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We present here two promising techniques for the application of the complex network approach to

continuous spatio-temporal systems that have been developed in the last decade and show large

potential for future application and development of complex systems analysis. First, we discuss the

transforming of a time series from such systems to a complex network. The natural approach is to

calculate the recurrence matrix and interpret such as the adjacency matrix of an associated complex

network, called recurrence network. Using complex network measures, such as transitivity coeffi-

cient, we demonstrate that this approach is very efficient for identifying qualitative transitions in

observational data, e.g., when analyzing paleoclimate regime transitions. Second, we demonstrate

the use of directed spatial networks constructed from spatio-temporal measurements of such sys-

tems that can be derived from the synchronized-in-time occurrence of extreme events in different

spatial regions. Although there are many possibilities to investigate such spatial networks, we pres-

ent here the new measure of network divergence and how it can be used to develop a prediction

scheme of extreme rainfall events. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4916924]

In the last decades, various powerful techniques have been

developed in nonlinear dynamics for the study of continu-

ous spatio-temporal dynamic systems. Typically, they are

based on different discretization methods in space and

time. Here, we discuss an unconventional approach based

on complex networks for the investigation of such systems.

In contrast to well-known examples of complex networks,

such as social ensembles, neural networks, or power grids,

where the nodes are clearly defined by humans, neurons,

or power generating stations; here the first step of the

complex network approach can be interpreted as a very

flexible way to discretize a continuous system, or to iden-

tify a backbone underlying the continuous system. This

enables us to use in the next steps the rich variety of meth-

ods from complex network theory even for the analysis of

continuous systems. Based on this approach, we treat two

basic problems in high-dimensional nonlinear dynamics:

(i) uncovering regime shifts and (ii) prediction of extreme

events. We propose appropriate techniques for both by

combining recurrence with networks resp. synchroniza-

tion with extreme events. The potential of this approach is

demonstrated here for the Earth system. In a first exam-

ple, we show that important main regime shifts of the East

Asian Monsoon during the last 3 Million years can be

identified from paleoclimate proxy records. In a second

example, we analyze recent satellite data from the tropical

rainfall measurement mission (TRMM) and use the net-

work divergence for developing an efficient prediction

scheme for extreme precipitation events in the eastern

Central Andes.

I. INTRODUCTION

Climate is as the brain a highly complex and high-

dimensional system; both systems have a lot of joint proper-

ties, but there are also important distinctions. Understanding

the mechanisms of climatic processes on all temporal and

spatial scales is very difficult and even impossible in near

future, but crucial for weather forecasts or assessment of

long-term climate changes. A data-based investigation of the

climate system is related with several challenges, in particu-

lar, non-stationarity (e.g., abrupt vs. slow changes), high-

dimensionality, non-Gaussian distributed data (e.g., extreme

events), natural vs. anthropogenic influences, etc.

A basic first step in data-based studies of such a complex

high-dimensional system is reducing the dimensionality. The

most widely used method for this is a decomposition into a

very finite number of Empirical Orthogonal Functions

(EOFs). This approach also allows to identify the main spa-

tial patterns, such as large circulation patterns or teleconnec-

tions. However, the basis of the EOF approach is the

covariance matrix, thus, only capturing the first two statisti-

cal moments and demanding for certain strict properties of

the data, e.g., Gaussian distribution and stationarity.1 Even

more obvious are constraints due to event-like data, as typi-

cal for rainfall and extreme events, or limitations by nonlin-

ear interrelations. Moreover, the found EOFs do not

undoubtedly coincide with typical climate phenomena.2

Modern measurement techniques has allowed in the last

decades to extend our knowledge into the past, leading to pale-

oclimatology. However, these data generate further challenges:

Dating uncertainties and irregularly sampled time series are

problems that limit the direct application of standard methods.

An alternative and novel approach for the study of dif-

ferent aspects of the climate system is related to the progress
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in complex networks science in the past quarter century. At a

first glance, it might appear surprising that the complex net-

work approach can be used to analyse a continuous system

as the climate and in particular, to identify spatio-temporal

patterns in climate fields or regime shifts in the paleoclimate.

