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Abstract
Health is one of the most important non-material assets and thus also has an 
enormous influence on material values, since treating and preventing diseases 
is expensive. The number one cause of death worldwide today originates in 
cardiovascular diseases. For these reasons the aim of understanding the functions 
and the interactions of the cardiovascular system is and has been a major research 
topic throughout various disciplines for more than a hundred years. The purpose 
of most of today’s research is to get as much information as possible with the 
lowest possible effort and the least discomfort for the subject or patient, e.g. 
via non-invasive measurements. A family of tools whose importance has been 
growing during the last years is known under the headline of coupling measures. 
The rationale for this kind of analysis is to identify the structure of interactions in 
a system of multiple components. Important information lies for example in the 
coupling direction, the coupling strength, and occurring time lags. In this work, we 
will, after a brief general introduction covering the development of cardiovascular 
time series analysis, introduce, explain and review some of the most important 
coupling measures and classify them according to their origin and capabilities 
in the light of physiological analyses. We will begin with classical correlation 
measures, go via Granger-causality-based tools, entropy-based techniques (e.g. 
momentary information transfer), nonlinear prediction measures (e.g. mutual 
prediction) to symbolic dynamics (e.g. symbolic coupling traces). All these 
methods have contributed important insights into physiological interactions like 
cardiorespiratory coupling, neuro-cardio-coupling and many more. Furthermore, 
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we will cover tools to detect and analyze synchronization and coordination (e.g. 
synchrogram and coordigram). As a last point we will address time dependent 
couplings as identified using a recent approach employing ensembles of time 
series. The scope of this review, as opposed to various other excellent reviews 
like (Hlaváčková-Schindler et al Phys. Rep. 441 1–46, Kramer et al 2004 Phys. 
Rev. E 70 1–10, Lombardi 2000 Circulation 101 8–10, Porta et al 2000 Am. J. 
Physiol.: Heart and Circulatory Physiol. 279 H2558–67, Schelter et  al 2006 
J. Neurosci. Methods 152 210–9), is to give a broader overview over existing 
coupling measures and where to look to find the most appropriate tool for a 
given situation. The review will comprise a test of one representative of the most 
important coupling measure groups using a simple toy model to illustrate some 
essential features of the tools. At the end we will summarise the performance of 
each measure and offer some advice on when to use which method.

Keywords: coupling direction, time series analysis, cardiovascular system

(Some figures may appear in colour only in the online journal)

1.  Introduction

Many people throughout the world suffer from cardiovascular diseases, which are the num-
ber one cause of death worldwide (WHO 2010). Their treatment causes enormous costs for 
the public health care system (Heidenreich et al 2011) and is not always successful. These 
are among the main reasons why the study of the human cardiovascular system plays such a 
big role in the field of medical science, which can look back on a history of over one hundred  
years. The comparatively new branch of cardiovascular physics (Wessel et al 2007a), which 
combines methods from linear and nonlinear data analysis and modelling with medical back-
ground knowledge, has brought forth a lot of new interesting insights and tools to help in under-
standing the interactions of the cardiovascular system and thus predicting diseases, assessing 
risks and providing new clinical parameters (Sands et al 1989, Dougherty and Burr 1992, 
Counihan et al 1993, Hohnloser et al 1994, Malberg et al 2002). The development of nonin-
vasive tools to measure physiological signals, e.g. the ECG and the blood pressure, has led 
to an enormous amount of data recorded under various conditions. The challenge now lies in 
analyzing the data, thus trying to understand the underlying mechanisms and their interactions 
amongst each other, and in the end extracting meaningful parameters usable for diagnostics 
and risk stratification. For example, heart rate (HRV) and blood pressure variability (BPV) 
parameters have helped understanding the nervous control mechanisms of the cardiovascular 
system (Sayers 1973, Lown and Verrier 1976, Akselrod et al 1981, Taskforce 1996). However, 
the many open questions lead to an undampened interest in analyzing the data and develop-
ing new sophisticated methods. Due to the complex structure with its many control loops and 
the strong dependence on internal as well as external conditions, the cardiovascular system 
exhibits a complicated spatio-temporal behaviour. Thus, a lot of fruitful ideas have been con-
tributed by the field of chaos theory and nonlinear dynamics during the last decades (Voss et al 
1995, 1996, Malik 1998, Schäfer et al 1999, Lombardi 2000, Marwan et al 2002, Kiyono et al 
2004, Stein et al 2005, Porta et al 2007, Wessel et al 2007b). In order to gain a deeper insight 
into the actual mechanisms purely descriptive linear or nonlinear parameters are not suffi-
cient, mathematical models are needed. Using these it is possible to describe the individual 
components and their interactions under various conditions, for example during diseases, and 
finally to draw conclusions about the reality (Cohen and Taylor 2002). Usually, there are two 
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approaches. The first one uses differential (Grodins 1959, Cavalcanti and Belardinelli 1996, 
Ottesen 1997, Olufsen et al 2000, Kuusela 2004, Kotani et al 2005, Zebrowski et al 2007) or 
difference equations (DeBoer et al 1987, Rosenblum and Kurths 1995) based on principles  
of physics, mathematics and, in this case, incorporating knowledge of physiology about  
couplings between e.g. heart rate, blood pressure, and respiration. The second one employs 
tools from time series analysis and system identification to model the measured data via autore-
gressive (AR) models and thus infer mechanisms independent of a priori knowledge (Pagani 
et al 1986, Baselli et al 1994, Chon et al 1997, Matsukawa and Wada 1997, Porta et al 2000).  
A problem with this approach lies in the potentially large number of possible parameters, 
which might interfere with a physiological interpretation. Also, as most natural processes, the 
cardiovascular system exhibits highly nonlinear behaviour, impairing the use of linear methods 
and models without further effort. For this reason, several extensions for nonlinear AR-models 
to describe HRV and BPV have been proposed in the last years, e.g. bilinear (Armoundas et al 
2002), functional coefficient (Belozeroff et al 2002), nonlinear additive AR-models without 
(NAAR) (Wessel et al 2006) and with external input (NAARX) (Riedl et al 2008, Riedl 2009), 
and AR-models with conditional heteroscedasticity (Kantelhardt et al 2003).

