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Long-range correlated processes are ubiquitous, ranging from climate variables to financial time series. One
paradigmatic example for such processes is fractional Brownian motion (fBm). In this work, we highlight the
potentials and conceptual as well as practical limitations when applying the recently proposed recurrence network
(RN) approach to fBm and related stochastic processes. In particular, we demonstrate that the results of a previous
application of RN analysis to fBm [Liu ez al., Phys. Rev. E 89, 032814 (2014)] are mainly due to an inappropriate
treatment disregarding the intrinsic nonstationarity of such processes. Complementarily, we analyze some RN
properties of the closely related stationary fractional Gaussian noise (fGn) processes and find that the resulting
network properties are well-defined and behave as one would expect from basic conceptual considerations. Our
results demonstrate that RN analysis can indeed provide meaningful results for stationary stochastic processes,
given a proper selection of its intrinsic methodological parameters, whereas it is prone to fail to uniquely retrieve

RN properties for nonstationary stochastic processes like fBm.
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I. INTRODUCTION

Many tools of nonlinear time series analysis are based on
the theory of (deterministic) dynamical systems [1,2]; i.e.,
the time evolution of the system under study is considered in
some phase space spanned by the relevant dynamical variables.
Among others, the recurrence of previous states in phase
space [3] is a particular fundamental property of dynamical
systems with a finite phase space volume (e.g., attractors of a
dissipative system, Hamiltonian systems with a bound phase
space, or even stationary stochastic systems in finite time).
The concept of recurrence implies that the dynamics of a
system returns to an arbitrarily small neighborhood of any
of its previously assumed states within a finite (but possibly
large) amount of time. For deterministic-chaotic systems, this
is guaranteed by the invariance of the set which forms the
support of the attractor [2,4].

Recently, complex network representations have been
proposed to characterize statistical properties of the underlying
system associated with its geometry in phase space [5—7]. For
this purpose, a proper transformation from the set of state
vectors in phase space to a complex network representation
is required. In this work, we focus on the recurrence network
(RN) approach, where the vertices of the network are given by
the individual state vectors sampled from a given trajectory,
whereas network connectivity is established according to their
mutual closeness in phase space (i.e., whether or not their
mutual distance is smaller than a predefined threshold ¢).
Mathematically, given two state vectors x; and x; (where i and
J denote time indices associated with two possibly different
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points #; and ¢; in time), the adjacency matrix A; ; of the RN
is defined as

Ajj(&) = O(e — [IXi —X;|) = 8i,;, )

where ©(-) is the Heaviside “function,” ¢ is the prescribed max-
imum distance, || - || a norm in phase space (e.g., Euclidean,
Manbhattan, or maximum norm), and §; ; is the Kronecker §. RN
analysis originates from the recurrence plot concept [8,9] and
its basic assumption is, as the term indicates, the unambiguous
presence of recurrence behavior.

Stationarity is a condition required by most tools of both
linear and nonlinear time series analysis [1], including the
RN approach. A signal is (strongly) stationary if all joint
probabilities of finding the system at some time in one state
and at some later time in another state are independent of
time within the observation period. The minimal requirement
for most approaches is weak stationarity, that is, mean and
variance of the underlying process are constant and the
auto-covariances depend only on the time lag.

In turn, many real-world processes are nonstationary. For
instance, climate or hydrological data often show seasonal
variations. Economic and financial time series typically exhibit
(irregular) cycles of all orders of magnitude. Nonstationary
behaviors can be expressed in terms of trends, cycles, random
walks, or combinations of the latter three. Often, long-range
dependence and self-similarity are involved. One classical
example of a class of such nonstationary processes is fractional
Brownian motion (fBm), which has long-range temporal
correlations as its defining property [10]. Specifically, for
an fBm process {X;}, the variance scales as 6)2(’ x 2 (.,
nonstationarity in variance). The long range of the process
is characterized by the Hurst exponent H when positively
correlated (persistence) for 1/2 < H < 1, while suppressed
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(antipersistence) for 0 < H < 1/2. H = 1/2 corresponds to
the classical Brownian motion.