However, the application of complex networks for climate

analysis has become a lively and quickly progressive field in

the last years. Although, this new approach is still in its

infancy, first results are very promising and have already

shown its impressive potential.

In the following, we will present two techniques based on

complex networks, recurrence networks (Sec. III) and event

synchronization (Sec. V), and will show how they can be used

to uncover regime transitions in the paleoclimate by analyzing

proxy records (Sec. IV) and to analyze spatiotemporal patterns

of extreme rainfall leading to new prediction schemes (Sec.

V). Finally, we summarize the potentials of this non-

traditional approach, but discuss also open problems.

II. COMPLEX NETWORKS

We give here only a few basics on complex networks

which will be used later (see, e.g., Refs. 3–5 for more

detailed reviews on complex network analysis). A network is

a set of nodes and links. We define a network as complex

when its topology is highly irregular. A network can be

defined by the adjacency matrix A. For undirected and

unweighted networks, A is a binary matrix, just indicating

the existence of links between two nodes. In weighted net-

works, a link has a weight, i.e., A consists of real numbers;

A is symmetric for undirected and asymmetric for directed

networks. A network or its components (links, nodes) can be

characterized by several measures. Here we mention only

some selected measures.

The node degree in unweighted networks is simply the

total number of links a node i has and is given by the column

sum of the adjacency matrix A

ki ¼
XN

j

Aji: (1)

The distribution of this measure can be used to investigate,

e.g., whether a network is scale-free. On directed networks,

we can distinguish between the column-wise and raw-wise

sums in Eq. (1) that give us the in- and out-degree, respec-

tively. For weighted networks, the sum Eq. (1) becomes the

so-called node strength, and for directed and weighted net-

works, we can consider the in- and out-strength

Sin
i ¼

XN

j¼1

Aij and Sout
i ¼

XN

j¼1

Aji: (2)

Another important measure is the transitivity coefficient

T ¼
PN

i;j;k¼1 Aj;kAi;jAi;kPN
i;j;k¼1 Ai;jAi;k

: (3)

It measures the probability that the neighbors of a node are

connected themselves.

III. RECURRENCE NETWORKS—A TIME SERIES
ANALYSIS APPROACH BY MEANS OF COMPLEX
NETWORKS

Analyzing time series by complex networks is a quite

new idea that came up in the last decade. The generation of a

complex network representation of a time series can be done

using different approaches, e.g., by visibility graphs6 or tem-

poral succession of local rank orders.7 A quite natural

approach is to use the recurrence matrix8 of a dynamical

system

Ri;j ¼ Hðe� jj~xðiÞ �~xðjÞjjÞ; (4)

as the adjacency matrix of a complex network9

A ¼ R� I (5)

(with I the identity matrix, H the Heaviside function, ~xðiÞ a

state at time i ¼ 1;…;N, and N the number of state vectors).

The recurrence matrix itself has become a basic tool of non-

linear time series analysis and was first introduced by

Eckmann et al. as recurrence plots that “are rather easily

obtained aids for the diagnosis of dynamical systems.”10

Later this idea was extended by several quantification

approaches11,12 leading to “an active field, with many ramifi-

cations we [Eckmann et al. –] had not anticipated.”13

Fundamental works on such methodological developments

have been published also in Chaos, e.g., on embedding issues

and dynamical invariants,14,15 time-delay systems and non-

chaotic strange attractors,16,17 heterogeneous recurrence

analysis,18 or twin surrogates.19

Because of the striking similarity between the recur-

rence matrix and the adjacency matrix (i.e., a binary and

square matrix), the idea to identify the recurrence matrix

with the adjacency matrix was so obvious that it came up

almost at the same time (around 2008) within different

research groups.20–22 Its main advantage is that the resulting

recurrence network can be analyzed by the known network

measures, i.e., further diagnostic tools become available for

time series analysis. In particular, the transitivity coefficient

T is appropriate because it quantifies the geometry of the

phase space trajectory and can be used to differentiate

between different dynamics (e.g., regular and irregular).21,23

It also allows to define a dimensionality measure,24 the tran-
sitivity dimension