For the models to help us in understanding the underlying mechanisms, we need to iden-
tify the interactions between the single variables using no or only little a priori knowledge.  
Therefore, a plethora of coupling measures to allow for identifying a complex system’s  
coupling structure, including coupling strength, direction, and occurring time lags, has been 
developed over the years.

The analysis of effects from coupling in and between systems is important in data-driven 
investigations as practised in many scientific fields. It allows deeper insights into the mech
anisms of interaction emerging among individual smaller subsystems when forming complex 
systems as in the human circulatory system or the climate system. In the last century and 
especially during the last 20 years the development and application of coupling measures 
became more and more important. The correct application of those, requires at least a basic  
understanding of the concept of causality. Since there is no binding definition of the term 
causality, two examples roughly based on Russell (1912) are given here.

An event A is said to be causal for an event B if,

	 •	when A happens, B also takes place (necessary criterion),
	 •	A happens chronologically before B,
	 •	and, if A does not happen, B cannot occur either (sufficient criterion).

Based on probability theory also the next definition is possible. A causes B, if

	 •	the probability for A to occur is not zero,
	 •	A happens chronologically before B,
	 •	and the probability for B to happen, when A has occurred before, is larger than the prob-

ability of B taking place on its own.

Due to the relativity theory, the second point in both definitions implies also a spatial restric-
tion, which can be neglected for a lot of applications of coupling analyses, however. The utili-
sation of these definitions for time series analysis is not readily feasible. Often, some measure 
of a priori knowledge is still needed. One attempt of a causality definition for time series 
analysis was given by Granger (1969). A process X Granger-causes a process Y, if

	 •	X happens chronologically before Y
	 •	and the error when predicting the future of Y is reduced when taking information from X 

into account.
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A lot of coupling measures are based on this definition. However, there are also other mea-
sures which employ another definition. A process X influences a process Y, if

	 •	X happens chronologically before Y
	 •	and the processes show similar behaviour.

Of course, these definitions are strongly attenuated versions of the causality definitions 
above. Therefore, one has to keep in mind, that usually a found coupling in time series can 
imply a causal connection, but cannot be taken as compelling proof. At least not, if not all 
variables of a given complex system are known. What is analyzed in most cases, is causality 
in the sense of Granger causality (Granger 1969), i.e. when the prediction of one system is 
significantly improved by using knowledge of a second system.

While often classic methods like correlation and coherence are used to define connections 
between subsystems (compare e.g. Nollo et al (2005) and Romero-Garcia et al (2014) for cortex 
networks and the cardiovascular system), today, there are coupling measures originating in dif-
ferent fields comprising Granger causality, methods based on information theory, phase space 
measures, symbolic dynamics, and synchronisation and coordination, which are able to pro-
vide more information about coupling strength and direction. There are several works compar-
ing the different measures and testing their applicability in different situations stemming from  
neurophysiological and cardiovascular systems (Lungarella et al 2007a, Lehnertz 2011, Porta 
and Faes 2013, Schulz et al 2013a). Several models of the cardiovascular system have been 
proposed based on the results of combining practical and theoretical a priori knowledge with 
insights obtained via coupling analyses (DeBoer et al 1987, Porta et al 2000, 2002, Stefanovska 
et al 2001a, 2001b, Sheth et al 2004). These models usually employ coupled oscillator, biological, 
and data-driven approaches. In the next section different coupling analysis tools from various 
fields will introduced to give a rough overview about this vast area of data analysis.

2.  Methods for coupling analyses

Today there is an abundance of coupling measures stemming from different fields to be found. 
In Lungarella et al (2007a), Porta and Faes (2013) and Schulz et al (2013a) very good reviews 
of existing tools and their applications to physiological time series can be found. However, 
the aim of this review is to give a broader scope about the different approaches in the field of 
coupling analyses without going into too much details. A stronger focus will be given to recent 
developments in the field of time variant coupling analyses based on an example originat-
ing in the area of symbolic dynamics. Table 1 gives an overview the most common coupling 
measures, their extensions, and their fields of application. The columns labelled ‘nonlinear’ 
and ‘multivariate’ here mean that the tools can be used to also detect nonlinear couplings 
and are able to incorporate the knowledge of multvariate data, respectively. We arrange the 
coupling measures regarded into six different groups according to their origin and purpose 
and will give further information in the next sections. The groups are classical measures, 
Granger-causality-based methods, entropy-based tools, methods based on nonlinear predic-
tion, approaches stemming from the field of symbolic dynamics, and measures from the field 
of synchronisation and coordination analyses. From each group an example is chosen and 
explained and discussed in more detail.

2.1.  Classical measures

The classical measures are usually based on a correlation measure (Nollo et al 2005, Romero-
Garcia et al 2014) and display several drawbacks when compared with other coupling analysis 
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Table 1.  Overview of existing coupling measures and their applications.

Group Subgroup Nonlinear Multivariate References Applications

Classical 
measures
Correlation No No Romero-Garcia  

et al (2014)
Cortex networks

Cross- 
spectral 
coherence

No No Nollo et al  
(2005)

ECG, blood 
pressure under 
head-up-tilt

Granger 
causality
Granger 
causality

Classical, 
conditional

No Yes Geweke (1984), 
Granger (1969)

Financial time 
series

Radial 
basis 
functions

Yes No Ancona et al  
(2004)

Heart rate,  
breath rate of 
sleeping subjects

Conditional  
GC  +   
embedding

Yes Yes Chen et al (2004)

NAARX Yes Yes Faes et al (2008a), 
Riedl et al (2008), 
(2010), Riedl  
(2009)

RR, SAP 
on tilt table; 
cardiovascular 
system; women 
suffering  
from PE

Partial GC No Yes Guo et al (2008) Brain activity in 
sheep

Polynomial 
embedding

Yes Yes Ishiguro et al  
(2008a)

Gene regulatory 
networks

Kernel-
based

Yes Yes Marinazzo et al 
(2011), (2008a)  
and (2008b)

EEG fmri data; 
gene regulatory 
networks

Long-term 
causality

No Yes Smirnov and  
Mokhov (2009)

Climate series

Nonlinear 
extensions

Yes Yes Ishiguro et al 
(2008b),  
Hlaváčková-
Schindler et al 
(2007)

Partial directed 
coherence

No Yes Baccalá and 
Sameshima 
(2001), Schelter 
et al (2006b), 
Winterhalder  
et al (2006),  
(2007)