Nonstationarity provides a great challenge to both linear
and nonlinear time series analysis, including complex network
approaches to analyze time series data. There are some meth-
ods that are specifically tailored to cope with nonstationarity.
Among others, detrended fluctuation analysis (DFA) [11-13]
and related techniques have been widely used for estimating
the Hurst exponent from nonstationary model data as well
as real-world applications from various fields (e.g., [14,15]).
In contrast, regarding the RN approach, nonstationarity due
to time-dependent system parameters can cause a systematic
loss of recurrences. Anyway, RNs have been recently proposed
to characterize fBm [16]. Notably, the results of the latter
study have been obtained only numerically and not explained
theoretically so far. However, as we will demonstrate in
the course of this work, they have rather limited physical
interpretation. More generally, we will discuss how spurious
results and pitfalls of RN analysis may be produced when
this method is inappropriately applied to study fBm or other
nonstationary stochastic processes, and that the results of
Ref. [16] are mainly of such spurious nature.

This paper is organized as follows: In Sec. II, we discuss
the construction of RNs from nonstationary fBm data. We
demonstrate that it is not possible to define generally ap-
plicable embedding parameters as required for a systematic
investigation of the potential effect of H on the RN properties.
Specifically, we provide numerical evidence that the latter
properties (for given embedding parameters) depend explicitly
on the system size, which generally does not apply to stationary
systems provided that the sample size is large enough and
sampling artifacts as well as transient behavior are avoided.
Subsequently, in Sec. III, we turn to the RN properties
of the closely related fractional Gaussian noise (fGn), the
incremental process associated with fBm, which is stationary.
For the latter, the dependence of the network characteristics
on H is—in contrast to fBm—well-behaved. However, the
considered embedding dimension still plays an important
role when characterizing the RN structures. All results are
summarized and further discussed in Secs. IV and V.

II. RN ANALYSIS OF FBM PROCESSES

The application of RNs to the analysis of nonlinear time
series implicitly assumes the validity of two fundamental
assumptions: (i) the intrinsic model parameters and statistical
characteristics of the system remain constant over time and
(ii) the system under study is sufficiently sampled (i.e., time
resolution and time series length are sufficient to approximate
the system). The first assumption is equivalent to the condition
of stationarity, while the second one mainly requires a proper
coverage of phase space by a suitably embedded time series.
Both requirements are consequences of the fact that we
approach the system’s dynamics by a single finite time series,
which is common to time series analysis problems. Note
that there have been attempts to characterize nonstationary
systems by means of RN analysis using sliding windows
approaches, which have provided interesting results regarding
the presence of bifurcation or other qualitative changes in
the dynamical regime [17,18]. However, these considerations
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have been related to systems with supposed time-varying
parameters rather than nonstationary stochastic systems where
the parameters are constant. Therefore, this approach might not
be helpful in the present context dealing with nonstationary
variance.

In the following, we will focus on two important algorithmic
parameters of the RN approach, embedding dimension and
delay. The impact of other parameters such as recurrence
threshold ¢, sampling rate, or even the selection of variables
in multidimensional systems has been extensively discussed
elsewhere [19,20] for deterministic systems, but not yet for
stochastic ones. For the sake of brevity, we present only a
brief corresponding discussion here. Specifically, since we
consider discrete-time univariate stochastic processes, only &
is relevant, but can be treated mostly alongside the theoretical
considerations presented in Ref. [21].

By means of conceptual considerations as well as numerical
experiments, in the remainder of this section, we will address
the following three questions: (i) Can we use embedding
techniques for fBm (or, more generally, nonstationary stochas-
tic processes)? (i) What are the intrinsic limitations of this
approach? (iii) Which implications do these limitations have
for RN analysis?

A. Time-delay embedding: Theoretical considerations

As the most prominent subject of recent studies involving
RN analysis [6,7,22-24], chaotic attractors exhibit some
complex geometric structure in their respective phase space,
motivating the term “strange attractors.” Typically, this struc-
ture is associated with self-similar (fractal) characteristics.
(Notably, there are examples for strange nonchaotic attractors
as well [25,26].) Strange attractors emerge in deterministic
dynamical systems, and the resulting asymptotic set of state
vectors approached by the system forms some finite object in
phase space. The dynamical properties of the system and the
geometric characteristics of the attractor are commonly closely
interrelated [2,27].