DT ¼
log Tð Þ

log 3=4ð Þ : (6)

The quantification of the recurrence matrices can also be

performed by the recurrence quantification analysis (RQA).8,25

In contrast to the network measures which describe the geo-

metrical properties, the RQA measures characterize dynamical

properties of the phase space trajectory. Therefore, the recur-

rence network based measures provide complementary infor-

mation to the RQA and can, under certain circumstances, give

more insights into the system’s behavior.

As a paradigmatic example, let us consider the R€ossler

system26
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dx

dt
;

dy

dt
;

dz

dt

� �
¼ �y� z; xþ ay; bþ z x� 35ð Þ
� �

; (7)

where we change the parameter a¼ b in a range where the

system shows chaotic and periodic dynamics: a ¼ 0:235;
…; 0:262 (Figs. 1 and 2). Between a¼ 0.24 and 0.25, the

system does not have a positive Lyapunov exponent and gen-

erates periodic behavior (Fig. 3(a)).

A frequently used RQA measure for differentiating peri-

odic and chaotic dynamics is the ratio of recurrence points

that form diagonal lines in the recurrence plot, called

determinism8,27

DET ¼
P

l�lmin
lP lð ÞP

i;j Ri;j
; (8)

with P(l) the histogram of line lengths in the recurrence plot.

The idea of this measure is that the length of a diagonal line

in the recurrence plot corresponds to the time the system

evolves very similar as during another time. Such repeated

similar state evolution that is also related to predictability is

typical for deterministic systems. In contrast, systems with

independent subsequent values, like white noise, have mostly

single points in the recurrence plot. DET is sensitive to tran-

sitions between chaotic and periodic dynamics in maps,27

but for continuous systems, such as our R€ossler example,

this measure fails for this task.23,28 For the entire range of

the considered a values, it has very high values, close to one

(Fig. 3(b), Table I). However, T shows increased values

within the periodic window, close to a value of 3/4. In gen-

eral, the network based measures, such as T , can add further

important aspects in recurrence analysis, in particular, for

the uncovering of sudden changes of the dynamics.

IV. IDENTIFICATION OF SUDDEN TRANSITIONS IN
PALEOCLIMATE

The recurrence network approach has great potential in

different applications in many disciplines. Using as a classi-

fier, it can help, e.g., to detect serious diseases, such as pree-

clampsia,29 to detect epileptic states,30 or to study

multiphase fluid flows.31 Another important application is to

detect critical transitions in the dynamics.21,32,33 Such transi-

tion detection is of crucial interest in studying variations of

the past climate in order to better understand the climate sys-

tem in general.

In the following, we discuss a typical example from

paleoclimate research. The investigation of relationships

between sea surface temperature (SST) and specific climate

responses, like the Asian monsoon system or the thermoha-

line circulation in the Atlantic, as well as their regime

changes, represents an important scientific challenge for

understanding the global climate system, its mechanisms,

and its related variability. Its better understanding is of cru-

cial importance as non-linear feedback mechanisms and tip-

ping points cause high uncertainty and an unpredictable

future for humankind.34,35

In paleoclimatology, different archives are used to

reconstruct and study climate conditions of the past, as

lake36 and marine sediments37 or speleothemes.38 Alkenone

remnants in the organic fraction of marine sediments, pro-

duced by phytoplankton, can be used to reconstruct SST of

FIG. 1. (a) Phase space reconstruction

of the x-component of the R€ossler sys-

tem for a¼ 0.245 and (b) for a¼ 0.29.

