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Abstract
In this paper, a new five-dimensional hyperchaotic system is proposed based on the Lü
hyperchaotic system. Some of its basic dynamical properties, such as equilibria, Lyapunov
exponents, bifurcations and various attractors are investigated. Furthermore, a new secure
communication scheme based on generalized function projective synchronization (GFPS) of this
hyperchaotic system with an uncertain parameter is presented. The communication scheme is
composed of the modulation, the chaotic receiver, the chaotic transmitter and the demodulation.
The modulation mechanism is to modulate the message signal into the system parameter. Then
the chaotic signals are sent to the receiver via a public channel. In the receiver end, by designing
the controllers and the parameter update rule, GFPS between the transmitter and receiver systems
is achieved and the unknown parameter is estimated simultaneously. The message signal can be
finally recovered by the identified parameter and the corresponding demodulation method. There
is no any limitation on the message size. Numerical simulations are performed to show the
validity and feasibility of the presented secure communication scheme.

Keywords: five-dimensional (5D) hyperchaotic system, Lü hyperchaotic system, generalized
function projective synchronization (GFPS), secure communication, parameter estimation,
message size
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1. Introduction

It is well known that there is at least one positive Lyapunov
exponent in chaotic systems. However, in the case where
there is just one positive Lyapunov exponent, the system is
not safe enough to mask messages [1]. Higher-dimensional
hyperchaotic systems are often recommended for addressing
this issue. Hyperchaos is characterized as a chaotic system
with more than one positive Lyapunov exponent, indicating
that its dynamics are expanded in more than one direction
simultaneously, which can increase randomness and unpre-
dictability. Because of its higher unpredictability than simple

chaotic systems, hyperchaotic systems may be more useful in
some fields such as secure communication, encryption, etc. In
recent years, many hyperchaotic systems have been devel-
oped numerically and experimentally by adding a simple state
feedback controller or a sinusoidal parameter perturbation
controller in the generalized Lorenz system, Chen system, Lü
system and a unified chaotic system [2, 3]. It was also noticed
that hyperchaos can be generated based on lower-dimensional
chaotic systems by employing an additional state input [4, 5].
Up to now, almost all hyperchaotic systems are four-dimen-
sional systems, which have double-wing hyperchaotic
attractors with three or five equilibrium points [6, 7].
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Generating a hyperchaotic attractor from a smooth dynamical
system with only one equilibrium point is a very rare phe-
nomenon [8]. Motivated by the above discussions, this paper
presents a new five-dimensional (5D) hyperchaotic system
with only one equilibrium point, which is generated from the
4D Lü hyperchaotic system. The hyperchaotic dynamic
behavior of the new system is demonstrated by computer
simulations.

Since the seminal work of Pecora and Carrol [9], syn-
chronization of chaotic systems for secure communication has
received much attention [10–15]. So far, various types of
synchronization phenomena in the chaotic systems have been
reported, such as complete synchronization [9], generalized
synchronization [16], phase synchronization [17], lag syn-
chronization [18], projective synchronization [10] etc.
Recently, the concept of function projective synchronization
(FPS) has been introduced [19–21], where the drive and
response systems could be synchronized up to a scaling
function. Du et al [22] presented a new type of synchroni-
zation, the modified function projective synchronization,
where the drive and response systems could be synchronized
up to a desired scaling function matrix. Yu and Li [23] studied
adaptive generalized function projective synchronization
between two different uncertain chaotic systems. In the
application to secure communication, the scaling function
matrix may also be a useful utility to improve the security of
the secure communication scheme. Therefore, it is essential to
study FPS of hyperchaotic systems and its application to
secure communication.