Taking this idea further, it is a natural approach to describe
dynamical systems of whatever kind by a geometric object in
some appropriately defined phase space. This is the basis of RN
analysis, which takes the existence of such a phase space (at
least in an abstract sense) as a fundamental requirement. Given
this fact, RN analysis may be applied if the available data series
provides enough information to describe (or approximate)
the geometric structure of the sampled trajectory sufficiently.
Specifically, transient dynamics has to be excluded, data length
and sampling frequency need to be appropriate, and the data
object in phase space needs to be dynamically invariant or at
least bound in phase space with stationary properties.

Given a scalar time series {x;} (i =1,...,N), in order
to apply RN analysis we first have to convert the data
into state vectors in some appropriately reconstructed phase
space. A common method from dynamical systems theory
to define such a phase space is time-delay embedding [28].
In fact, the concept of a phase-space representation rather
than a “simple” time or frequency domain approach is the
hallmark of many methods of nonlinear time-series analysis,
requiring embedding as the first step. Here, we define x; =
(Xi,Xi—z,*+* ,Xi—m—1)r) to obtain an m-dimensional time-
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delay embedding of x; with embedding delay t for obtaining
state vectors in phase space [28]. It has been proven that
for deterministic dynamical systems, the thus reconstructed
phase space is topologically equivalent to the original space if
m > 2Dp, where Dy is the fractal dimension of the support
of the invariant measure generated by the dynamics in the true
(but often at most partially observed) state space. Note that
Dy can be much smaller than the dimension of the underlying
original (physical) phase space spanned by all relevant system
variables.

From a practical perspective, when analyzing a scalar time
series of whatever origin, neither embedding dimension m
nor delay t are known a priori. The false nearest-neighbors
(FNN) method [29] was introduced to derive a reasonable
guess of how to choose m based on studying whether or not
proximity relations between state vectors are lost when the
embedding dimension is successively increased. If a reason-
able embedding dimension is found, all dynamically relevant
coordinates of the system are appropriately represented, so
that all proximity relationships are correct and not due to
lower-dimensional projection effects. In a similar spirit, the
first root of the autocorrelation function (ACF) of a time series
often yields a good estimate for 7. A more refined method is
to use time-delayed mutual information [30].

While the aforementioned approaches to determining m and
7 commonly work well for data from deterministic dynamical
systems, applying them to fBm leads to severe conceptual
problems:

On the one hand, we note that the concept of a fractal
dimension has two aspects when being applied to a stochastic
process instead of a deterministic dynamical system. From the
phase space perspective, the fractal dimension is commonly
defined as some scaling property described by a parameter
that converges to a fixed value as N — oo and m is sufficiently
high. This fact is used, for example, in the famous Grassberger-
Procaccia algorithm for estimating the correlation dimension
D, of chaotic attractors [31]. However, according to the latter
viewpoint, stochastic behavior is characterized by an absence
of such convergence, formally leading to D, = oco. Finite
estimates of D, are spurious due to the finite amount of data
used. The latter result is reasonable since an infinite amount
of data (i.e., the innovations at each time step) are necessary
to fully describe the evolution of a stochastic process.

As an alternative perspective, the fractal dimension of a
stochastic process is often defined via the fractal dimension
of its graph. For a one-dimensional process, this graph is
represented in the (¢, x) plane, and its dimension is hence bound
from above by Dg = 2. Specifically, for fBm with a Hurst
exponent H € (0,1), it has been shown that Dg =2 — H,
taking the different scaling behavior in association with the
process’ self-similarity into account [32,33]. However, the
latter aspect is clearly distinct from the notion of fractal
dimensions used in the phase space context. Thus, from a
conceptual perspective, the embedding dimension should be
chosen infinitely large. In turn, finite m will necessarily cause
spurious results since the full complexity of the system’s
(discrete) trajectory is not captured.

On the other hand, the embedding delay t is not considered
in the mathematical embedding theorems for deterministic
dynamical systems. Embeddings with the same embedding
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dimension m but different t are topologically equivalent in
the mathematical sense [1], but in reality a good choice of
t facilitates further analysis. If t is small compared to the
relevant internal timescales of the system, successive elements
of the delay vectors are strongly correlated. This leads to the
practical requirement that the embedding delay should cover
a much longer time interval than the largest characteristic
timescale that is relevant for the dynamics of the system.
However, in fBm arbitrarily long timescales are relevant due
to the self-similar nature of the process. This makes finding
a feasible value of 7 a challenging (and, regarding formal
optimality criteria, even theoretically impossible) task.