(c) Corresponding recurrence plot for

a¼ 0.245, showing periodic structures,

and (d) for a¼ 0.29, showing inter-

rupted diagonal lines. The recurrence

plots are calculated from the x-compo-

nent using time-delay embedding with

m¼ 4 and s¼ 17 (sampling time

Dt ¼ 0:1).
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the past (alkenone paleothermometry), allowing to study the

temperature variability of the oceans.39,40 Here, we will use

a SST reconstruction for the South China Sea and the past 3

Ma derived from alkenone paleothermometry of the Ocean

Drilling Programme (ODP) site 1143 (Ref. 40) (Figs. 4 and

5(a)). The South China Sea is strongly linked to the East

Asian Monsoon system (EAM) that consists of a winter part

with strong winds and a precipitation related summer part. In

general, the East Asian Monsoon is of crucial importance for

China’s socio-economic behavior, e.g., for agriculture or

even for public health by its impact on prevalence of trace

elements.41 The understanding of the mechanism is,

therefore, crucial for learning about the past and the future

climate and its impacts.

First we are faced with a typical problem in paleoclima-

tology because the original time series of ODP 1143 is not

equally sampled. The sampling time ranges from 0.2 to 28

ka, with a median of 2.1 ka. If applying standard techniques

(linear methods or classical RQA) then we would first need

to interpolate the time series to an equidistant time axis.

However, when using the recurrence network approach, the

correct timing of the nodes is not so important (and could

even be exchanged without changing the network proper-

ties), because it is characterizing the geometrical

structure.32,42,43

We calculate the recurrence networks and the transitiv-

ity coefficient T for sliding windows of length 410 ka (thus,

with varying number of data points within the windows) and

a moving step of 20 ka (Fig. 5). For the phase space recon-

struction44 we choose an embedding dimension of m¼ 6 (as

suggested by the false nearest neighbors method45). The

selection of the time delay is guided by the auto-correlation

function and considered to be constant for all time windows

to be approximately 20 ka (based on median sampling time

FIG. 2. Network representation of the

phase space reconstruction of the x-

component of the R€ossler system for

(a) a¼ 0.245 and (b) a¼ 0.29. The net-

work is constructed from the first 300

nodes of the recurrence matrix shown

in Fig. 1 by a linear repulsion model.

Node size and color can be used to rep-

resent selected node properties, here

time (node color, the darker the larger

t) and clustering coefficient (node

size).

FIG. 3. (a) The two largest Lyapunov exponents and (b) the recurrence

measures DET and T for the x-component of the R€ossler system for varying

control parameter a. Within the interval a ¼ ½0:24 0:25�, the dynamics is

periodic. Whereas T indicates the periodic behavior by increased values, it

is difficult to detect the periodic window with DET.28

TABLE I. Typical values of DET and T for different dynamical regimes in

the R€ossler system.

a DET T Dynamics

0.235 0.98 0.66 Chaotic

0.245 0.98 0.74 Periodic

0.260 0.97 0.63 Chaotic FIG. 4. Location of the ODP 1143 site in the South China Sea (red star) and

main directions of the East Asian Summer Monsoon (blue arrows).
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within one time window). The threshold is chosen in such a

way to preserve a constant recurrence rate of 7.5%.8,32

Moreover, we perform a bootstrapping approach using

1000 resamplings of the windowed time series for preparing

an empirical test distribution for T . In this real world exam-

ple, we use a confidence level of 90%. As we do not know

which kinds of dynamical transition are there, we will con-

sider both the upper and the lower confidence level.

In the last 3 Ma, several major and many smaller climate

changes have appeared on regional but also global scale.

