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Abstract
El Niño exhibits distinct Eastern Pacific (EP) and Central Pacific (CP) types which are com-
monly, but not always consistently, distinguished from each other by different signatures in
equatorial climate variability. Here, we propose an index based on evolving climate networks
to objectively discriminate between both flavors by utilizing a scalar-valued evolving climate
network measure that quantifies spatial localization and dispersion in El Niño’s associated tele-
connections. Our index displays a sharp peak (high localization) during EP events, whereas
during CP events (larger dispersion) it remains close to the baseline observed during normal
periods. In contrast to previous classification schemes, our approach specifically account for
El Niño’s global impacts. We confirm recent El Niño classifications for the years 1951 to 2014
and assign types to those cases were former works yielded ambiguous results. Ultimately, we
study La Niña episodes and demonstrate that our index provides a similar discrimination into
two types.

1 Introduction

The El Niño Southern Oscillation (ENSO) alternates between positive (El Niño) and
negative (La Niña) phases [Trenberth, 1997]. Especially the El Niño phase further exhibits
two distinct types characterized by different spatial patterns of SST anomalies [e.g., Ashok
et al., 2007; Kao and Yu, 2009; Kug et al., 2009; Yeh et al., 2009]. The first type (the clas-
sic or Eastern Pacific (EP) El Niño [Rasmusson and Carpenter, 1982; Harrison and Larkin,
1998]) is characterized by strong positive SST anomalies close to the western coast of South
America, while the second type (referred to as El Niño Modoki or Central Pacific (CP) El
Niño by different authors) exhibits the strongest SST anomalies close to the dateline. Both
types cause different impacts on the global climate system, such as increased rainfall over
north and eastern Australia during CP El Niños [Ashok et al., 2007; Taschetto and England,
2009] contrasted by a rainfall reduction over eastern Australia during EP El Niños [Chiew
et al., 1998]. Thus, a proper discrimination of these types provides key information to assess
El Niño’s possible impacts on other climate subsystems.

While recent literature shows a large agreement on the classification of many El Niños,
contradictory classifications arise in certain years such as, e.g., 1986/1987, which has been
classified as mixed [Kug et al., 2009], EP [Kim et al., 2011; Yeh et al., 2009; Hu et al., 2011]
or CP [Larkin and Harrison, 2005; Hendon et al., 2009; Graf and Zanchettin, 2012]. In fact,
when reviewing existing studies [Kim et al., 2009; Kug et al., 2009; Kim et al., 2011; Yeh
et al., 2009; Hu et al., 2011; Larkin and Harrison, 2005; Hendon et al., 2009; Graf and Zanchet-
tin, 2012], 8 out of 19 El Niño events between 1957 and 2010 have not been classified in
agreement. These mismatches possibly arise since most discrimination schemes indeed utilize
the same climate observable (mostly SST), but apply different derived characteristics such as
the ENSO Modoki Index (EMI) [Ashok et al., 2007], the Nino3 and Nino4 index [Kim et al.,
2011; Hu et al., 2011], or empirical orthogonal function (EOF) analysis [Kao and Yu, 2009;
Graf and Zanchettin, 2012] to distinguish both El Niño types.

To provide a consistent and systematic discrimination, we propose here a method to dis-
tinguish the two different El Niño types based on the assessment of time evolving complex cli-
mate networks [Radebach et al., 2013]. Climate networks consist of nodes representing time
series and links displaying some statistically relevant interdependency between them [Donges
et al., 2009a; Tsonis et al., 2006] ENSO has been studied intensively using this tool to quantify
corresponding teleconnections [Gozolchiani et al., 2011; Tsonis and Swanson, 2008; Tsonis
et al., 2008] and its effect on other climatic subsystems [Gozolchiani et al., 2008]. Recently,
climate network approaches allowed for successfully forecasting El Niño by assessing the
strength of linkages in the equatorial Pacific [Ludescher et al., 2013, 2014].