In summary, we emphasize that in the case of nonstationary
fBm, the fundamental concepts of phase space reconstruc-
tion and low-dimensional dynamics do not apply (not even
approximately) anymore. Therefore, any attempt to applying
RN analysis to fBm directly necessarily yields results that
hold only for the particular embedding parameters chosen
and the specific length of the given time series [16]. We will
demonstrate some numerical results illustrating these points in
more detail in the following.

B. Numerical results

Estimating the ACF of a stationary time series at lag t
is straightforward as long as 7 is small compared to the
total length of the time series, N. For stationary stochastic
processes, the functional form and rate of decay of the ACF
depends on the specific properties of the process. Specifically,
for a stationary long-range correlated process, the ACF decays
like a power-law with the characteristic exponent being
directly related with H [34].

In contrast to this, for the nonstationary fBm sample
estimates of the ACF decay extremely slowly beyond the
“normal” behavior of stationary long-range-dependent pro-
cesses, which can be seen clearly in Fig. 1 (in fact, the
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FIG. 1. (Color online) (a) Three example trajectories of fBm with
H = 0.7 and (b) the corresponding ACFs. (c) Average ACFs taken
over 200 independent realizations of fBm with the same Hurst
exponent H. Different line colors correspond to different values of
H from 0.1 to 0.9 in steps of 0.1 (from bottom to top at small 7).
In all cases, the time series length has been set to N = 2'3. (d) As
described for panel (c) for N = 215,
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concept of ACF is not appropriate for describing the serial
dependence structure of nonstationary processes). Specifically,
we show three example trajectories of fBms with H = 0.7,
N = 2" and their corresponding naive ACF estimates. Due
to the stochastic nature of the process, the decorrelation time
(which can be expressed as ti/, or 7o, i.e., the time lags
after which the estimated ACF has decayed to 1/e or 0.1,
respectively) depends on the specific realization of the process
[Fig. 1(b)]. Even more, the corresponding ensemble spread
does not exclusively originate from the finite sample size, but
is enhanced by the inherent nonstationarity of fBm.

Taking an ensemble average over a variety of independent
realizations, we numerically observe that the location of the
first root of the estimated ACF hardly depends at all on the
Hurst exponent H, which is shown in Fig. 1(c). However,
as expected from theoretical study of fBm, it appears to
systematically increase as the length of time series is increased
to N =2 [Fig. 1(d), note the different scales in Figs. 1(c)
and 1(d)]. More specifically, if we extend the length of the
realization by a factor of 4, the first root of the ACF estimate
also shifts to a four-times-larger lag.

Irrespective of the sample size N, the spectrum of the fBm
process has a significant amount of energy in frequencies
that are not much larger than 1/N (i.e., in the low-frequency
part). This explains why the first root of the ACF estimate
appears at larger time lags as N is increased. Consequently,
the decorrelation time increases for longer time series. From
the viewpoint of time-delay embedding (given it is performed
disregarding the conceptual concerns detailed above), this
hampers the proper choice of the embedding delay t. In turn,
the increasing persistence yields an increase in 71/, and 7o
as well, as can be seen from the mutual offset of the different
lines in Figs. 1(c) and 1(d).

To further illustrate the practical consequences of the
observed behavior of the sample ACF when using embedding
techniques, Fig. 2 displays the same realization of a fBm
embedded in a two-dimensional space with different embed-
ding delays r. Notably, the two embedding components are
highly correlated for small t but less correlated for larger t,
leading to an entirely different geometric shape of the data
object in the reconstructed phase space. The same behavior
will be necessarily observed in higher embedding dimensions.
As a consequence, a “practical” choice of the embedding
delay for fBm should be independent of H, but depend on
N. The numerical results presented above suggest T &~ 2000
for N = 2" and t ~ 8000 for N = 2'3, possibly generalizing

(a) &o (b) 8o
40 40
[} =)
o 0
T 0 T 0
4 3
—40 —-40
% -40 40 80 % —40 40 80

0 0
x(t) x(t)