EEG of sleeping 
rats; EEG; emg

(Continued )
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Evolution map 
approach

Yes No Bezruchko et al 
(2003), Cimponeriu 
et al (2003), Mrowka 
et al (2003), Musizza 
et al (2007), 
Rosenblum et al 
(2002), Rosenblum 
and Pikovsky 
(2001), Smirnov 
and Andrzejak 
(2005), Smirnov and 
Bezruchko  
(2003)

Chaotic oscillators; 
cardiorespiratory 
data; EEG, meg 
during paced finger 
tapping; EEG data 
from rats under 
anaesthesia

Entropy
Mutual 
information
Partial mutual 
information

Yes Yes Frenzel and Pompe 
(2007)

Transfer entropy Yes Yes Schreiber (2000) Heart rate, breath 
rate of sleeping 
subjects

Wavelet  
extension

Yes Yes Lungarella et al 
(2007b)

Heart rate, breath 
rate of sleeping 
subjects

Information 
transfer

Yes Yes Verdes (2005) Cardiorespiratory 
data

Conditional 
mutual 
information

Yes Yes Musizza et al 
(2007), Paluš et al 
(2001a), (2001b), 
(2004), Paluš and 
Stefanovska (2003), 
Paluš and Vejmelka 
(2007), Paluš (1996), 
Paluš (2007), 
Quinn et al (2011), 
Vejmelka and Paluš 
(2008), Vejmelka 
(2008)

EEG; 
cardiorespiratory 
signals; mri; EEG 
data from rats 
under anaesthesia; 
neural spike trains

Non- 
uniform 
embedding

Yes Yes Faes et al (2011), 
(2012b)

RR, SAP, 
respiration on tilt 
table; EEG

Causation  
entropy

Yes Yes Sun and Bollt (2014), 
Sun et al (2014a) and 
(2014b)

Cellular dynamics

Momentary 
information 
transfer

Yes Yes Pompe and Runge 
(2011), Runge et al 
(2012a), (2012b) and 
(2014)

Climate 
time series, 
cardiovascular data

Group Subgroup Nonlinear Multivariate References Applications

Table 1.  (Continued )

(Continued )
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(Continued )

Nonlinear prediction
Mutual 
prediction

Yes No Le Van Quyen et al 
(1999), Nollo et al 
(2009), Schiff et al 
(1996), Terry and 
Breakspear (2003)

Motoneuron data; 
EEG of epilepsy 
patients; ECG, 
blood pressure 
under head-up-tilt; 
EEG

Interdependence 
measures

S, H, M, L Yes No Andrzejak and Kreuz 
(2011), Arnhold et al 
(1999), Chicharro 
and Andrzejak 
(2009), Faes et al 
(2008b), Quian 
Quiroga et al (2000), 
(2002), Schmitz 
(2000), Smirnov and 
Andrzejak (2005)

EEG measurements 
from implanted 
electrodes in 
epilepsy patients; 
heart rate, blood 
pressure; EEG

Mean conditional 
recurrence

Yes No Romano et al (2007)

Inter-system 
recurrence 
networks

Yes Yes Feldhoff et al (2012) Palaeoclimate 
series

Recurrence 
based

Yes No Hirata and Aihara 
(2010), Marwan et al 
(2013), Ramírez 
Ávila et al (2013), 
Zou et al (2011)

Wind 
measurements; 
cardiorespiratory 
data

Symbolic 
dynamics
Symbolic 
coupling traces

Yes No Suhrbier et al (2010), 
Wessel et al (2009)

Heart rate, blood 
pressure (Normal 
and during sleep)

Symbolic 
transfer entropy

Yes Yes Staniek and Lehnertz 
(2008), Stausberg 
and Lehnertz (2009)

EEG of epilepsy 
patients

Joint symbolic 
dynamics

Yes No Schulz et al (2013b) ECG, blood 
pressure

Transient 
interactions
Symbolic 
coupling traces

Yes No Müller et al (2013), 
Müller et al (2014)

Orthostatic test, 
arousals during 
sleep

Interdependence 
measure

H Yes No Andrzejak et al 
(2006)

Evolution map 
approach

Yes No Wagner et al (2010) Event-related 
potentials

Symbolic 
transfer entropy

Yes Yes Martini et al (2011) Event-related 
potentials

Group Subgroup Nonlinear Multivariate References Applications

Table 1.  (Continued )
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tools. However, they are usually quite simple to use and do not require too big amounts of 
data. One of the simplest bivariate coupling measures is based on the so-called Pearson cor-
relation ρXY (Galton 1886, Pearson 1895), which was developed to quantify the magnitude of 
linear interrelation between two time series x(t) and y(t). It is given by

( ( ) ( ))
( ( )) ( ( ))

ρ =
x t y t

x t y t

Cov ,

Var Var
,XY

where X and Y are the two processes regarded, Cov() and Var() describe the covariance and the 
variance, respectively. The value of ρXY lies between ρ = 1XY , total positive correlation, and 
ρ = −1XY , total negative correlation, while ρ = 0XY  means no correlation. To infer informa-
tion about possible causal structures, a time lag τ between the time series can be introduced, 
resulting in the so-called cross-correlation

( ) ( ( ) ( ))
( ( )) ( ( ))

ρ τ
τ

=
+x t y t

x t y t

Cov ,

Var Var
.XY

Depending on for which choice of τ the value ( )ρ τXY  is highest, one can draw conclu-
sions about the predominant coupling structure (e.g. τ< 0 means Y drives X and vice versa). 
Technically, the results give us only some information about temporal connections between 
the time series regarded, so inferences about causal connections have to treated cautiously.

2.2.  Granger-causality-based tools

Granger causality is probably one of the best known and most often applied methods. The 
classical Granger causality was introduced in Granger (1969). It is based on estimating 
AR-models for the data given and checking whether the errors produced by the modelling 
process are significantly reduced when incorporating information from a second variable. 
Over the years, several extensions for multivariate data and nonlinear applications have been 
developed.