Radebach et al. [2013] systematically studied the temporal evolution of a global climate
network in a spatially explicit way and linked the resulting variability of its topology to the
presence of the two different El Niño types. Following these lines of thought we develop a
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thorough classification scheme that allows for an objective discrimination between EP and CP
El Niños. While most previous studies on El Niño classification focus on climate variability
only within the equatorial Pacific, we specifically acknowledge the global impact of ENSO.
Our framework therefore accounts for the correlation structure of global surface air tempera-
ture anomalies (SATA), a variable that is highly affected by El Niño [Yamasaki et al., 2008]
and is, in contrast to SST, available homogeneously sampled for the entire globe.

As an index that discriminates EP and CP El Niños, we utilize the climate network’s
transitivity, a scalar-valued measure, that quantifies the (disperse vs. strongly localized) spatial
distribution of pairwise correlations and teleconnections along the globe. First, we assess
whether a certain period displays El Niño conditions according to the Oceanic Niño Index
(ONI). Second, we determine the transitivity of evolving climate networks computed from
one-year running window cross-correlations with respect to a baseline value defined by the
transitivity of networks computed from 30-year windows that are centered around the period
of interest. The surpassing of that threshold defines an EP El Niño, while the contrary case
indicates a CP El Niño. In comparison with recent studies, our methods confirms all EP and CP
El Niños between 1951 and 2014 that were commonly defined by Kug et al. [2009]; Kim et al.
[2011]; Yeh et al. [2009]; Hu et al. [2011]; Larkin and Harrison [2005]; Hendon et al. [2009]
and Graf and Zanchettin [2012] and provides a consistent classification for those periods that
were ambiguously classified so far.

To consolidate our findings, we provide results for the climate network’s node strength
fields during periods that our index defines as EP or CP El Niños and show their similarity with
patterns that are expected from an EOF analysis [Johnson, 2013; Donges et al., 2015a]. As
recent works [Kug and Ham, 2011; Yuan and Yan, 2012; Tedeschi et al., 2013] addressed the
issue whether two types of La Niña can be detected as well, we perform the same procedure
for these events and provide a similar discrimination for the negative phase of ENSO.

2 Data

We define El Niño periods according to the Oceanic Niño Index (ONI) provided by the
Climate Prediction Center of the National Oceanic and Atmospheric Administration, which
covers the time between 1950 and 2015 and is computed as the 3-month running mean SST
anomaly in the Nino3.4 region (5◦N-5◦S, 120◦W-170◦W) with respect to centered 30-year
base periods that are updated every 5 years. As the initial and final year of this data set include
only incomplete information on the 1951 La Niña and the 2015 El Niño, we restrict ourselves
to the period from 1951 to 2014.

We construct evolving climate networks from daily global surface air temperature (SAT)
data provided by the NCEP/NCAR reanalysis [Kistler et al., 2001] with a spatial resolution of
2.5◦ in longitudinal and latitudinal direction covering the same time period as the ONI. All
288 grid points located at the poles and all leap days are removed. The data is anomalized
in accordance with the definition of the ONI by subtracting from the time series at every grid
point the long-term annual cycle computed over the same 30-year base periods as above that
are updated every 5 years. Due to the lack of data before 1948 and after 2015, the years 1951
to 1965 are anomalized by the same base period (1951–1980) as the years 1965 to 1969. Simi-
larly, the years 2005 to 2015 are anomalized by the 1986 to 2015 base period. We acknowledge
that this procedure induces small offsets in the time series after every 5 years. However, as we
construct evolving climate networks from time series of much shorter length we neglect these
effects for the sake of consistency with the definition of the ONI. The above anomalization
process ensures that once defined anomalies and ENSO periods are not altered by the addition
of more recent data.

Finally, we obtain N = 10, 224 time series xi(t) of surface air temperature anomalies
(SATA) with Nt = 23, 360 temporal sampling points each.

–3–



Confidential manuscript submitted to Geophysical Research Letters

3 Methods

A climate network G consists of a set of N nodes that correspond to the grid points in
the underlying data set and a set ofM links which connect pairs of nodes and indicate a strong
statistical interrelationship between them. The network is represented by its binary adjacency
matrix A with entries Aij = 1 if two nodes i and j are linked and Aij = 0 otherwise [Donges
et al., 2009b; Boers et al., 2013; Stolbova et al., 2014]. An extension of this procedure is the
usage of an edge-weighted adjacency matrix W where Wij = 0 denotes the absence of a link,
but Wij > 0 denotes its strength (e.g., the pairwise correlation) [Barrat et al., 2004; Hlinka
et al., 2014; Zemp et al., 2014].