FIG. 2. Example trajectory of a fBm with H = 0.7 in a two-
dimensional reconstructed phase space with embedding delays (a)
7 =100 and (b) T = 750 (N = 21).
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FIG. 3. (Color online) Fraction of false nearest-neighbors (FNN)
for (a) fBm and (b) fGn with H = 0.7 and different time series lengths
N (black (lower line): N = 1000, blue (middle): N = 21000, and
red (upper line): N = 31000).

to T &~ N /4. This is a rather large value, clearly far larger than
those used by Liu et al. [16] (t ~ 10...20 for N = 212y,

The determination of a reasonable embedding dimension m
is often achieved by the FNN method [29]. The criterion for the
embedding dimension being high enough is that the fraction
of false nearest-neighbors is zero or at least sufficiently small.
Figure 3(a) displays our corresponding numerical results for
fBm for three different lengths, which consistently suggest
m=4.

C. Choice of the recurrence threshold

An appropriate choice of the recurrence threshold ¢ has at-
tracted great interest in the literature on RNs [19,21,22,35,36].
The most wide-spread procedure is fixing the resulting recur-
rence rate p (i.e., the fraction of recurrences) and adjusting
& accordingly. As a rule of thumb, p is often taken between
about 0.01 and 0.05 for typical RN sizes of a few thousand
vertices [8,19], presenting a tradeoff between the necessity of
avoiding a largely disconnected network (too small ¢) and the
interest in the geometric fine structure of the system in its phase
space, which is hidden when considering too-large spatial
domains. The latter requirement has been more precisely
formulated in Ref. [21], emphasizing on the empirically
expected relationship for the RN’s average path length, L(g) ~
e~!, which has been numerically confirmed [7,21].

Recently, Refs. [16,36] suggested using the percolation
threshold of the random geometric graph constructed from
the given distribution of observed state vectors in phase space
as a suitable lower bound to ¢. As shown by Ref. [21],
the scaling of the RN’s average path length breaks down if
¢ falls below the limit for which the RN decomposes into
disjoint components, which is a necessary consequence of
the fact that the averaging involved in the calculation of
L is commonly considered only over pairs of vertices that
are mutually reachable [7,21]. However, when disregarding
shortest-path-based RN characteristics, there is no reason why
one should restrict oneself to connected networks, since other
graph properties are hardly affected by the presence of more
than one component. In particular, requesting the existence
of a single component can lead to rather large ¢ due to the
presence of outliers in the data [19], especially in case of
stochastic processes.

In this spirit, we recommend fixing p at some reasonable
value instead of tuning ¢ according to the percolation thresh-
old. Notably, in this case results obtained for different data
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sets still correspond to different ¢ when they originate from
independent realizations of stochastic processes. However, the
problem of the dependence of some network measures on the
number of edges in the RN is relieved in this case. Note that for
fBm, due to the nonstationarity in variance the spread of state
vectors in any reconstructed phase space necessarily grows
with the sample size N.

III. RN ANALYSIS OF FGN PROCESSES

Based on our discussion presented in the previous section,
we conclude that the results recently presented in Ref. [16]
hold only for the particular choices of the algorithmic param-
eters (for instance, length of time series, embeddings, etc.),
showing limited physical interpretations. Moreover, using
nonstationary time series data necessarily produces unreliable
and spurious results.

One solution to the problem could be transforming the
process in a way so that it becomes stationary. In recent
applications to nonstationary real-world time series [17,18],
the authors have removed nonstationarities in the mean by
removing averages taken within sliding windows from the data.
In the particular case of fBm, where nonstationary affects the
variance, the underlying stochastic process can be transformed
into a stationary one by a first-order difference filter, i.e.,
by considering its increments x;;; — x;. The transformed
series is commonly referred to as fractional Gaussian noise
(fGn) in analogy with the classical Brownian motion arising
from an aggregation of Gaussian innovations. Notably, fGn
retains the long-range correlations and Gaussian probability
density function (PDF) from the underlying fBm process.
For illustration purposes, three independent realizations of
fGn with the same characteristic Hurst parameter H = 0.7
are shown in Fig. 4(a). Visual inspection clearly suggests the
absence of nonstationarity in both mean and variance.
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FIG. 4. (Color online) As described in the legend of Fig. 1
for fGn obtained by differencing the previous fBms. In (b), the
additional green (smooth) line represents the averaged ACF over
200 independent realizations.
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A. Embedding of fGn processes

