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Abstract – We propose an effective method to enhance the dynamical robustness of networks of
diffusively coupled oscillators experiencing aging transition. By introducing a new control param-
eter into the normal diffusive coupling, we demonstrate that the dynamical robustness of coupled
oscillator networks can be efficiently improved by enhancing the tolerance of dynamic activity in
the network to inactivation or deterioration of the individual oscillators. Even a tiny deviation
from the normal diffusive coupling greatly strengthens the robustness of networks. Particularly,
the strong coupling in our scheme is shown to be in favor of the dynamic activity, which is in
sharp contrast to the normal form of diffusive coupling with the tendency to spoil the dynamical
robustness. Our proposed approach serves as a rather simple and efficient way to recover dynamic
activity in networks of diffusively coupled oscillators that has been lost due to some inactivated
or damaged oscillator components.

Copyright c© EPLA, 2016

Introduction. – Collective behavior in a large ensem-
ble of coupled oscillators has attracted great interest dur-
ing the past decades [1–5]. The reason comes from the fact
that modelling coupled oscillators serves as a simple but
efficient way for understanding basic self-organized phe-
nomena in a variety of disciplines of science. Emergent
dynamics of coupled oscillators crucially depends on both
the intrinsic nature of individual elements and the manner
of coupling between them. Recently, much attention has
been paid to the dynamics of diffusively coupled oscilla-
tors composed of mixed populations with distinctly differ-
ent individuality of constituent units [6–8]. Such studies
are deemed to be instructive in illuminating the robust-
ness of the function of physical, biological, and engineering
systems [9–13].

(a)E-mail: zouwei2010@mail.hust.edu.cn

In their pioneering work [6], Daido and Nakanishi
proposed a fascinating framework to investigate the ro-
bustness of the dynamic activity of globally and diffu-
sively coupled networks, where the oscillator nodes turn
from active to inactive progressively. It is established
that with the increase of the ratio p of inactivated ele-
ments, referred to as aging, the global oscillation of cou-
pled oscillator networks, measured by the amplitude of
a macroscopic order parameter, is weakened and com-
pletely vanishes at a certain critical threshold of pc for
sufficiently large coupling strengths. This intriguing emer-
gent phenomenon is termed as aging transition (AT) [6].
The magnitude of pc can be regarded as an index of the
dynamical robustness of the coupled networks; the higher
the value of pc, the more dynamically robust the network
is. Employing this index, the robustness of dynamic ac-
tivity in networks of diffusively coupled oscillators can be
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quantitatively characterized, which has been intensively
discussed during the last decade [14–27]. One peculiar
and curious aspect of the AT is that the strong diffusive
coupling spoils the robustness of dynamic activity of cou-
pled systems commonly made in refs. [6,14–27], which is in
stark contrast with the intuitive understanding of its effect
in facilitating the coherent behaviors of systems [28,29].

In many natural or artificial systems, stable and ro-
bust activity is a prerequisite for their proper functioning.
Thus, the onset of AT could lead to an irreversible mal-
function of these systems, such as neural networks [30],
cardiac and respiratory systems [31], power grids [32], etc.
It is therefore of high practical importance to propose
general techniques to enhance the robustness of dynamic
activity of the coupled systems against aging or deteriora-
tion of individual elements caused by unexpected accidents
and diseases. Quite recently, by introducing a proper feed-
back parameter to control the rate of diffusion is proved to
serve as a novel technique for restoration of rhythmicity
from amplitude death in networks of diffusively coupled
nonlinear oscillators [33], which has been not only the-
oretically explored in distinct coupled systems, but also
experimentally realized in electrochemical reactions [33]
and nonlinear circuits [34].