3.1 Network construction

Following the framework of evolving climate network analysis [Radebach et al., 2013;
Hlinka et al., 2014] we construct a sequence of networks Gn from running-window cross-
correlation matrices Cn = (Cn,ij) between all pairs of SATA time series. A window n is
characterized by its size w and offset d to the previous window. We choose d = 30 days and
w = 365 days to ensure that each window covers at least the entire duration of an El Niño or
La Niña episode. For each window n we obtain the truncated time series {xn,i(tn)}, tn =
{nd, nd + 1, . . . , n + wd − 1} and compute the resulting Nx × Nx cross-correlation matrix
Cn. In accordance with previous studies [Donges et al., 2009a; Tsonis et al., 2006; Paluš
et al., 2011], we rely here on the linear Pearson correlation at zero lag.

To reduce the complexity of Cn, it is advisable to represent only a certain fraction ρ of
strongest absolute correlations as links between the nodes [Tsonis et al., 2006; Donges et al.,
2009a]. This yields an individual threshold Tn for each absolute correlation matrix Cabs

n =
(|Cn,ij |) above which nodes are treated as linked. ρ is then called the link density ofGn. Here,
we keep ρ = 0.005 fixed for all windows n. This choice gives a number of M links as low
as possible to ensure the consideration of only the strongest correlations. Further, ρ = 0.005
roughly corresponds to the fraction of nodes that are situated inside the the Nino3.4 region.
We obtain thresholds (i.e., the lower bound of absolute correlations values) Tn in the range of
0.53 to 0.65. They are significant above the 99% significance level according to a standard
student’s t-test.

Binarizing Cabs
n to an edge-unweighted adjacency matrix An would neglect valuable in-

formation on the varying strength of correlation between connected grid points. We therefore
compute edge-weighted adjacency matrices Wn with entries |Cn,ij | if two nodes i are j are
linked,

Wn,ij = |Cn,ij | ·Θ(|Cn,ij | − Tn). (1)

Due to the underlying grid type, the density of nodes increases towards the poles inducing a
systematic bias into the computation of network measures [Heitzig et al., 2012]. This effect is
corrected by assigning each node a weight wi corresponding to its latitudinal position λi on
the grid [Tsonis et al., 2006; Heitzig et al., 2012; Wiedermann et al., 2013],

wi = cos(λi). (2)

Network measures that include wi have been referred to as node splitting invariant (n.s.i.)
measures [Heitzig et al., 2012; Zemp et al., 2014; Wiedermann et al., 2013].

3.2 Network transitivity

El Niño has a global impact on the climate system manifested by long-ranging tele-
connections into different regions of the Earth [Held et al., 1989; Neelin, 2003; Trenberth,
1997] which, in the context of climate networks can be regarded as mediators of variations
and fluctuations [Tsonis et al., 2008; Runge et al., 2015]. Thus, El Niño and its teleconnec-
tions cause a spatial organization of high co-variability along the Earth’s surface, which is
reflected in the resulting climate network. The degree of this organization can be quantified
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by a single-valued scalar metric, the network transitivity [Watts and Strogatz, 1998; Saramäki
et al., 2007], which we use in its node-weighted form [Heitzig et al., 2012],

Tn =

∑
i,j,k wiWn,ijwjWn,jkwkWn,ki∑

i,j,k wiWn,ijwjWn,jkwk
∈ [0, 1]. (3)

Tn gives the edge- and node-weighted fraction of closed triangles between triples of nodes and
measures how strongly the correlation in a system under study or subsets thereof is spatially
organized (high values) or dispersed (low values). In a purely random network, Tn would nat-
urally take very low values, i.e., approximately equal the link density in the standard case of no
specific edge and node-weights [Erdős and Rényi, 1960]. Tn thus serves as a good discrimina-
tor between phases of strong localization and high dispersion in the global teleconnectivity of
evolving climate networks [Radebach et al., 2013]. As EP and CP El Niños have been shown
to display different characteristics in their associated teleconnections [Ashok et al., 2007] we
expect Tn to respond differently to the presence of either of the two types.