Synchronisation
Mrowka et al (2000), 
Pikovsky et al (2001), 
Rosenblum et al  
(1998)

Cardiorespiratory 
data

Synchrogram Rosenblum et al 
(2001), Schäfer et al 
(1999), Schäfer et al 
(1998)

Cardiorespiratory 
data, EOG, EMG

Partial phase synchronisation Schelter et al (2006a)
Coordination

Raschke and 
Hildebrandt (1982), 
Raschke (1986),  
(1987)

Cardiorespiratory 
data

Coordigram Müller et al (2014), 
Riedl et al (2014)

Cardiorespiratory 
data, apnoea

Group Subgroup Nonlinear Multivariate References Applications

Table 1.  (Continued )

Topical ReviewPhysiol. Meas. 37 (2016) R46



R54

2.2.1.  Linear methods.  The traditional Granger causality is today a method of choice for a 
first assessment of couplings in cardiovascular and cardiorespiratory data and has been used 
as the keystone for several modelling approaches. In the scope of this review we will take a 
closer look at the conditional Granger causality for set of systems Xi and their representing 
time series xi given by the following equations,

( ) ( ) ( ) ( )( ) ( ) ( )∑ ∑ τ τ= − +
τ= ≠ =

Ω

εx t a x t t ,kj
r

i i k

n

ij
r

i kj
r

1; 0;1

var

( ) ( ) ( ) ( )( ) ( ) ( )∑ ∑ τ τ= − +
τ= =

Ω

εx t a x t t .j
u

i

n

ij
u

i j
u

1 0;1

var

The superscript indices (r) and (u) denote the restricted (using only part of the available infor-
mation) and the unrestricted (using all available information) models. Here, the model itself 
is a multivariate AR-model defined by the parameters a, the past of the time series x and the 
error term ε. The number of regarded variables is given by nvar, the model order by Ω, and τ 
represents the time lags. These equations let us determine the influence from Xk to Xj condi-
tioned on { { }}∉X i j k; ,i  via the term

→
( )

( ){ { }}
( )

( )

( )

ε

ε
=| ∉F log

var

var
,X X X i j k

c kj
r

j
u; ,k j i

where ()var  denotes the variance of the error terms. Based on this idea several linear tools to 
assess the coupling structures in different time series have been developed. These range from 
applying versions of the classical approach to applications in the frequency domain (see Faes 
et al (2012a), Geweke (1982) and Winterhalder et al (2005) for reviews in this field). The time 
domain approach e.g. has been applied to analyze the baroreflex during anaesthesia and the 
influence of the respiration (Bassani et al 2012, Porta et al 2012a). To also identify indirect 
couplings, there are several extensions for multivariate data (Granger 1969, Geweke 1984, 
Guo et al 2008). Another way to solve this problem is to use a factorisation approach (Porta 
et al 2012b). The spectral version of Granger causality is also known as partial directed coher-
ence and has among others been applied on EEG (Baccalá and Sameshima 2001, Schelter et al 
2006b, Winterhalder et al 2006, 2007) as well as cardiorespiratory data (Faes and Nollo 2010, 
Milde et al 2011).

2.2.2.  Nonlinear methods.  Several extensions of the concept of Granger causality aim at 
making the framework applicable to nonlinear data. This includes the use of NAARX-models 

Table 2.  This scheme shows how to transform time series x(t) and y(t) into word 
sequences wx(t) and wy(t) with l  =  3 via the symbol series sx(t) and sy(t), respectively.

x(t)  =   … 8 6 9 11 12 8 13 5 …

y(t)  =   … 7 2 5 3 7 11 10 6 …
⇓

sx(t)  =   … 0 1 1 1 0 1 0 …
sy(t)  =   … 0 1 0 1 1 0 0 …

⇓
wx(t)  =   … 011 111 110 101 010 …
wy(t)  =   … 010 101 011 110 100 …
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(Faes et al 2008a, Riedl et al 2008, 2010, Riedl 2009), different embedding techniques (Chen 
et al 2004, Ishiguro et al 2008b), the use of radial basis functions (Ancona et al 2004), and 
the application of kernel based methods (Marinazzo et al 2011, 2008a, 2008b). A comparison 
of different nonlinear extensions can be found in Ishiguro et  al (2008a) and Hlaváčková- 
Schindler et  al (2007). The applications range from financial data over cardiovascular,  
neurophysiological, and gene regulatory network data to climate time series. To assess also 
long-term couplings for example in climate data, in Smirnov and Mokhov (2009) an appropriate 
approach has been proposed.

Another method is given by the so-called evolution map approach (Rosenblum and 
Pikovsky 2001) which has been extensively used on theoretic models and EEG as well as 
cardiorespiratory data (Rosenblum et al 2002, Bezruchko et al 2003, Cimponeriu et al 2003, 
Mrowka et al 2003, Smirnov and Bezruchko 2003, Smirnov and Andrzejak 2005, Musizza 
et al 2007). It is based on modelling the time development of the phases of two time series 
using finite Fourier series.

2.3.  Entropy-based

The methods stemming from the field of information theory are usually based on a form of 
mutual information (Shannon 1948). The first subgroup is the transfer entropy (Schreiber 2000) 
with several extensions (Verdes 2005, Lungarella et al 2007b, Faes et al 2011). It has been 
mostly applied to cardiovascular data. The second measure, the conditional mutual information 
(Paluš 1996), bears some similarities with the transfer entropy and is in some cases equivalent. 
It has been widely applied to neurophysiological and cardiovascular data (Paluš et al 2001a, 
Paluš et al 2004, Paluš and Stefanovska 2003, Frenzel and Pompe 2007, Musizza et al 2007, 
Paluš and Vejmelka 2007, Paluš 2007, Vejmelka 2008, Faes et al 2011, Quinn et al 2011, Sun 
and Bollt 2014). This approach can also be used on phase time series. An overview about 
several information theoretic methods can be found in Hlaváčková-Schindler et  al (2007). 
Recently, a new approach, the so-called momentary information transfer, has been introduced. 
It specialises on avoiding spurious couplings by conditioning on certain subgroups of the data 
points and on how to identify these. It has been successfully applied to climate and cardiovas-
cular data (Pompe and Runge 2011, Runge et al 2012a, 2012b, Runge et al 2014).

Here, we will regard the coarse-grained transinformation rate (CTIR) from Paluš et  al 
(2001a) in more detail. It is based on conditional mutual information and is computed by

→ ( ( ) ( ) ( ))∑τ
= ∆ |

τ

τ

τ
=

i I y t x t x t
1

, ,Y X
max 1

max

where ( ) ( ) ( )τ∆ = + −τx t x t x t . The parameter τmax is chosen in a way that for τ τ> max the 
mutual information ( ( ) ( ))τ+ =I x t x t, 0 holds approximately true. The advantage of this 
method is, that influences from the past of a given time series on itself are neglected by con-
ditioning on these. Thus the coarse-grained information rate is less susceptible to indirect 
coupling effects. Because of the necessity to estimate a probability distribution in order to 
compute the mutual information, usually longer time series are necessary to obtain meaning-
ful results.