Because of its stationarity, for fGn the estimated ACF
shows a much faster decay and less ensemble spread than
for fBm [Fig. 4(b)]. Therefore, disregarding the conceptual
limitations of this approach when considering stochastic
processes, embedding parameters can be chosen more properly
for fGn than for fBm. Concerning embedding delay t, one
easily sees that T = 1is anatural choice for H < 0.5 according
to the classical ACF criterion, since the corresponding process
is antipersistent. Specifically, in this case the ACF drops to
a negative value at lag one [as shown in Fig. 4(c)], i.e.,
subsequent values are negatively correlated—the defining
property of antipersistence. In contrast, for H > 0.5 we use
the decorrelation time 7y ; as an estimator for embedding delay
7, which increases with rising H as one would expect since
larger H indicates a longer temporal range of correlations.

As before, the embedding dimension m is chosen via the
FNN method. In Fig. 3(b), we show the fraction of false nearest
neighbors as m is varied. Unlike for fBm, our results suggest
that the optimal value m rises with an increasing length of
the time series. In general, considerably higher values of m
are suggested than for fBm, which matches the theoretical
expectations more closely. However, due to the finite sample
size, we still find a vanishing FNN rate at a finite embedding
dimension, which is probably related to a lack of proper
neighbors when high dimensions are considered.

B. Expected RN properties of stationary Gaussian processes

Given a proper representation of the considered system
by its phase-space reconstruction, the RN properties can
be computed analytically from estimates of the underlying
m-dimensional state density p(x) [21]. In this spirit, an
appropriate representation requires that the sample size is
sufficient to cover all relevant parts of phase space, and that the
sampling interval is reasonably chosen (i.e., to avoid sampling
times coprime with natural frequencies of continuous-time
systems). For fBm, the latter condition cannot be fulfilled due
to the nonstationarity of the process, whereas it is technically
met for fGn processes.

Making use of the analytical results of Ref. [21], we expect
that the degree distribution p(k) of the obtained RNs should
be the same for any stationary process with Gaussian PDF
given the same embedding dimension m. Specifically, this
distribution has a complex shape [37] that is independent of
H [note that we may fix the mean degree (k) by selecting a
given p = (k)/(N — 1)]. In fact, this invariance is a direct
consequence of the fact that the geometry of the data in
phase space is not affected by H when considering sufficiently
decorrelated components, a requirement that has not been met
by Ref. [16] in their recent investigation of fBm as discussed
above.

We emphasize again that the above considerations require
a stationary Gaussian process and an embedding for which
all components are as close as possible to being linearly
independent. Otherwise, dependencies between the compo-
nents of the embedding vector lead to a deformation of the
data distribution in phase space and, hence, possibly different
geometric properties such as a too small effective dimension
(i.e., smaller than m).
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FIG. 5. Dependence of (a) RN transitivity 7 and (b) global
clustering coefficient C for f{Gn on the Hurst exponent H for different
embedding dimensions (m = 3: 0, m =4: <, m = 5: %, m = 6: ),
taken over 200 independent realizations and using a RN edge density
of p = 0.03. The embedding delay has been kept at the same value
for all realizations with the same H according to the decorrelation
time 7o,. In all cases, N = 2'2.

C. Transitivity properties

In Ref. [27], we have recently demonstrated that the RN
characteristics transitivity 7 and global clustering coefficient
C provide relevant information for characterizing the geometry
of the resulted RNs, which has been numerically supported
for various deterministic-chaotic systems. However, given the
theory presented in Ref. [21], the corresponding considerations
can be extended to any kind of process or, more generally,
any kind of random geometric graph [38] with a given state
density p(x). Here, we exemplify these considerations for the
case of fGn and examine how the transitivity properties of RNs
arising from such stationary long-range correlated stochastic
processes depend on the characteristic Hurst exponent as well
as the underlying algorithmic parameters.

For H > 0.5, Fig. 5 shows that for a given embedding
dimension m, both transitivity and global clustering coefficient
do not depend on H. Following our above considerations,
this is expected since the m-dimensional Gaussian PDF of
the process does not depend on H, and the components
are sufficiently decorrelated so that any marked geometric
deformation of the embedded data is avoided. Hence, we
construct RNs from the same PDF in all cases. Some minor
deviation from the constant values can be observed at H close
to 1, i.e., close to the nonstationary limit case represented by
1/f noise, which might be due to numerical effects since the
corresponding processes are harder to simulate than such with
moderate H.