3.3 Strength of individual nodes

To connect our work with previous results from statistical climatology we investigate
for each node i its corresponding area-weighted strength

sn,i =
∑
j

wjWn,ij (4)

individually for each network Gn. sn,i measures the total weight of links that are attached
to each node i. For the edge-unweighted case, this measure reduces to the area-weighted
connectivity [Tsonis et al., 2008] which displays striking similarity with results from a node-
weighted EOF analysis [Donges et al., 2015a; Wiedermann et al., 2015].

4 Results

The ONI identifies El Niño (La Niña) episodes if its values exceed (fall below) a thresh-
old of 0.5K (-0.5K) for at least 5 consecutive months, yielding 22 (18) El Niño (La Niña)
episodes between 1951 and 2014 (Fig. 1A).

4.1 Transitivity

We construct n = 733 evolving climate networks and compute their transitivity Tn
and node strength sn,i. The end point of each window marks the time at which the two
measures are evaluated. Figure 1B shows the evolution of Tn. Except for one case with
several 12-month time windows ending in 1993, which is likely caused by the eruption of
Mount Pinatubo in 1991 [McCormick et al., 1995; Radebach et al., 2013], distinct peaks in Tn
coincide exclusively with certain ENSO episodes. As shown by Radebach et al. [2013], the
presence of an EP El Niño likely coincides with strong signals in (for their case unweighted)
transitivity, while no distinct signal is present during CP El Niños. However, no quantitative
criterion for this discrimination has been given so far.

To give an objective definition of a strong transitivity signal we define a threshold value
T above which Tn is considered to display a peak. We obtain an adaptive value of T as
the transitivities of climate networks constructed for the same 30-year periods that were used
for the anomalization of the SAT data and the derivation of the ONI. Thus, we compare
all values of Tn computed, e.g., during the period 1975–1979 with a baseline transitivity T
computed for a climate network covering the 30-year period of 1961–1990 (dashed line in
Fig 1B). This procedure follows the definition of the ONI and we interpret T as representing
the long-term average spatial organization in the global climate network. Adaptively updating
T every 5 years automatically accounts for possible effects of long-term climate change trends
imprinting on the network statistics and the definition of T for periods in the past is not
affected by the addition of more recent data.
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Figure 1. (A) The ONI with El Niño (La Niña) periods marked in red (blue). (B) Time evolution of the

evolving climate network’s transitivity Tn. The dashed vertical line indicates the baseline transitivity Tn. Col-

ored areas indicate El Niño and La Niña periods. Darker coloring indicates those periods where Tn exceeds

Tn and that are thus classified as EP type.

We detect six El Niño periods during which Tn crosses T (dark red areas in Fig. 1B)
corresponding to the El Niños of 1957, 1965, 1972, 1976, 1982, and 1997. For all other El
Niños Tn stays below T . In the scope of our framework, we thus propose classifying the first
case as EP and the second case as CP events (light red areas in Fig. 1B).

For comparison, the proposed classifications of El Niño phases into EP and CP types
from eight recent studies [Kim et al., 2009; Kug et al., 2009; Kim et al., 2011; Yeh et al., 2009;
Hu et al., 2011; Larkin and Harrison, 2005; Hendon et al., 2009; Graf and Zanchettin, 2012]
are summarized in Tab. 1. To quantify the consistency of the network-based discrimination, we
define a true positive rate (TPR) as the fraction of EP El Niños in each study that are detected
by our framework. Accordingly, the false positive rate (FPR) is the fraction of CP El Niños
in each study that our method classifies as EP type. With respect to all references we obtain a
FPR of zero. The TPR for each reference is presented in the last row of Tab. 1. Its values vary
between 1 for the comparison with Graf and Zanchettin [2012] and Hu et al. [2011], and 0.5
for the comparison with Yeh et al. [2009]. Furthermore, we note that among all references 8
out of 19 events are not classified in agreement. Taking only the mutual agreement between
all references as a basis for testing, we confirm all past classifications (second-last column
in Tab. 1). To provide results for the eight ambiguously defined periods, the network-based
classification for all El Niños is given in the last column of Tab. 1.