The general idea for transmitting a message via chaotic
systems is that a message signal is embedded in the trans-
mitter system which produces a chaotic signal. The chaotic
signal is emitted to the receiver through a public channel.
Finally, the message signal is recovered by the receiver. In
recent years, many types of secure communication schemes
have been presented [24, 25]. The techniques of chaotic
communication can be divided into three categories: chaos
masking [11, 12], chaos modulation [26–28] and chaos shift
keying [29, 30]. In chaotic masking, the message signal is
added to a chaotic signal and the combined signal is then
transmitted to the receiver. The message can be extracted
under certain conditions in the receiver terminal. In chaotic
modulation, the message is injected into the states or the
parameters of the chaotic system, or is modulated by using
an invertible transformation. If the transmitter and the
receiver are synchronized, the message signal can be
recovered by a receiver. In chaos shift keying, we assume
that the message is binary, and it is mapped into the
transmitter and the receiver. The message signal can be
recovered by a receiver as synchronization between the
transmitter and the receiver occurs. To our knowledge, in
most of secure communication schemes [10–13, 24, 27], the
message size is required to be sufficiently small, otherwise
it may induce a chaotic system to be asymptotically stable
or emanative, which may render the failure of recovering
the emitted signal. In addition, another method considered
in [26, 28] is that the upper and lower bounds of the mes-
sage signal must be known in advance. However, in real

situations, some messages to be transmitted may be very
large or unbounded. For example, the messages are t ,2 e ,t

t tsin ( ) etc, < ∞t . The existing secure communication
methods are clearly invalid for unbounded messages.
Recently, chaotic complex systems are attempted to apply
for secure communications because doubling the number of
variables increases the content and security of the trans-
mitted information [31, 32]. Mahmoud et al [31] trans-
mitted more than one large or bounded message by the
passive projective synchronization of uncertain hyperch-
aotic complex nonlinear system. Liu and zhang [32] pro-
posed a secure communication scheme based on complex
function projective synchronization of complex chaotic
systems and chaotic masking. However, there are defects in
their method such as complex controllers, high control cost
and only applying to bounded or very small signals. So it is
an important issue to investigate how to transmit unbounded
message signals.

In this work, a new secure communication scheme is
introduced based on generalized function projective syn-
chronization (GFPS) of the novel 5D hyperchaotic system and
parameter modulation. The message signal to be emitted may
be bounded or unbounded. In the transmitter side, the mes-
sage signal is firstly modulated by an invertible function.
Then this modulated signal is taken as the parameter of the
5D hyperchaotic system to guarantee communication secur-
ity. We only transmit the unpredictable chaotic states through
a public channel to the receiver. Suppose that the parameter of
the receiver system is unknown. In the receiver end, the
controllers and corresponding parameter update rule are
designed to achieve GFPS between the transmitter and
receiver systems and estimate the unknown parameter
simultaneously. Finally, the original message signal trans-
mitted from the transmitter can be successfully recovered by
the estimated parameter and the presented invertible function.
Simulation results show the effectiveness and feasibility of
the proposed communication scheme.

The rest of this paper is organized as follows. In
section 2, a new 5D hyperchaotic system is generated from
the Lü hyperchaotic system. The properties and dynamics of
the hyperchaotic system are investigated numerically. In
section 3, a secure communication scheme via GFPS of the
5D hyperchaotic system with uncertain parameter is pro-
posed. The controllers and the parameter update rule are
devised for obtaining the desired synchronization and identify
the unknown parameter simultaneously. Numerical simula-
tions are given to illustrate and validate the proposed com-
munication scheme in section 4. Our conclusions are finally
drawn in section 5.

2. Generation and dynamical analysis of a new 5D
hyperchaotic system

Based on the original Lü chaotic system, the Lü hyperchaotic
system was constructed by employing a feedback controller
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[33], which is described by

̇ = − +
̇ = − +
̇ = −
̇ = +

x a y x w
y xz cy
z xy bz
w xz dw

( ) ,
,

,
,

(1)

⎧
⎨
⎪⎪

⎩
⎪⎪

where x, y, z and w are state variables and a, b, c, d are real
constant parameters. When =a 36, =b 3, =c 20 and
− ⩽ ⩽d0.35 1.3, the system (1) exhibits a hyperchaotic
behavior.