For H < 0.5, the behavior changes markedly: both 7°
and C rise with decreasing Hurst exponent. The reason for
this behavior is that t = 1 is the recommended, but still
not “optimal” embedding delay for antipersistent processes.
Specifically, the closer H approaches 0, the stronger is the
anticorrelation at lag one. This means that with the same
embedding delay t =1, the smaller H the stronger are
the mutual correlations between the different components of
the embedding vector. As a consequence, the state vectors do
not form a homogeneous m-dimensional Gaussian PDF with
independent components in the reconstructed phase space,
but are stretched and squeezed along certain directions, so
that the resulting geometric structure appears significantly
lower-dimensional than m.

PHYSICAL REVIEW E 91, 022926 (2015)

(a) = ()

= =
N g \ N p0¢ \
p=1% *, p=3% ™,
1070.8 \ 10705 .
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
dimension m dimension m

FIG. 6. Dependence of RN transitivity 7 and global clustering
coefficient C on the embedding dimension m for fGn with H = 0.7
(averages over 200 realizations) for two different values of p [(a)
p = 0.01, (b) p = 0.03]. The dashed line corresponds to the expected
analytical values 7 = (3/4)™ for m-dimensional Gaussian processes.
In all cases, N = 2'2.

Given that 7 (C) is related to a geometric notion of the
global (average local) dimension of the data [27], a reduced
dimensionality of the data object results in a positive bias of
both properties, which is exactly what we observe here (Fig. 5).
Following the latter considerations, it is also easy to explain
why both 7 and C systematically decrease with increasing
embedding dimension m (Figs. 5 and 6). Specifically, for a
random geometric graph in m dimensions (computed with
the maximum norm as also used in this work), one can
show analytically that 7 = (3/4)™ [27] (similar considerations
apply to C [21]). For a fixed sample size N, however,
this theoretical expectation is only met at low embedding
dimensions m, whereas we find a systematic upward bias of
both 7 and C as m increases (Fig. 6). We explain the latter
observation by the finite sample size together with the problem
that proximity relationships become more ambiguous in higher
dimensions when fixing a certain value of p. Therefore, it can
be expected that the bias should be systematically reduced
when using larger sample sizes N together with smaller edge
densities p [for the latter effect, cf. Figs. 6(a) and 6(b)].

It would be straightforward to extend this kind of analysis
to other network measures, since the available analytical
description of RNs allows for their calculation as well [21]. We
leave a corresponding discussion as a subject of future work.

IV. DISCUSSION

The considerations presented so far have been restricted
to the case of long-range correlated processes with Gaussian
distribution to highlight several key problems that have been
overlooked in Ref. [16]. We expect that they should remain
valid as long as general processes with short (exponential)
tails are considered. However, there are some additional
concerns that arise when focusing specifically on stochastic
processes with heavy tails (i.e., power-law distributions). In
the following, we provide a brief discussion of the relevance
of distributional features to the RN analysis:

First, both embedding dimension and embedding delay
are crucial factors. For a stochastic system, an appropriate
phase space reconstruction would in fact require an infinite-
dimensional embedding. This is a general conceptual problem
of RN analysis of stochastic processes independent of their
specific correlation properties and distribution.
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Second, the requirement of stationarity appears to be the
most relevant factor when choosing the embedding delay.
As we have shown, for nonstationary fBm the embedding
delay cannot be properly determined, whereas this problem
is relieved for stationary fGn. Dealing with heavy-tailed
processes such as nonstationary (fractional) Lévy motion or
stationary (fractional) Lévy noise, the choice of embedding
delay is additionally affected by the problem that mean and
variance of the process are not finite, so that the corresponding
auto-correlation function is not well-defined.

Finally, as an argument that is specific to RN analysis,
we emphasize that almost all RN properties can be ana-
Iytically determined from the distribution of the underlying
process [21]. However, for many basic network properties
this analytical computation involves the evaluation of certain
integrals containing the distribution function of the process,
which might not converge in case of heavy-tailed distributions.
In such cases, we expect that in addition to the possibly
ill-defined embedding parameters, numerical estimates of RN
properties may depend crucially on the network size and
recurrence threshold. The investigation of this expectation will
be a subject of future work.