We find the largest consistency with the results from Graf and Zanchettin [2012] which
are obtained from an EOF analysis, a framework that, like our method, is based on the evalua-
tion of cross-correlations between different grid points. This methodological congruence may
explain the good agreement between the results and confirms the validity of our work. How-
ever, the advantage of utilizing a network-based approach instead of EOFs is that the entire
spatial structure of the underlying covariance patterns is reduced to a single index. More-
over, its evaluation does not rely on any visual inspection, but provides an objective binary
classification depending on whether or not the short-term transitivity Tn exceeds its long-term
baseline T .

We repeat the analysis for La Niña periods and classify 7 EP (1964, 1970, 1973, 1988,
1998, 2007, 2010) and 11 CP (1954, 1955, 1967, 1971, 1974, 1975, 1984, 1995, 2000, 2001,
and 2011) periods (dark (EP) and light (CP) blue areas in Fig. 1B). Even though references
providing actual discriminations of the different La Niña years are scarse, we compiled two
recent works and confirm the reported EP La Niñas of 1964 and 1970 [Yuan and Yan, 2012]
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Table 1. Recent classifications of El Niño phases into CP and EP episodes. Asterisks denote mixed or unde-

fined states. A hyphen denotes that no classification was performed for the specific year. Bold letters denote

events where the network-based classification is in agreement with the reference. The last row summarizes the

true positive rate (TPR) of our formalism. The second-last column indicates the largest overlap between all

references and the last column summarizes the classification obtained from the network-based approach.

Kug et al. Kim et al. Hu et al. Larkin et al. Hendon et al. Graf et al. Yeh et al. Kim et al. Common Full
(2009) (2011) (2011) (2005) (2009) (2012) (2009) (2009) results

1953/1954 - - - - - - - - - CP
1957/1958 - - EP EP - EP EP EP EP EP
1958/1959 - - - - - - - - - CP
1963/1964 - - - CP - CP EP EP - CP
1965/1966 - - EP EP - EP EP EP EP EP
1968/1969 - - CP CP - CP CP - CP CP
1969/1970 - - EP EP - - EP CP - CP
1972/1973 EP EP EP EP - EP EP EP EP EP
1976/1977 EP EP - EP - EP EP EP EP EP
1977/1978 CP CP - CP - CP CP - CP CP
1979/1980 - - - - - - * - - CP
1982/1983 EP EP EP EP EP EP EP EP EP EP
1986/1987 * EP EP CP CP CP EP - - CP
1987/1988 * - CP EP EP - EP EP - CP
1991/1992 * EP EP EP CP CP EP CP - CP
1994/1995 CP CP CP CP CP CP CP CP CP CP
1997/1998 EP EP EP EP EP EP EP EP EP EP
2002/2003 CP CP CP EP CP CP * CP - CP
2004/2005 CP CP - - CP CP CP CP CP CP
2006/2007 - EP CP CP - - EP - - CP
2009/2010 - CP - - - CP - - CP CP

TPR 1.0 0.57 0.62 0.6 0.67 1.0 0.5 0.75 1.0

and CP La Niñas of 1975, 1984, 2000, 2001, and 2011 [Yuan and Yan, 2012; Tedeschi et al.,
2013]. Future work should further evaluate the discrimination of La Niña periods proposed by
our method.