2.4.  Nonlinear prediction measures

The nonlinear prediction methods are usually based on mutual prediction using a nearest 
neighbours approach and comparing prediction errors when incorporating other variables 
(Schiff et al 1996, Le Van Quyen et al 1999, Quian Quiroga et al 2000). Thus, they are also 
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based on identifying causalities in the sense of Granger. There are today several refinements 
of the original measures using e.g. rank statistics, and they have been successfully applied 
to different nonlinear model systems and neurophysiological as well as cardiovascular data 
(Arnhold et al 1999, Le Van Quyen et al 1999, Schmitz 2000, Quian Quiroga et al 2002, 
Terry and Breakspear 2003, Smirnov and Andrzejak 2005, Faes et al 2008b, Chicharro and 
Andrzejak 2009, Nollo et al 2009, Andrzejak and Kreuz 2011). A second class in this field 
consists of recurrence based measures with applications to climate series and the cardiovas-
cular system (Romano et al 2007, Zou et al 2011, Feldhoff et al 2012, Marwan et al 2013, 
Ramírez Ávila et al 2013). Among these measures there is also an approach to identify hidden 
variables to avoid spurious connections (Hirata and Aihara 2010).

2.5.  Symbolic dynamics

Among other features, their robustness against noise predestines symbolic approaches for a cou-
pling analysis. They are based on the symbolification of the data using different approaches. The 
coupling analysis part is usually done by applying another known coupling measure algorithm 
on the obtained symbol sequences. By choosing the symbol alphabet, word length, and time 
lags between consecutive ‘letter’ of a word, one can easily adapt the measures to the needs at 
hand (e.g. short-term or long-term coupling). Some of the most successful measures are the sym-
bolic transfer entropy (Staniek and Lehnertz 2008, 2009), joint symbolic dynamics (Schulz et al 

Figure 1.  This figure shows how to build the coordigram from two given time series, 
based on an analysis of vegetative arousals during sleep (beat-to-beat intervals) and 
the corresponding respiratory signal (Müller et al 2014). First the events are marked in 
each series (A) and the respective time differences are computed (B). Using a Gaussian 
kernel function, the point distribution is estimated (C) and the dentisty is colourcoded 
for each time point (D).
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2013b), and the symbolic coupling traces (Wessel et al 2009, Suhrbier et al 2010), which have all 
been applied to neurophysiological and cardiovascular data and have delivered promising results.

The symbolic coupling traces (SCT) were introduced by Wessel et al (2009) and are an 
extension of a bivariate joint symbolic dynamics method (Baumert et al 2002) which was 
developed to characterise and interpret the complex and highly nonlinear interactions between 
heart rate and systolic blood pressure. For both methods a dynamical system represented by 
two one-dimensional time series x(t) and y(t) is considered, which are then transformed into 
coarse grained symbolic time series sx(t) and sy(t) according to

( ) ( ) ⩽ ( )
( ) ( )

⎧
⎨
⎩

ϑ
ϑ

=
+

> +
s t

z t z t
z t z t

1,
0, .z

The time lag ϑ is usually set to ϑ = 1 but can also be chosen as another number of time 
steps in order to accommodate a priori knowledge about the time scales on which the cou-
plings act. These symbol series in turn are used to construct series of words wz(t) where each 
word contains l successive symbols (see table 2). Because of the binary alphabet in this case, 
this gives d  =  2l different possibilities of words. Larger values of ϑ work like an averaging 
process across the area defined by ϑ and l.

From the word sequences generated in this way for time series x(t) and y(t), a bivariate 
word distribution can now be estimated as

( ( ) ( ) )Π = = =P w t W w t W, .ij x i y j

Here, Wi and Wj denote certain words out of the whole vocabulary of d  =  2l different words and Πij 
is the joint probability of words Wi and Wj appearing at the same time t in the word series wx and wy, 
estimated over all values of t. To later be able to determine the coupling direction and the occurring 
lags, a time lag τ between the two word sequences wx and wy is introduced, resulting in the matrix

( ( )) ( ( ) ( ) )τ τΠ = = + =P w t W w t W, .ij x i y j

One way to characterise this matrix could be to regard the joint Shannon entropy (Shannon 
1948) for each lag τ. However, studies in Wessel et al (2009) showed, that using Shannon 
entropy does not clearly reveal the correct time lags. Instead, the results improve a lot, when 
regarding only the difference between the occurrences of symmetric (e.g. ( ) ( )τ= +w t w tx y )  
and diametric words (e.g. wx(t)  =  ‘1 1 1’ and ( )τ+w ty   =  ‘0 0 0’). The symmetric word  
frequency is represented by

( ) ( ( )) ( ( ))∑τ τ τ= Π = Π
=

T Tr
i j

ij� (1)

and the diametric word frequency by

¯ ( ) ( ( ))∑τ τ= Π
= … = + −

T ,
i d j d i

ij
1, , ; 1

� (2)

where ( ( ))τΠTr  is the trace of the matrix ( )τΠ  and d  =  2l is the number of the possible differ-
ent words. The difference ¯∆ = −T T T  has proved to be an effective parameter to identify the 
coupling structure of bivariate systems. To assess the significance of the results thus obtained, 
an empiric test based on a simulation with bivariate white noise for different signal lengths has 
been developed (Suhrbier et al 2010). For the significance level α = 0.01 the critical values 
of ∆T  are given as

( )∆ =± ⋅ −T N N2.7005 ,crit
0.5179
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where N is the number of data points regarded. Now, the coupling direction can be determined 
via the occurring time lags τ where ∆T  is significant. The coupling strength is related to ∆T  
and ( )∆Tsgn  tells us whether symmetric or diametric behaviour is dominant. Further insight 
into the systems in question might be gained by looking at the results of the SCT when using 
the absolute value of the time series as input.