Dramatic climate shifts are related with the Milankovich

cycles46–48 and major changes in ocean circulation patterns.49

Due to a transition towards an obliquity-driven climate vari-

ability with a 41 ka period around 3.0 Ma ago, a period of

warm climate has end and the northern hemisphere glaciation

started after 2.8–2.7 Ma.37,46,48 This transition is very well

revealed by the significant increase of T between 2.8 and 2.2

Ma. Based on thorough investigations of loess sediments, it is

known that 1.25 Ma ago the intensity of the winter monsoon

of the EAM begun to be strongly coupled to global ice-

volume change.48 During this time, T increased (although not

reaching significance). This time also marks the beginning of

a transition phase towards glacial-interglacial cycles of 100 ka

period (eccentricity dominated period of the Milankovich

cycles). This 100 ka period dominance was well established

after 0.6 ka and is clearly visible by the increased T between

0.6 and 0.2 ka.50 From loess sediments, it is also known that

the summer monsoon has weakened between 2.0 and 1.5 ka

and around 0.7 ka. During these periods, T shows lower val-

ues than during the previously discussed periods. The varia-

tion of T confirms the previous findings of a strong link

between the EAM and the Milankovich cycles, in particular,

of increased and reduced regularity in the climate dynamics

(as presented by the SST and for the considered time scale)

during dominant Milankovich cycles and periods of major cli-

mate transitions from one to another regime.

Similar conclusions based on T have been drawn from

dust flux records around the African continent.32 There, it

was found that enhanced regular climate dynamics coincides

well with lake level high stands in East Africa, and hence,

indicating that climate regime transitions have triggered

human evolution.

V. COMPLEX NETWORKS FOR SPATIO-TEMPORAL
ANALYSIS OF CONTINUOUS SYSTEMS

Another important problem in complex systems analysis

is the investigation of spatio-temporal dynamics. In the last

decade, this field has also benefited from the complex net-

work approach. In particular, its application on climate data

in order to uncover climate mechanisms or characteristic

spatial patterns and long-range interrelations has drawn

attention to complex networks for spatio-temporal analysis

of continuous systems. Complex networks are an alternative

to EOFs and can shed light on different and complimentary

aspects than EOFs. Beginning with the study of Tsonis

et al.,51 the climate network approach has received more and

more interest for spatio-temporal data analysis.52–54 The idea

is to reconstruct a complex network from spatially embedded

time series (in case of climate, e.g., from a surface air tem-

perature field) by measuring the interrelationship Ci;j

between these time series. The location of the nodes can be

arbitrary (e.g., weather stations when using instrumental

data) or grid points (e.g., when using model or reanalysis

data). In unweighted networks, links represent high correla-

tions between the time series belonging to the nodes, simply

considered by applying a threshold T on the interrelation ma-

trix C (that could be, e.g., Pearson correlation)

Ai;j ¼
Ci;j if Ci;j > T;

0 else:

�
(9)

Such networks can be undirected or unweighted (as in Eq.

(9)), but also directed or weighted.

Within the climate context, such network approach has

been applied to study, e.g., climate communities,51,55 the

impact of the El Ni~no/Southern Oscillation,56 major heat

transport pathways and spatio-temporal scales,52,57 external

and internal atmospheric forcing,58 to create early warning

indicators of critical regime shifts,53 or even for model inter-

comparison.59,60 When using Pearson correlation for describ-

ing the interrelationships Ci;j between the nodes, then the

node degree is obviously related to the first EOF.61 Other

network measures, such as betweenness centrality, provide

further information that cannot be captured by the EOF

analysis.57

In general, interrelationships between spatially located

time series cannot be considered to be only linear. In order

to examine nonlinear interrelations, information based

measures (e.g., mutual information) were suggested for net-

work reconstruction.62–66 In particular, when investigating

climatological or meteorological phenomena, we often face

event-like data, such as daily (or hourly) rainfall series or

extreme events time series. For such kind of data,

Spearman rank correlation could be used.67 However, an

even more powerful approach for such data is the event

synchronization approach.68,69

FIG. 5. (a) Alkenone paleothermometry based SST estimates for the South

China Sea and (b) corresponding transitivity coefficient T . Dashed lines

mark major climate shifts discussed in the text; the gray shading marks the

confidence interval of 90%.
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Event synchronization was developed to investigate the