4.2 Node strength

To further consolidate our findings we compute the average node strengths sB,i from the
six networks that are used to define T (Fig. 2A). We obtain the highest values in the equatorial
Pacific highlighting ENSO’s importance in the global climate network. Additionally, we com-
pute the average node strength sN,i taken over all normal periods, i.e., those periods where
neither El Niño or La Niña are present (Fig. 2A). As by its definition the effect of ENSO is re-
duced, sN,i displays comparably low values and a more homogeneous distribution across the
entire globe than sB,i. Ultimately, we calculate the average node strength sENEP,i (sENCP,i)
taken over all El Niño periods that our method classifies as EP (CP) type (see also Fig. 1B). To
investigate the deviation from the normal state during either of the two periods we display their
differences from sN,i in Fig. 2C,D. For EP El Niños (Fig. 2C) we find an expected maximum
in the equatorial Pacific, which is the typical ENSO-related pattern known from a classical
EOF analysis [Johnson, 2013]. For CP El Niños we find a weakening of this pattern and a
westward shift of the maxima towards the dateline. This pattern has been observed in the cor-
responding EOFs as well [Johnson, 2013]. However, we note that sENCP,i only differs from
sN,i to a small amount (Fig. 2D). This again suggests, that during CP El Niños the evolving
climate networks exhibit a similar state as during normal periods. We compute similar average
quantities, sLNEP,i and sLNEP,i, for La Niña events and again evaluate their deviations from
the normal state (Fig. 2E,F). We find quantitatively and qualitatively similar patterns as for El
Niño, which highlights the symmetry in the statistics of the two ENSO phases. Even though
a similarly thorough comparison with existing literature is not yet possible for La Niña, the
high congruence between sENEP,i and sLNEP,i (sENCP,i and sLNCP,i) suggests that our
discrimination scheme provides reasonable results for La Niña phases as well.
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Figure 2. (A) Average strength of nodes in the baseline climate networks. (B) Average node strength of the

evolving networks during normal periods. (C) Differences between the average node strength during El Niño

periods that are classified as EP type and the average node strength during normal periods. (D) The same as in

(C) for El Niño periods that are classified as CP type. (E,F) The same as in (C,D) for La Niña periods.

4.3 Robustness

To evaluate the robustness of our results with respect to the window size w and link
density ρ, we vary both parameters individually and assess the difference between the TPR
and FPR when testing our classification against the largest overlap of the literature (second-
last column in Tab. 1). This score takes its maximum value of 1 if our method confirms the
literature’s classification of each event and is lower otherwise. Figure 3A (Fig. 3B) shows
the score for different w (ρ) and fixed ρ = 0.005 (w = 365 days). The highest scores are
obtained for window sizes between w = 365 and w = 547 days and link densities between
ρ = 0.005 and ρ = 0.0075. Shorter window sizes cause a reduction of the score as the
windows become too small to sufficiently cover the temporal extent of an ENSO event. For
larger window sizes the effect of ENSO is suppressed by including too many of the normal
periods into each window. The link density of ρ = 0.005 was initially chosen as it roughly
corresponds to the fraction of nodes located inside the Nino3.4 region. Smaller values cause
the network to be only composed of highly correlated trivial nearest-neighbor connections and
teleconnections with comparably lower pairwise cross-correlation vales are not captured. In
contrast, larger values result in too many trivial links alongside those attributed to the effects
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Figure 3. (A) Difference between true positive rate (TPR) and false positive rate (FPR) for classifications

obtained from the network approach and the largest overlap between all references in Tab. 1 for different

window sizes w and fixed link density ρ = 0.005. (B) The same as in (A) for different link densities ρ and

fixed window size w = 365 days. Dashed lines indicate the choices of parameters that yield the results in

Fig. 1B and Fig. 2.

of ENSO. Generally, the score varies smoothly along the range of parameters and shows
maximum values for our initial choices. Thus, we consider our results to be sufficiently robust.

5 Conclusion

We have proposed an index based on evolving climate networks to objectively discrim-
inate between EP and CP types of El Niño and La Niña episodes. It relies on the evolution
of the networks’ transitivity, measuring spatial localization and dispersion of strong cross-
correlations between different grid points in a global SATA field. If this index peaks during
an ENSO phase, it detects the presence of an EP type event. In contrast, the absence of a re-
markable signal during an ENSO period indicates CP type events. From the climate network
perspective this indicates an increased localization and clustering of teleconnections during
EP phases in comparison with CP and normal phases where teleconnections seem to appear
more dispersed. Our method does not require any visual inspection or manual thresholding of
observed patterns but objectively categorizes ENSO phases into different types by intercom-
paring the networks’ short-term (Tn) and long-term states (T ).

In comparison with eight recent works on El Niño classification our method confirms
the classification of years that all references have in common and provides a discrimination for
those years that where so far ambiguously defined. Compared to approaches based on average
temperature observations our method produces a sharp signal in the variable under study, i.e,
the network transitivity, and thus provides a clear distinction between the two types of El Niño
episodes.