2.6.  Synchronization and coordination tools

Synchronisation (Pikovsky et al 2001) is an effect which usually renders the detection of cou-
pling directions impossible, since in a completely synchronised state two systems cannot be dis-
tinguished anymore. A second tool, the synchrogram (Schäfer et al 1998), allows for a graphical 
interpretation of synchronised states in bivariate systems. It has been mainly used on cardiorespira-
tory data (Rosenblum et al 1998, 2001, Schäfer et al 1999, Schäfer et al 1998, Mrowka et al 2000, 
Schelter et al 2006a). Since this measure is used to detect phase synchronisation, it is not a cou-
pling measure per se, but still has delivered interesting insights. However, another method based 
on a similar approach, namely the coordigram (Riedl et al 2014), can be used to infer coupling 
directions. As opposed to the synchronisation, which describes a phase-based relationship between 
systems, the coordination describes a time-based connection (e.g. between the time points of the 
onsets of respiratory cycles and the heart beats) and has been shown to play an important role for 
example in cardiorespiratory mechanisms (Raschke and Hildebrandt 1982, Raschke 1986, 1987).

The coordigram is based on recurring events in the two signals regarded, for example the 
onsets of inhalation in respiratory signals and the R-peaks of the ECG. To build it (compare also 
figure 1) the time points of these events are denoted by tz1j (the reference cycle, e.g. the jth respira-
tory onset) and tz2k (the second cycle, e.g. the time index of the kth R-peak during the respiratory 
cycles directly before and after tz1j). To build the coordigram the time differences ∆t between 

Figure 2.  This figure  illustrates the ensemble approach for the analysis of transient 
interactions. The ensemble here consists of five members synchronised at time point 
T0. Instead of regarding the time average for one series (red rectangle), the measures 
can be evaluated at specific time points (e.g. t1, t2, and t3) via ensemble averaging (blue 
rectangles). The example time series here are again beat-to-beat intervals.
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these points plotted above each other for every tz1j. Horizontal lines in the resulting diagram depict 
coordination. Lines in the negative part (∆ <t 0) show an influence from tz2k to tz1j and vice versa 
for the positive part (∆ >t 0). The lines can be quantified using a windowed evaluation based on a 
Gaussian kernel. The point distribution for the ith onset of the first cycle is given by

( )
( )⎛

⎝
⎜

⎞
⎠
⎟∑ ∑

π
∆ =

+

∆ − −

= −

+

=

f t
w

K
t t t

b

2

2 1
,i

j i w

i w

k

N
z k z j

1

2 1
j

Figure 4.  The figure  shows the significant results of the ESCT for the analysis of 
transient events (Müller et  al 2013) for the coupling structure between beat-to-beat 
intervals and systolic and diastolic blood pressure during an orthostatic test (Müller 
et al 2013). (a) BBI—SBP. (b) BBI—DBP. (c) SBP—DBP.
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Figure 3.  The figure shows how to read the results of the ESCT method. For any given 
time point the result can be displayed as for the classic SCT, positive values depicting 
symmetric coupling, negative values diametric coupling. The absolute values represent the 
coupling strength in some way. In the ESCT the sign and the absolute values of the results 
are colour coded (red—symmetric, blue—diametric). The coupling direction is determined 
via the occurring time lags τ. The time series for this example are beat-to-beat intervals and 
systolic blood pressure for vegetative arousals during sleep (Müller et al 2014).
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where

( )
⎛
⎝
⎜

⎞
⎠
⎟

π
= −K x

x1

2
exp

2
.

2

K(x) is the Gaussian kernel, 2w  +  1 the window size, Nj the number of onsets of the second 
cycle regarded around tz1j and b is the band width. Using a colour coding to depict the height 
of the distribution function, the lines can be emphasised visually. The window size is chosen 
as a compromise between a valid estimation of the distribution function and the fast changes 
in the regarded signals. For the analysis of cardiorespiratory coordination (Müller et al 2014, 
Riedl et al 2014) w  =  1 was chosen, while in the analysis of vegetative arousals (Müller et al 
2014) it was set to w  =  10 due to a lower signal-to-noise ratio. The band width was in both 
cases chosen as b  =  0.2s as double the sampling time of the respiratory signal.

2.7. Transient interactions

The detection of time-variant coupling structures is an important research issue, since many  
systems from fields encompassing physics, physiology, neuroscience, chemistry, biology,  
climate research, economy, etc display dynamic changes in the system structure. These changes 
might be based on internal or external disturbances, like for example shocks or crises in econ-
omy, large-scale events (e.g. El Niño or volcanic events) in climate research (Malik et  al 
2012, Radebach et al 2013), event-related potentials in neuroscience (Callaway et al 1978), 
and sleep apnoea in physiology (Leung and Bradley 2001), or on inherent transitions between 
different regimes, like changes of sleep stages (Iber et al 2007), or seasons in the climate. 
Often, the time periods before and after such a transition are analyzed in order to study differ-
ences in dynamic behaviour, coupling structure, etc, but the transition itself is regarded as an 
undesirable complication. This is because it usually happens on a much shorter time scale than 
adequately resolved by the data on hand and generally destroys any stationarity assumptions. 
Thus, also a windowed analysis approach would not work.

In order to overcome this problem, methods based on multiple realisations of a given pro-
cess have been developed to e.g. detect transient chaos (Jánosi and Tél 1994, Dhamala et al 
2001), to denoise transient signals (Effern et al 2000, Stausberg and Lehnertz 2009), and also 
to characterise couplings (Kramer et al 2004, Andrzejak et al 2006, Ishiguro et al 2008b, 
Komalapriya et al 2008, Leski and Wójcik 2008, Wagner et al 2010, Martini et al 2011). The 
idea bears resemblance to the ergodic theorem of thermodynamics (Birkhoff 1931) where a 

Figure 5.  The figure shows the significant results of the lagged cross-correlation for the 
coupling structure of the coupled logistic maps depending from left to right on coupling 
strength, length of the data series, and strength of noise. The red colour depicts coupling 
from X to Y and blue vice versa. (a) Coupling strength. (b) Length of data series. (c) Noise.
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time average of one particle can be exchanged for a space average of an ensemble of particles 
at one time point. So, instead of estimating a given coupling measure over a time period, 
the averaging process is conducted across an ensemble of multiple realisations of the time 
series in question (see figure 2)). The ensemble could either be built by repeatedly perform-
ing a measurement of the same experiment on possibly several subjects, like for example an 
orthostatic test (Barantke et al 2007, 2008) (head-up tilt or standing up after lying down for 
an elongated period of time), or by using inherent repeating events in a single time series, like 
several apnoea (cessation of airflow) during sleep (Leung and Bradley 2001, Gapelyuk et al 
2011, Penzel et al 2012, Camargo et al 2014, Riedl et al 2014). This approach is applicable to 
many existing coupling measures, of course keeping in mind the requirements and limitations 
of the respective methods.