synchronous activity of the neurons in the brain.68 It simply

counts the number of temporally coinciding events in two

event series x1 and x2 by allowing small deviations between

the occurrences of the events, i.e., a dynamical delay

between them. Let e1ðmÞ and e2ðnÞ be the time indices

when events appear in x1 and x2 and m; n ¼ 1;…; l the num-

ber of a specific event (l is the total number of events in the

event series). The waiting time between an event m in x1 and

event n in x2 is d1;2ðm; nÞ ¼ e1ðmÞ � e2ðnÞ. If this waiting

time d1;2ðm; nÞ is smaller than some dynamical delay

sðm; nÞ, the two events e1ðmÞ and e2ðnÞ are considered to

occur synchronously. The dynamical delay sðm; nÞ is the half

of the minimal waiting time of subsequent events in both

time series around event e1ðmÞ and e2ðnÞ and not larger than

a given maximal delay smax, i.e.,

s m; nð Þ ¼ min
fd11 m;m� 1ð Þ; d11 m;mþ 1ð Þ; d22 n; n� 1ð Þ; d22 n; nþ 1ð Þ; 2smaxg

2
: (10)

As soon as jd1;2ðm; nÞj � sðm; nÞ (or 0 < d1;2ðm; nÞ � sðm; nÞ), we count it as undirected (or directed) synchronization of

events e1ðmÞ and e2ðnÞ

Sðm; nÞ ¼
1 if jd1;2ðm; nÞj � sðm; nÞ
ðor 0 < d1;2ðm; nÞ � sðm; nÞ in the directed caseÞ;

0 else:

8><
>: (11)

Now we can define the event synchronization E between the

two event series as the sum of S(m, n)

E ¼
X
m;n

Sðm; nÞ: (12)

This measure has the advantage that it can quantify interrela-

tions between event-like time series and that it allows for a

flexible (dynamical) delay between the events. This is partic-

ularly different from the standard approach, where a consid-

ered lag (e.g., for cross-correlation) is constant and fixed at

each time point.

Applying the event synchronization approach, Eq. (12),

for comparing spatially embedded time series xi and xj at

locations (nodes) i and j a network can be reconstructed in

the same way as in Eq. (9). For selecting the threshold T sev-

eral approaches are possible. One possibility is based on a

significance test, where block bootstrapping can provide an

empirical test distribution of the values of E and a prese-

lected confidence level (e.g., 2% or 5%) provides the thresh-

old T.70 This procedure ensures that the network links

represent only the strongest interrelations between the nodes.

Event synchronization based complex networks have

been successfully used to investigate spatio-temporal patterns

during the Indian Summer monsoon54,69,71 or to study the ori-

gin and propagation of extreme rainfall in South America.70,72

Although there is an obvious dominance of climate applica-

tions, this approach is also promising for other fields, like

plasma, turbulence, cardiological, or brain research.

VI. DEVELOPING A PREDICTION SCHEME FOR
EXTREME EVENTS

To illustrate the potential of the complex network

approach in the context of extreme climate events, we apply

the approach on South American extreme rainfall data and

use the network topology for developing a prediction scheme

for extreme rainfall.70 During the Australian summer season

(December, January, February), the differential heating

between land and ocean amplifies the trade winds that

enhance transport of moisture from the tropical Atlantic into

the tropical Amazonian Basin, and thus, causes extended

rainfall.73 Due to evapotranspiration, wind, and the Andean

orographic barrier, this water is first further transported west-

wards, and later along the Andean mountain ridge, south-

wards towards the subtropics (Fig. 6). Here, a frontal system

converging from the South and related with Rossby waves is

responsible whether the moisture transport moves further

eastward into the southeastern (SE) Brazil or towards the SE

South America (SESA, central Argentinian plains).74 This

variability of the exit moisture regions is also called South

American rainfall dipole.75

The spatio-temporal rainfall data used in our example

are collected from the satellite-based Tropical Rainfall

Measurement Mission (TRMM 3B42 V7, (Ref. 76)) with 3-

hourly temporal and 0:25� � 0:25� spatial resolution. In the

following, we will restrict the analysis to the Australian

summer season and consider extreme rainfall events that are

defined locally by rainfall exceeding the 99th percentile.