Even though references are scarce, our findings also confirm different recently reported
EP and CP La Niña periods and show that our discrimination scheme is applicable to this
negative phase of ENSO as well.
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Future work should investigate more thoroughly the spatial distribution of links in the
evolving climate networks during different ENSO stages to gain a more systematic under-
standing of the physical mechanisms behind the observed differences in transitivity. Moreover,
being automated and objective, our framework allows for a systematic evaluation of climate
model simulations and could be used to investigate potential changes in the projected fre-
quency of the two ENSO flavors in the future, e.g., due to anthropogenic global warming [Yeh
et al., 2009].
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Saramäki, J., M. Kivelä, J.-P. Onnela, K. Kaski, and J. Kertész (2007), Generalizations of
the clustering coefficient to weighted complex networks, Phys. Rev. E, 75(2), 027105, doi:
10.1103/PhysRevE.75.027105.

Stolbova, V., P. Martin, B. Bookhagen, N. Marwan, and J. Kurths (2014), Topology and sea-
sonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri
Lanka, Nonlinear Proc. Geophys., 21(4), 901–917, doi:10.5194/npg-21-901-2014.

Taschetto, A. S., and M. H. England (2009), El Niño Modoki Impacts on Australian Rainfall,
J. Climate, 22(11), 3167–3174, doi:10.1175/2008JCLI2589.1.

Tedeschi, R. G., I. F. A. Cavalcanti, and A. M. Grimm (2013), Influences of two types of
ENSO on South American precipitation, Int. J. Climatol., 33(6), 1382–1400, doi:10.1002/
joc.3519.

Timmermann, A., J. Oberhuber, A. Bacher, M. Esch, M. Latif, and E. Roeckner (1999), In-
creased El Niño frequency in a climate model forced by future greenhouse warming, Nature,
398(6729), 694–697, doi:10.1038/19505.

Trenberth, K. E. (1997), The Definition of El Niño, Bull. Amer. Meteor. Soc., 78(12), 2771–
2777, doi:10.1175/1520-0477(1997)078〈2771:TDOENO〉2.0.CO;2.

Tsonis, A. A., and K. L. Swanson (2008), Topology and Predictability of El Niño and La Niña
Networks, Phys. Rev. Lett., 100(22), 228502, doi:10.1103/PhysRevLett.100.228502.

Tsonis, A. A., K. L. Swanson, and P. J. Roebber (2006), What Do Networks Have to Do with
Climate?, Bull. Amer. Meteor. Soc., 87(5), 585–595, doi:10.1175/BAMS-87-5-585.

Tsonis, A. A., K. L. Swanson, and G. Wang (2008), On the Role of Atmospheric Teleconnec-
tions in Climate, J. Climate, 21(12), 2990–3001, doi:10.1175/2007JCLI1907.1.

Watts, D. J., and S. H. Strogatz (1998), Collective dynamics of small-world networks, Nature,
393(6684), 440–442, doi:10.1038/30918.

Wiedermann, M., J. F. Donges, J. Heitzig, and J. Kurths (2013), Node-weighted interacting
network measures improve the representation of real-world complex systems, Europhys.
Lett., 102(2), 28,007.

Wiedermann, M., J. F. Donges, D. Handorf, J. Kurths, and R. V. Donner (2015), Hierarchi-
cal structures in Northern Hemispheric extratropical winter ocean-atmosphere interactions,
arXiv:1506.06634 [physics], arXiv: 1506.06634.

Yamasaki, K., A. Gozolchiani, and S. Havlin (2008), Climate Networks around the Globe
are Significantly Affected by El Niño, Phys. Rev. Lett., 100(22), 228501, doi:10.1103/
PhysRevLett.100.228501.

Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin (2009), El Niño
in a changing climate, Nature, 461(7263), 511–514, doi:10.1038/nature08316.

Yuan, Y., and H. Yan (2012), Different types of La Niña events and different responses of the
tropical atmosphere, Chin. Sci. Bull., 58(3), 406–415, doi:10.1007/s11434-012-5423-5.

Zemp, D. C., M. Wiedermann, J. Kurths, A. Rammig, and J. F. Donges (2014), Node-weighted
measures for complex networks with directed and weighted edges for studying continental
moisture recycling, Europhys. Lett., 107(5), 58,005, doi:10.1209/0295-5075/107/58005.

–12–