After it has been built, it is important to time rectify the ensemble. This can usually be done 
by aligning the individual ensemble members by means of a synchronisation point T0, e.g. the 
beginning of the event regarded. Corrections can be done by slightly shifting the ensemble 
measures against each other and looking for the shifting parameter where a maximum correla-
tion can be achieved. Next, the respective coupling measures can be computed by substituting 
the time average by the ensemble average. The time resolution to be expected with the ensem-
ble extension depends on the coupling measures used, since the estimations often are done 
over a short range of time points.

As an example we regard here the ensemble symbolic coupling traces (ESCT) (Müller 
et al 2013, Müller et al 2014) (see figure 3). Since the ensemble approach for the SCT takes 
only hold after the word sequences ( )( )w tx

m  and ( )( )w ty
m  have been built for the whole ensemble 

(index m), we only need to regard the following steps. When estimating the probability dis-
tribution of the word occurrences, the histogram is now computed over the whole ensemble 
resulting in the time dependent matrix

( ( )) ( ( ) ( ) )( ) ( ) ( )τ τΠ = = + =t P w t W w t W, , .m
ij x

m
i y

m
j

The index m here stands for averaging across the ensemble and t represents a fixed point in 
time. In the end, the symmetric and diametric word frequencies are again given by

∑τ τ τ= Π = Π
=

T t t t, Tr , ,m m

i j

m
ij( ) ( )( ) ( ) ( )( ) ( ) ( )

Figure 6.  The figure shows the significant results of the conditional Granger causality 
(Geweke 1984) for the coupling structure of the coupled logistic maps depending from 
left to right on coupling strength, length of the data series, and strength of noise. The  
red colour depicts coupling from X to Y and blue vice versa. (a) Coupling strength.  
(b) Length of data series. (c) Noise.
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and

∑τ τ= Π
= … = + −

T t t, , .m

i d j d i

m
ij

1, , ; 1
( )¯ ( ) ( )( ) ( )

Via ( ) ( ) ¯ ( )( ) ( ) ( )τ τ τ∆ = −T t T t T t, , ,m m m  the coupling structure can be determined as before. 
In this case the same empirical approach to assess the significance of the results should hold 
true. The choice of the word length determines the expected time resolution of this method.

In figure 4 the time-dependent coupling structure between beat-to-beat intervals and sys-
tolic and diastolic blood pressure during an orthostatic test as detected by the ESCT can be 
seen. It is clearly visible how the blood pressure affects the heart rate during the test and how 
the stationary structure is broken up.

2.8.  Significance testing

For some coupling measures their own significance tests have been developed. There is for 
example the Granger–Sargent test (Hlaváčková-Schindler et al 2007), which is based on an 
F-test, for Granger causality or an empirical test developed for the symbolic coupling traces 
(Suhrbier et al 2010). However, the most often applied methods to test the significance of 
the results are surrogate methods. What kind of surrogate is used, depends on the type an 
amount of data available. For an overview about surrogate methods for coupling analyses see 
Vejmelka and Paluš (2008). Unfortunately, these methods might not be applicable in the case 
of the ensemble approach for transient interactions. Due to the definition of the ensembles, 
surrogates across these will all display the same behaviour during the event and would clas-
sify all results as not significant. In these cases, specially for the coupling measures developed 
significance tests or empirical tests should be applied.

3.  Results and discussion

To test some of the measures mentioned above, we will use the well-known logistic map as a 
model system. A system of two coupled logistic maps is for example given by

( ) ( ) ( ) ( ( )) ( )= − ⋅ ⋅ − ⋅ − − + ⋅ −x t c x t x t c y t1 4 1 1 1 3 ,

( ) ( ) ( ( ))= ⋅ − ⋅ − −y t y t y t4 1 1 1 .

For this choice of parameters the system displays chaotic behaviour. The coupling is realised 
via the parameter c. We test the performance of the tools depending on different values of c, 

Figure 7.  The figure shows the significant results of the CTIR (Paluš et al 2001a) for the 
coupling structure of the coupled logistic maps depending from left to right on coupling 
strength, length of the data series, and strength of noise. The red colour depicts coupling 
from X to Y and blue vice versa. (a) Coupling strength. (b) Length of data series. (c) Noise.
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on the length of the data series, and on the strength of additive noise. If not otherwise stated 
the coupling strength is chosen as c  =  0.5, the length of the time series as N  =  1000, and the 
variance of the noise is set to zero. For a better visualisation the results of each coupling mea-
sure are normalised in a way, that they lie between 0 and 1, although the measures themselves 
might actually show values outside this range. Significance tests with p  =  0.1 have been per-
formed for each measure using multiple realisations of the model data. Surrogates have been 
formed by using permutations of the realisation indices of the data and pairing the time series 
of one variable with an original index with another time series of the second variable with a 
permutated index. The results are given in figures 5–8.

Since in this case the system is nonlinear but the coupling itself linear, all regarded cou-
pling measures perform reasonably well, i.e. are able to identify the correct coupling structure 
for certain domains of coupling strengths, noise levels, and amounts of data. The lagged cross-
correlation (figure 5) needs a comparatively high coupling strength (c  =  0.5) and a rather high 
amount of data (≈300 data points) to give a clearly identifiable outcome. It is quite robust 