Using directed event synchronization, Eqs. (11) and

(12), of the rainfall extremes we reconstruct weighted and

directed networks and calculate the in-strength Sin
i and out-

strength Sout
i , Eq. (2). Now we define the network divergence

as the difference between in- and out-strength

DSi ¼ Sin
i � Sout

i : (13)

Negative values of DS indicate the source regions of extreme

events whereas positive values indicate sinks. Surprisingly,

we find negative DS values within the SESA region (Fig. 7).
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This means that this region is a source region of extreme

rainfall although it is one of the exit regions of the low-level

moisture flow from the Amazon region. Now it would be

interesting to see to which other places the extreme rainfall

from the SESA region will propagate. For this purpose, we

consider the in-strength of all nodes conditioned by the

source region SESA and call it impact I iðRÞ of region R on

node i

I i Rð Þ :¼ 1

jRj
X
j2R

Aij: (14)

jRj is the number of nodes within the region of interest R
(here SESA). Casually speaking, I iðRÞ measures the amount

of extremes at site i that have their origin in region R.

For the SESA region, we find high values of I iðSESAÞ
not only in the direct vicinity of SESA but also at the eastern

slopes of the Central Andes (Fig. 8). This result suggests that

extreme rainfall at the Central (in particular, Bolivian)

Andes will precede after rainfall events in the SESA region.

The mechanism behind this is an interplay between the

orographic barrier, frontal systems approaching from the

South, and the southward moisture flow from the Amazon

basin resulting in the establishment of a wind channel attract-

ing warm and moist air from the western Amazon region

into the SESA region.70 Here, it collides with the cold air of

the frontal system from the South and produces extended

rainfall. This rainfall propagates together with the northern

migration of the frontal system and is bounded in the West

by the Andean orography.

This fact can be used for defining a simple but very effi-

cient prediction scheme as explained in detail by Boers

et al.70 The precondition is a low-pressure anomaly in the

SESA (geopotential height anomaly <� 10 m). As long as

this condition is fulfilled, during two days extreme rainfall

will appear at the eastern slopes of the Central Andes (in the

range along the band that is marked by high values of

I iðSESAÞÞ. This rule allows positive prediction rates of 60%

and during El Ni~no conditions even of 90%.

FIG. 7. Network divergence DS of extreme rainfall network during Austral

winter season. Negative values indicate source and positive values sink

regions of extreme rainfall.

FIG. 8. Impact I iðRÞ of a region (here SESA, marked by the box) in form of

contributing propagated extreme rainfall.

FIG. 6. Key features of the South American monsoon system. The blue

arrows indicate major moisture transport pathways.
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VII. CONCLUSION AND OUTLOOK

In this paper, we have presented an overview of a com-

plex network based method for the analysis of continuous

dynamical systems. These methods are mainly basing on two

concepts: (i) recurrence networks and (ii) event synchroniza-

tion. The first one combines recurrence, a basic principle in

dynamical systems, with complex networks. This way a rich

variety of complex networks characteristics become avail-

able for time series analysis. Its potential has been demon-

strated for the identification of sudden transitions from even

short time series. The second one identifies events occurring

almost synchronized in time in different spatial regions and

uses then complex networks for the study of especially

spreading and interactions of extreme events. We have

uncovered with this technique a mechanism for the forma-

tion of extreme floods in the Andes which has led to a very

efficient framework for predicting such extreme events.

Additionally, this methodology can be used as a new tool for

a critical comparison of different models of, in particular,

natural systems. Such complex network approaches have a

strong potential for various fields, ranging from turbulence,

via neuroscience and medicine to socio-economy.

However, there are several open problems to study in

future. One direction is to extend these concepts to multivari-

ate (spatio-temporal) data, e.g., different climatological or

physiological parameters. A further challenge is the study of

interacting systems of possible very different nature, e.g., cli-

mate and renewable energy generation or climate and health,

from the network perspective. Another problem is a compre-

hensive mathematical foundation of these techniques includ-

ing an appropriate test statistics. Thus, we expect a pursuing

and lively development and an increasing number of applica-

tions of these rather new concepts in the next future.
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