In this work, we reveal that a minute deviation from the
normal diffusive coupling greatly enhances the dynamical
robustness of diffusively coupled networks of nonlinear os-
cillators. Remarkably, in contrast to the normal form of
diffusive coupling, the strong coupling in our scheme is
in favor of the dynamical robustness of the network’s ac-
tivity. Our findings in the present studies could in many
cases lead to a better reconciliation of theoretical and ex-
perimental studies with the realistic observations of effects
of diffusive coupling in living tissues and organs, where the
strong coupling is generally believed to maintain the sys-
tem’s coherent activity [35]. Hence, our results may be
expected to provide a new clue to understanding the role
of diffusive coupling in generating robust rhythmicity in
real coupled-oscillator systems.

Theories and results. – Following the framework
proposed in ref. [6], let us consider the paradigmatic sys-
tem of N globally and diffusively coupled Stuart-Landau
oscillators as

Żj = (Aj + iw − |Zj |2)Zj +
K

N

N∑
k=1

(Zk − αZj), (1)

where Zj and Aj (j = 1, 2, . . . , N) are the complex ampli-
tude and the intrinsic parameter describing the distance
from the Hopf bifurcation of the j-th oscillator, and w is
the natural frequency of a single oscillator. The parameter
K > 0 quantifies the overall coupling strength. For K = 0,
the j-th Stuart-Landau oscillator exhibits a stable limit
cycle

√
Aje

wt if Aj > 0, and settles down at the stable
trivial fixed point Zj = 0 if Aj < 0, where |Aj | specifies
the strength of attraction to the stable attractors. The

aging of the coupled system (1) proceeds in such a way
that an active oscillator with Aj = a > 0 turns inactive
with Aj = −b < 0. Without loss of generality, one can set
the group of active elements to j ∈ {1, 2, . . . , N(1 − p)}
and that of inactive elements to j ∈ {N(1−p)+1, . . . , N}.
The parameter p is the fraction of inactive elements, which
characterizes the level of aging or deterioration of the cou-
pled system. We fix the system size at N = 1000, which
is supposed to be sufficiently large to treat the ratio p vir-
tually as a continuous parameter. The parameters a = 2
and w = 3 are used throughout the whole paper.

The coupling type in eq. (1) is different from that
adopted in the previous studies about AT in networks of
diffusively coupled oscillators [6,14–27], as a new feedback
factor α (0 ≤ α ≤ 1) is introduced in the normal form
of diffusive coupling. In physics, the parameter α plays
a role to control the degree of diffusion, which recovers
to symmetrical diffusion for α = 1 and direct coupling
for α = 0. The intermediate value of 0 < α < 1 serves
as a bridge linking direct coupling and normal diffusive
interaction, thus it is more appropriate in natural circum-
stances, which may better characterize the diffusion pro-
cess of a wide spectrum of real-world contexts such as in
electrical synapses or gap junctions in the brain, neuronal
networks, and power flows in electrical networks [33,33].
Here, our aim is to corroborate even a feeble deviation of
α from unity efficiently enhances the dynamical robust-
ness of coupled oscillator networks, thus recovering their
dynamic activity.

The effect of aging in the coupled system (1) can be
checked by studying the behavior of the order parameter
|Z|: Z = N−1∑N

k=1 Zk, whose magnitude reflects the in-
tensity of macroscopic oscillation of the whole network.
For the diffusively coupled system (1) with α = 1, Daido
and Nakanishi analytically showed that the AT occurs at
pc = a(b + K)/[(a + b)K] if K > a [6]. This prediction
is confirmed again in fig. 1(a) by numerically calculating
the dependence of |Z| on p, where b = 1 and K = 8 are
used. Figure 1(a) also plots the behavior of |Z| against
the inactivation ration p for α = 0.95, 0.9, 0.88, and 0.87,
respectively. With increasing p from zero, |Z| monoton-
ically decreases, which changes from positive to zero at
p = pc < 1 if α > αc = 0.88. A larger value of pc indicates
a larger ratio p of inactive oscillators for the coupled net-
work transiting from the global oscillatory behavior to a
quiescent state. With the numerically obtained values of
pc, fig. 1(b) further depicts the dependence of pc on α (the
black squares). As can be seen, pc strongly increases with
a tiny decrease of α from unity, and rapidly reaches pc = 1
for αc = 0.88. Clearly, the presence of α in the coupling
strengthens the dynamical robustness of the network.
With further decreasing α below αc, surprisingly, |Z| is
positive even for p = 1, which implies that the global os-
cillatory activity of the coupled network survives even for
all the local elements turning from active to inactive. The
dynamic activity of coupled network is robust to any level
of inactivation of units with 0 ≤ p ≤ 1 once α is below αc.
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Fig. 1: (Color online) The order parameter |Z| against the
inactivation ratio p for various values of α in the coupled net-
work (1) with N = 1000 oscillators for a = 2, b = 1, w = 3,
and K = 8. (b) The critical inactivation ratio pc, at which |Z|
vanishes (|Z| = 0), vs. the value of α. The value of pc monoton-
ically increases to unity with decreasing α to the critical value
αc = 0.88. The black squares and the red line indicate the
numerical results and the theoretical predictions, respectively.
The coupling strength is fixed at K = 8.