Figure 9.  The figure shows the significant (p  =  0.1) results of the CTIR method (Paluš 
et  al 2001a), the conditional Granger causality (Geweke 1984), and the symbolic 
coupling traces (Wessel et  al 2009) for the coupling structure between beat-to-beat 
intervals and systolic and diastolic blood pressure during a measurement at rest in a 
supine position just before an orthostatic test (Müller et al 2013). The results show the 
average over 341 subjects regardless of age and gender. For the SCT the blue colour 
represents diametric coupling, while the red colour depicts symmetric coupling. Black 
arrows depict just the direction without information on the nature of the coupling. 
The numbers show the lags at which the couplings occurred and lines without arrows 
indicate couplings at lag 0. (a) CTIR. (b) Granger. (c) SCT.
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Figure 8.  The figure  shows the significant results of the symbolic coupling traces 
(Wessel et al 2009) for the coupling structure of the coupled logistic maps depending 
from left to right on coupling strength, length of the data series, and strength of noise. 
The red colour depicts coupling from X to Y and blue vice versa. (a) Coupling strength. 
(b) Length of data series. (c) Noise.
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under the presence of noise, giving the correct results for a signal-to-noise ration higher than 
one. Granger causality also needs a coupling strength of ⩾c 0.5 before showing the correct 
couplings but does so also for time series consisting only of 30 data points upward. For the 
regarded model the employed version of conditional Granger causality is quite susceptible 
to noise. The representative of the coupling measures stemming from the field on informa-
tion theory, the CTIR, correctly identifies the coupling structure already for lower coupling 
strengths and still shows the correct results for noisy data. However, this tool also needs at 
least 200–300 data points per time series to work. The symbolic coupling traces are able to 
correctly identify the coupling structure in all categories, delivering usable results already for 
low coupling strengths and needing only about 70 data points. They also are robust under the 
influence of noise.

The symbolic coupling traces are easily adaptable to various forms of real world data. 
Via the choice of the time lag between consecutive symbols (ϑ) it can be applied to either 
short term analysis to show immediate effects or to longer effect time series analysis. 
Nonstationarity in the time domain can be handled by the previously described ensemble 
method. The SCT method and its ensemble form cannot easily be applied to highly nonlin-
ear couplings where additional preprocessing of the data is required. They are also unable 
to show causality or a possible indirectness of a coupling. Their flexibility and low require-
ments on data length, however, makes up for these drawbacks and predestines them for 
physiological data analysis.

In summary, the lagged cross-correlation is outperformed by all other measures. Using the 
conditional Granger causality the correct coupling structure can already be clearly identified 
when using less than 50 data points. However, when regarding the dependence on coupling 
strength or noise, the coupling structure becomes clearer for lower strengths and higher noise 
levels when using the CTIR or SCT methods. The best performance under the presence of 

Figure 10.  The figure gives some hints on when to look in which field of coupling 
measures depending on the data to be analyzed.
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noise, i.e. giving the clearest correct picture of the couplng structure, is delivered by the SCT. 
The quality of the results for different coupling strengths are similar between CTIR and SCT.

As a second test we applied the tools mentioned above to cardiovascular time series. The 
data stems from a study (Barantke et al 2008) analyzing amongst other things the influence of 
an orthostatic test on variables like heart rate and blood pressure. We used the stationary part 
of the beat-to-beat intervals and the systolic and diastolic blood pressure measurements of 
341 subjects of different ages and both genders female and male. As this is only an exemplary 
example the results (see figure 9) are presented as the average over all measurements regard-
less of age and gender. The lagged cross correlation showed no usable results and is therefore 
not shown.

All measures, the CTIR, Granger causality, and the SCT, concur in the found coupling 
directions between beat-to-beat intervals and the two blood pressure signals. The SCT delivers 
additional information about the kind of coupling (symmetric or diametric) and the occurring 
time lags. A coupling between systolic and diastolic blood pressure is only found by Granger 
causality and the SCT. However, the results contradict each other. In former studies (e.g. 
Runge et al (2014)) the results of the SCT have been confirmed by tools stemming from the 
field of information theory. The lag-2 connection between beat-to-beat intervals and systolic 
blood pressure depicts the sympatho-vagal feedback via vasoconstriction and vasodilation 
due to respiratory movements, while the lag-1 between the blood pressure signals shows the 
Frank-Starling mechanism. The lag-0 connections go back to mechanically induced fluctua-
tions also based on respiratory movements. In Runge et al (2014) it was suggested that the 
lag-2 coupling might actually be a spurious coupling manifesting via the two lag-1 couplings. 
However, as the measures regarded here are only working on a bivariate basis, we cannot 
account for such possibilities. Only the Granger causality might be able to find these spurious 
couplings, but is in the classical form (detecting only linear connections), according to the 
results, not well suited for this kind of data which contains nonlinearities.

4.  Conclusion

Today there is a plethora of coupling measures, all with their own advantages and drawbacks. 
Here we give some conclusive remarks and hints on when to look into which field of coupling 
measures (see also figure 10). The most versatile for systems one does not know much about 
stem from the field of information theory. The measures are able to identify linear and nonlin-
ear couplings and there are extensions to reliably analyze multivariate data and detect indirect 
and hidden relations. The drawback is the usually high amount of data needed to estimate the 
probability distributions in order to compute the entropies. However, with a sufficient amount 
of data these would be the methods of choice. When data is scarce, a suitable method is prob-
ably given by the symbolic coupling traces. Their robustness against noise and low amounts 
of data needed gives good results for linear and nonlinear couplings. Unfortunately, there is 
no extension for multivariate data, yet. If there is already some a priori knowledge about the 
system at hand, Granger causality can give deeper insights. The Granger approach is easily 
adaptable to many different model approaches and there are already extensions for nonlinear 
and multivariate analyses. The amount of data needed to estimate Granger causality depends 
on the kind of model used. The classical method detects only linear interactions, but does not 
need much data. The phase space methods offer another model-free approach to detect linear 
and nonlinear data. Even some extensions for multivariate analyses exist. Nonetheless, not for 
all systems delay-embedding can be used in a meaningful way. In these cases, other ways of 
building the embedding vectors have to be used. Due to the embedding, these methods also 
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require higher amounts of data, but shine with their versatility. Synchronisation and coordina-
tion analyses as well as certain extensions of other coupling measures only work on systems 
which can be regarded as oscillators. If that is the case, these methods deliver usually good 
results with even smaller amounts of data. The same strengths and restrictions apply to the 
measures when extended for the analysis of transient events using the ensemble approach.

The field of coupling analysis is a very active field and new measures keep on getting devel-
oped. The areas of application have also broadened in the last years, so that now in almost 
any discipline coupling analyses can be found. They give deeper insight into the interactions 
of complex systems than classical correlation analyses or similar tools. However, while the 
application of these methods is often straightforward, the interpretation of the results requires 
some additional thinking. For example, one should always keep in mind that coupling in data 
analysis and causality might be two different things.
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