V. CONCLUSIONS

By a critical reassessment of previous work [16], we have
identified several sources of errors when applying recurrence
network analysis (or, in a similar way, other concepts based on
recurrences in phase space) to long-range correlated stochastic
processes. In summary, the main conclusions of this analysis
are as follows:

(1) RN analysis is based on phase space concepts originated
in the theory of deterministic dynamical systems. Therefore,
its potential application to stochastic processes requires special
care.

(ii) The RN theory [21,35] holds only for stationary
processes. A direct application of RN analysis to typical
nonstationary processes (in particular fBm), therefore, has to
fail, since the PDF of the process in the considered phase space
changes with time. Without correcting for nonstationarity by
a proper transformation of the series, the obtained results are
commonly spurious.

(iii) A major problem associated with nonstationary pro-
cesses is that embedding cannot be properly defined. In
particular, the necessary selection of an embedding delay
is ambiguous since auto-correlation function and related
measures of serial dependencies are not well-defined anymore.

(iv) For stationary stochastic processes, an embedding
delay can be formally estimated from the data. However,
the problem of selecting an embedding dimension remains,
since stochastic processes are (in the viewpoint of dynam-
ical systems theory) infinite-dimensional. Hence, any low-
dimensional embedding of a stochastic process necessarily
loses relevant information, which is a major cause of spurious
results.

Despite the aforementioned conceptual problems and pit-
falls resulting thereof, RN can still be used for obtaining
interesting information on stationary stochastic processes.
Drawing upon the interpretation of RNs as random geometric
graphs [38] in some reconstructed phase space, the network
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properties could in principle be computed solely from the
multidimensional PDF of the embedded process. Deviations
from the expectations are related to statistical dependencies
between the different embedding components as well as finite-
sample and finite-scale effects. The latter are also relevant for
deterministic-chaotic processes, where in turn the underlying
PDF can often not be calculated or at least estimated with
high accuracy. In this spirit, deriving information based on
stochastic processes can indeed help by providing benchmarks
for studies of deterministic dynamics.

In general, applying RN analysis to scalar measurements
requires an appropriate choice of embedding parameters. We
do not claim that all choices made in this work have been
based on fully objective quantitative criteria. The concepts like
decorrelation time and false nearest-neighbors applied in this
work rather present heuristics capturing only some aspects
relevant for obtaining a proper phase-space reconstruction.
In this spirit, the results reported in Ref. [16] are concep-
tually interesting but practically difficult to interpret. For
systematic applications, the choice of embedding parameters
depends on the particular process under consideration and
should involve careful statistical evaluation beyond visual
inspection.

Finally, we emphasize that for nonstationary systems,
embedding parameters cannot be properly defined in general,
so that any RN analysis (as well as other time series
analysis techniques) necessarily yields systematic errors. This
particularly applies to fBm and related processes arising from
an integration of stationary processes (e.g., fractional Lévy
motion), but also (F)ARIMA models, etc. In such cases, a
proper transformation is required to remove the particular
type of nonstationarity from the data. This can be achieved
by additive detrending, phase adjustment (deseasonalization),
difference filtering (incrementation), or other techniques, with
the one mentioned last being the proper tool for the particular
case of fBm transforming the original process into stationary
fGn. Applying RN analysis to the latter indeed provides
meaningful results. It should be noted that this observation
is consistent with some widespread conceptual ideas beyond
successful methodological alternatives for nonstationary time
series analysis such as DFA [11], which commonly make use
of detrending and/or time series differentiation or aggregation.
A more systematic exploration of corresponding approaches
in combination with recurrence-based techniques is general,
and RN analysis, in particular, could be an interesting
subject of future work. In turn, we emphasize that applying
RN analysis to a nonstationary process provides results
that are not necessarily interpretable in a meaningful way,
and there is no direct way to link the RN properties of
original and (stationary) increment process. Notably, in the
RN obtained from a nonstationary process (with a given
prescribed edge density), large spatial structures in the phase
space defined by delay coordinates (associated with long
time scales) are magnified, whereas small-scale structures
(aka short-term variations) carrying the essential information
are masked. When constructing a RN with the same edge
density from the increment process, only the structures
associated with short-term variations are preserved, whereas
the RN signatures of former stochastic trends are effectively
removed.
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