When the AT occurs, the global oscillation collapses at
pc, meanwhile the trivial fixed point Zj = 0 is stabilized.
Following the method of analysis in ref. [6], the formula of
pc for 0 ≤ α ≤ 1 can be analytically derived. Assuming
that the coupled system (1) is divided into two subgroups,
where all elements are identical in each one. Employing
similar notations as in ref. [6], by setting Zj = A for all the
active elements and Zj = I for all the inactive oscillators,
the original coupled system (1) can be reduced as

Ȧ = (a + iw − αK − pK + K − |A|2)A + pKI,

İ = (−b + iw − αK + pK − |I|2)I + (1 − p)KA.
(2)

To obtain analytical expression for pc, a linear stability
analysis of the reduced system (2) around the origin (A =
I = 0) can be carried out, and the following Jacobian
matrix is obtained:(

a + iw − αK + (1 − p)K pK

(1 − p)K −b + iw − αK + pK

)
. (3)

The origin (A = I = 0) is stabilized if all the real part
of the eigenvalues of the Jacobian matrix (3) are nega-
tive. The critical inactivation ratio pc can be determined
when two complex conjugate eigenvalues cross the imag-
inary axis. After some simplifications, one can directly
arrive at the equation

pc =
a(b + K) + α(1 − α)K2 + (1 − α)(b − a)K

(a + b)K
, (4)

which degenerates to the same result obtained in ref. [6] for
α = 1. The validity of the above theoretical prediction for
pc with α < 1 is nicely confirmed by the red line plotted in
fig. 1(b) for K = 8, which agrees well with the numerical
simulations represented by the black squares.

The occurrence of AT is featured by the existence of
two critical parameters pc and Kc. For the normal dif-
fusive coupling with α = 1, the AT is observed for all
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Fig. 2: (Color online) The critical ratio pc vs. the coupling
strength K for different values of α in the coupled system (1)
as treated in fig. 1. The AT occurs at pc (pc < 1) for K > a
if α = 1, where pc monotonically decreases for increasing K.
The AT is observed only for a finite coupling interval if α < 1,
where pc firstly decreases from unity to its minimal value, and
then increases to unity. The smaller the value of α, the larger
the value of pc. The dynamical robustness of the coupled sys-
tem (1) is clearly enhanced with decreasing α.

K > Kc = a and pc decreases as increasing K [6]. To
unveil the impact of α on the two key parameters of pc

and Kc, fig. 2 depicts pc as a function of K for α = 1,
0.99, 0.98, 0.97, and 0.9, respectively. Intriguingly, we
find that when α < 1, the AT takes place only for a fi-
nite interval of coupling strength. Within this interval
pc firstly decreases from unity to its minimal value of
pc = [

√
(1 − α)b+

√
αa ]2/(a+b) at K =

√
ab/[α(1 − α)],

then increases from this minimum to unity. The coupled
system loses its dynamic activity with the minimal ratio p
of inactive oscillators at an intermediate coupling strength
if α < 1, at which the dynamic activity of the network is
most vulnerable to deterioration of the individual oscilla-
tors. The AT is impossible if the coupling strength is large
enough once α deviating from unity. The above observa-
tion suggests that the large coupling strength is favorable
for a dynamical robustness of the network against aging
if α < 1, which is sharp contrast to the case of α = 1,
where the strong coupling strength has been reported to
spoil the robustness of the network’s activity [6,14–27].

