 with smaller Mdist ,2 2 1s s ds= = -( ) . For this sakewe choose random starting
pointsK1 at q 1s e= + until finding a point out of the basin and run the algorithm. If it converges to a pointM2

different fromM1 andwith 2 1s s< wehave found a new potential ST. And if it converges toM1 two competing
hypotheses are to be evaluated:

HypothesisA. The pointM1 indeed corresponds to the ST and there is no other point M .2 In this case, the
algorithm converges toM1 with probability P M A 11 =( ∣ ) .

Hypothesis B A= . The pointM2 exists, but we have not found it. According to (5), the probabilities to
converge toM1 andM2 relate as

P M B

P M B

q

q

1

1
. 6

1

2

1

2

N

N

N
1

2

1
2

1
2⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟a
s

s ds
e

= ~
-

-
=

+

-

-

-

( )
( )

( )
( )

( )

According to Bayes’ theorem, the posterior probability P B M1( ∣ ) is expressed through the prior probability
P(B) as

P B M
P M B P B

P M A P A P M B P B

P B

1

1
1

1
1

1

. 7

1

1

1 1

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟a

=
+

=
+ + -

( ) ( )
( ) ( )

( )

( ) ( )

( )

( )

Infigure 4(b) the posterior probability is plotted versus the prior probability for several values ofα. Note that
ifα is small enough andP(B) is not close to one (7) can be approximated as P B M P B1 a»( ∣ ) ( ), whichmeans
that each trial decreases the probability by the factorα. Thus, afterM trials the posterior probability ofB can be
estimated as

P
M N

ln
1

2
ln 1 . 8M ⎜ ⎟⎛

⎝
⎞
⎠

ds
e

~ -
-

+
( ) ( )

The estimate (8) gives the probability that afterM trials we have stillmissed a LOCTpoint whose distance to the
attractor is by ds lower than 1s . By sufficient increasing ofM thismistake probability can bemade arbitrarily
small.

5. Conclusions and discussion

To conclude, we have introduced a novelmeasure to describe stability of dynamical systems against external
perturbations. This is the STwhich equals themagnitude of theweakest perturbation capable of disrupting the
established dynamical regime. The ST provides important information, since it guarantees the system to
withstand any perturbation of smallermagnitude. In the phase space, the ST is theminimal distance between the
system’s attractor and the border of its attraction basin. From this prospective, the ST defines the ‘thinnest site’
of the basin. And as the saying goes, where something is thin, that is where it tears: the direction corresponding to
ST is themost dangerous for the system.

For dynamical networks, different directions in themultidimensional phase space are associatedwith
different nodes. To this end, the ST approach allows us to determine the nodeswhich aremostly susceptible to
perturbations. Applying external perturbations to these nodes, onemay disrupt the network comparatively
easily. However, sometimes the ST is associatedwith perturbations involving several nodes. An example of such
a situation is depicted infigure 3(a). Under such circumstances, it is easier to disrupt the network by
simultaneous perturbation of several nodes rather than by perturbing just one of them.

Wehave also suggested an algorithm to calculate the ST for arbitrary dynamical systems and demonstrated
its effectiveness. The generality of the ST-based approach defines its vast potential for applications. Possible
fields include engineering, neuroscience, power grids, Earth science andmany others where robustness of
complex systems against large perturbations is important.

Besides application to the study of particular systems, further development and extension of the approach
per se are of great interest. To this end, several directions are seen. Themost obviousmodification of the
suggested approach is to apply it to problems opposite to the one considered herein. Particularly, inmany
applications the task is to change the behavior of the systemby an external action [16]. From the nonlinear
dynamics prospective, thismeans pushing the system fromone attractor to the basin of another. In this

7

New J. Phys. 18 (2016) 013004 VVKlinshov et al



situation, quantification of the ST immediately provides the information about the optimal perturbation to
induce the switching.

Another possibility is to extend the concept of the ST tomultistable systems and reversible transitions
between different attractors. Inmany applications, not a single, but several different stable regimes play essential
roles, and the systemmay switch these regimes. The examples are switching between various patterns of activity
in neural circuits [14, 17], and episodic emergence of ElNiño events [18], transitions between free flow and
congestion in traffic [19] or between failure states and active states in self-recovering networks [20]. In all these
cases, transitions in both directions are of interest. To study such transitions fromone attractor to another and
backwards, two STs can be introduced associatedwith each of the transitions. The values of these thresholdsmay
provide important information about the transition rates when the system is externally perturbed.

Finally, the numerical algorithm can be further developed and extended for a broader class of systems. In
particular, the current version of the algorithm relies on smoothness of attraction basins borders, which is a
limitation of themethod. It is known that basin boundaries for some dynamical systems can be fractal [21]. In
this case the border can not be locally approximated by a tangential hyperplane, which is crucial to determine the
direction inwhich tomove along it. However, it is still possible tomove along the border if the steps are taken in
randomdirection. Each step is accepted if it brings the point closer to the attractor and declined otherwise. This
modification of themethod requires additional investigation to the define the conditions of its applicability and
estimate its convergence.
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