The constraint of the coupling strength for the AT can
be summarized from the condition of pc = 1 in eq. (4) as⎧⎨

⎩
K > a, for α = 1,

a

α
< K <

b

1 − α
, for α < 1.

(5)

Upon decreasing α from unity, the coupling interval
monotonically decreases and vanishes if α < a/(a + b).
Figure 3(a) shows the phase diagram of the coupled sys-
tem (1) with respective to parameters of α and K, where
the upper-right region bounded by the black bold line
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Fig. 3: (Color online) (a) Phase diagram in the parameter space
of (α, K) for the coupled system (1) as treated in fig. 1. The
upper-right region encompassed by the black bold line confines
the interval of coupling strength within which the AT is ob-
served. The lower-right corner bounded by the red dashed line
denotes the parametric regime for the oscillatory state (OS) in
the fully damaged system (1) with p = 1. The shaded area
marks the transition zone within which pc remains at unity
even with decreasing α. (b) The order parameter |Z| against
the inactivation ratio p for various values of α with K = 2.5
corroborating the transition zone in (a). The critical ratio pc

increases from 0.94 for α = 1 to 1 for α = 0.8, and keeps at
unity with further decreasing α from 0.8 to 0.6. The value of
|Z| is positive even for p = 1 if α < 0.6.

displays the interval of coupling strength for the AT. The
global oscillation vanishes (|Z| = 0) only if all the elements
are inactivated (p = 1) for the values of α and K located
on the black bold line in fig. 3(a). The strong coupling
strength with K > b/(1 − α) for α < 1 makes the cou-
pled oscillator networks robust to any deterioration level
(0 < p ≤ 1) of the individual components.

With further decreasing α away from the boundary of
the AT in fig. 3(a), the behavior of |Z| can be analyzed
from a linear stability analysis about the trivial equilib-
rium Zj = 0 of the coupled system (1) with p = 1, which
is destabilized if α is below the critical value αmin,

αmin = 1 − b/K. (6)

The lower-right corner of fig. 3(a) divided by the dashed
red line αmin represents the parameters of α and K for the
oscillatory state in the coupled system (1) with p = 1. For
a + b ≤ K < b/(1 − α), pc increases to 1 as α decreases to
1 − b/K; and with decreasing α further results in |Z| > 0
even for p = 1. This theoretical prediction explains the
numerical observations of |Z| in fig. 1(a). Interestingly, for
a < K < a + b, after pc reaching at unity as decreasing
α to a/K, it remains at unity for α further reducing from
a/K to 1 − b/K. This transition zone with |Z| = 0 at
pc = 1 is illustrated by the shaded region in fig. 3(a).
By decreasing α below 1 − b/K, |Z| > 0 holds even for
p = 1. The above analysis is numerically corroborated
in fig. 3(b) by plotting the behavior of |Z| against p for
various values of α with K = 2.5. The order parameter |Z|
is positive for 0 ≤ p ≤ 1 with α = 0.5, which means that
the global oscillation persists for any level of inactivation
of the individual components in the network. Thus, the
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Fig. 4: (Color online) Similar to fig. 3(a) depicting phase dia-
grams of the coupled system (1) with (a) b = 2 and (b) b = 4.
The shaded region extends downwards to the α = 0 axis
as b > a, which implies that pc always stays at unity for
a/K ≥ α ≥ 0 if a < K < b. All other parameters are the
same as used in fig. 3(a).

presence of the factor α in the diffusive coupling plays
a constructive role in enhancing the dynamical robustness
of the network against aging or deterioration of oscillatory
nodes.

The AT takes place as a result of an intrinsic compe-
tition between the forces from the two groups of active
elements with Aj > 0 and inactive ones with Aj < 0. The
active oscillators facilitate the global oscillation of the net-
work, while the inactive ones suppress the global oscilla-
tion. The facilitation or suppression of dynamic activity is
more pronounced with a larger value of |Aj |. Figures 4(a)
and (b) further show the phase diagrams of the coupled
system (1) in the parameter space of α and K with b = 2
and 4, respectively. Clearly, the AT is more prominent for
larger b, and the shaded region touches the α = 0 axis for
a < K < b when b > a. If the coupling strength is weak
(a < K < b), the global oscillation of the network with
fully inactivated nodes (p = 1) cannot be excited even
for α = 0. These observations are in harmony with the
intuition that the dynamic activity of coupled oscillator
networks is harder to recover when the strength of attrac-
tion of inactive oscillators becomes strong. Note that all
the behaviors of |Z| similar to those observed in fig. 3(a)
are reproduced when K > b. The strong coupling with
α < 1 facilitates the dynamical robustness of the coupled
system, which is manifested by improving the tolerance
of the oscillator network to aging or deterioration of the
individual nodes.

Figure 5(a) further depicts the variations of |Z| against
p for different values of α with b = 4 (b > a) and K = 3.
pc = 0.78 is found for α = 1, which monotonically in-
creases to unity for α = 0.67 and remains at unity for
all α < 0.67. The above numerical observation of pc is
in good agreement with our theoretical predictions. The
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Fig. 5: (Color online) (a) The order parameter |Z| against
the inactivation ratio p for various values of α in the coupled
network (1) with K = 3 and b = 4. The critical ratio pc

increases from 0.78 for α = 1 to 1 for α = 0.67, and keeps at
unity with further decreasing α from 0.8 to 0. (b) The plots of
the order parameter |Z| with decreasing α from unity to zero
for p = 1 (the black squares) and p = 0.99 (the red circles). All
the other parameters are used as in (a). The value of |Z| stays
at zero for all 1 ≥ α ≥ 0 if p = 1. The order parameter |Z|
becomes positive and increases as α < αc = 0.67 for p = 0.99.

magnitude of the order parameter |Z| is larger for smaller
values of α with a given inactivation ratio p < 1, which
illustrates that a decrease in α efficiently intensifies the
global oscillation of the oscillator network. The global ac-
tivity cannot be trigged in the fully damaged network with
p = 1 for all 0 ≤ α ≤ 1, which is also verified in fig. 5(b)
as indicated by the black squares. Interestingly, the global
dynamic activity of coupled systems can be effectively re-
covered even in the presence of a negligible amount of
active oscillators (p → 1) once α < a/K. Figure 5(b)
shows the dependence of |Z| on α with p = 0.99 denoted
by the red circles, where |Z| transits from zero to positive
at α ≈ 0.67, and grows as further reducing α. The control
parameter α < 1 has a constructive role in sustaining dy-
namic activity of the weakly coupled oscillator networks
composing of nearly all inactivated oscillators with p → 1.
The introduction of α < 1 can efficiently maintain dy-
namic activity even when the inactive oscillators have a
much larger distance from the Hopf bifurcation than the
active ones.

Conclusion and discussions. – In summary, we have
exclusively elucidated that introducing a control parame-
ter α into the traditional diffusive coupling can efficiently
enhance the dynamical robustness of coupled oscillator
networks, which is manifested by improving the tolerance
of the network to aging or deterioration of the individual
oscillators. We have found that the AT point pc rapidly in-
creases to unity with a tiny decrease of α from unity, which
implies that the network becomes more robust to the effect
of elements becoming inactive. In strong contrast to the
cases of the normal form of diffusive coupling with α = 1,
we have revealed that the strong coupling of our scheme
with α < 1 is in favor of the dynamical robustness of
the coupled oscillator networks. A tiny modification of
the ordinary diffusive coupling makes the coupled systems
more dynamically robust, which is valid for both small

and large coupling strengths. The enhancing effect of α
is more pronounced for strong coupling. The AT bound-
ary p = pc in the (K, p) phase diagram sharply shrinks
even for a minute deviation of α from unity, which is at-
tributed to a symmetry breaking of diffusion induced by
the presence of α. The introduction of α in the coupling
provides a very simple but highly efficient technique to re-
cover dynamic activity in networks of diffusively coupled
oscillators, whose oscillatory behavior has been lost due to
inactivation or deterioration of partial elements. In fact,
the global oscillations can be even excited by α in strongly
coupled networks of purely non-oscillatory units.

It is worthwhile to note that the new parameter α (0 ≤
α ≤ 1) is introduced to modify the normal form of dif-
fusive coupling, which multiplies the self-coupling term of
the diffusive interaction. Intuitively, the effect of α in
enhancing the dynamical robustness of networks can be
mathematically explained as the following: Since the self-
coupling term enters into the equations with a negative
sign, decreasing the value of α from unity tends to enlarge
the amplitude of the individual oscillators, and thus favors
the global oscillations of the ensembles. Therefore, when
α is reduced from unity, the coupled network is expected
to have a lesser degree of aging, and the dynamical ro-
bustness is reasonably improved. It should be emphasized
that the AT behaviors of the coupled systems with α = 1
and α < 1 are completely different: AT occurs once the
coupling strength is beyond a certain threshold K > a for
α = 1, whereas AT is observed for only a finite coupling
interval if α < 1. Besides that, for the normal diffusive
coupling with α = 1, the larger the coupling strength K,
the smaller value of the critical inactivation ration pc is;
however, for the case of α < 1, AT is impossible if the
coupling strength K is strong enough. One of the most
intriguing findings is that even a feeble deviation of α from
unity can strongly enhance the dynamical robustness of
diffusively coupled damaged networks.

For the sake of mathematical tractability and numer-
ical simulations, we have employed networks of globally
and diffusively coupled Stuart-Landau oscillators, where
the uncoupled Stuart-Landau oscillator is a normal form
describing dynamical behavior near a Hopf bifurcation. It
is well known that the Hopf bifurcation is established as
one of the most fundamental bifurcations in physics and
biology. Moreover, Hopf systems are prototypes in many
biological contexts. On the other hand, diffusive cou-
pling is a natural type of interaction that has attracted
general interests in a wide range of disciplines. Thus,
emergent behaviors in some realistic circumstances could
be both quantitatively and qualitatively described and
understood by investigating collective dynamics in diffu-
sively coupled Hopf systems. We hope that our proposed
scheme is applicable to other biologically relevant systems,
whose oscillatory activity arises as a result of a Hopf bi-
furcation. In fact, the generality of our results can be
extended to diffusively coupled Stuart-Landau oscillators
with a variety of intricate scenarios, such as considering
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the population heterogeneity, time-delayed coupling, com-
plex networks, etc.

The designed coupling strategy is indeed plausible in
diffusively coupled networks, which has been experimen-
tally implemented in chemical reactions and electronic cir-
cuits quite recently in studying restoration of oscillatory
behavior from amplitude death [33,34]. We believe both
the proposed form of diffusive coupling and the established
effects in the AT phenomenon can be corroborated and ob-
served in many other nonlinear systems, such as chemical
oscillators, excitable and oscillatory units, and circadian
oscillator neurons in the suprachiasmatic nucleus of mam-
mals [36,37]. On the other hand, one should notice that
both the modification of the coupling and conservation of
the intensity of coupling at a large level generally produce
additional costs. A remaining important subject is to ex-
amine whether the proposed coupling strategy is reward-
ing enough for compensating such costs, which constitutes
our future studies. Finally, we expect that our findings are
beneficial to the development of designing a more robust
network for a better functional performance of systems in
biology, ecology, neuroscience, and engineering.
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