By eliminating the linear feedback controller from the
first equation and introducing a linear feedback controller to
the second one of system (1), a new 5D hyperchaotic system
can be obtained as follows:

̇ = −
̇ = − + +
̇ = −
̇ = +
̇ = − −

x a y x
y xz cy v
z xy bz
w xz dw
v x y

( ),
,

,
,

,

(2)

⎧

⎨
⎪⎪

⎩
⎪⎪

where a, b, c and d are again system parameters and ⩽d 0.

2.1. Symmetry

System (2) is symmetric respect to the z-axis, i.e., it is
invariant under the following coordinate transformations

→ − − − −x y z w v x y z w v( , , , , ) ( , , , , ).

2.2. Dissipation

The divergence of the system (2) is

 = ∂ ̇
∂

+ ∂ ̇
∂

+ ∂ ̇
∂

+ ∂ ̇
∂

+ ∂ ̇
∂

= − + − + = − +

V
x

x

y

y

z

z

w

w

v

v
a c b d d19 .

Obviously, for the parameter values considered here, we
get − + <d19 0, i.e., system (2) is dissipative. Hence, the
new dynamical system (2) converges to a set of measure zero
exponentially, i.e., ̇ = − +V t( ) e .d19 It indicates that

= − +V t V t( ) ( )e d t
0

( 19 ) for any initial cubage V t( ),0 and the
orbit flows into a certain bounded region as → ∞t .

2.3. Equilibria and stability

The equilibria of system (2) can be obtained by solving the
following equations:

− = − + + = − = +
= − − =

a y x xz cy v xy bz xz dw
x y

( ) 0, 0, 0,
0, 0. (3)

It is easy to find that system (2) has only one trivial
equilibrium point E (0,0,0,0,0).0 By linearizing system (2)

around E ,0 we yield the following Jacobian matrix:

=

−

−

− −

J

a a
c

b
d

0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
1 1 0 0 0

.

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

The corresponding characteristic equation is:

λ λ λ λ λ+ − + − − + =b d a c ac( )( ) ( ) 1 0. (4)2⎡⎣ ⎤⎦

For =a 36, =b 3, =c 20 and ⩽d 0, the eigen values of
the Jacobian matrix J are:

λ λ λ λ λ= = = = = −d20, 19.98, 0, and 35.98.1 2 3 4 5

Here λ1 and λ2 are two positive real numbers. If <d 0, λ4 and
λ5 are two negative real numbers; otherwise, λ5 is a negative
real number. Therefore, the equilibrium E (0,0,0,0,0)0 is an
unstable saddle point.

2.4. Dynamics in the new 5D system

In the following, the basic dynamics of the new 5D system (2)
is studied by means of the Lyapunov exponents spectrum and
corresponding bifurcation diagrams. We compute the Lya-
punov exponents Li =i( 1,2,3,4,5) by the Wolf algorithm
[34]. Some simulations were performed with varying para-
meters to analyze the dynamics of system (2), and the findings
are summarized as follows.

= = =a b c dCase I. Fix 36, 3, 20 and vary .

Figure 1(a) displays the Lyapunov exponents spectrum of
the 5D system (2) with respect to parameter d. Figure 1(b)
shows the bifurcation diagram of state y versus parameter d.
Obviously, when ∈ −d [ 50,0], there are >L 0,1 >L 0,2

=L 0,3 <L 04 and <L 0,5 which implies that the new
system (2) is always hyperchaotic. In order to further observe
the new hyperchaotic attractors, some phase portraits of the
5D system (2) with different d are plotted in figure 2.

= = = −b c d aCase II. Fix 3, 20, 1 and vary .

Figure 3 plots the spectrum of Lyapunov exponents and
corresponding bifurcation diagram of system (2) with respect
to parameter a. When ∈a [21,26.4), =L 01 and <τL 0
τ =( 2,3,4,5), implying that the 5D system (2) is periodic
shown in figures 4(a) and (b). As ∈a [26.4,60.2], >L 0,1

>L 0,2 =L 0,3 <L 04 and <L 0,5 which means that sys-
tem (2) is hyperchaotic. When ∈a (60.2,61], >L 01 and

<τL 0 τ =( 2,3,4,5), so system (2) is chaotic. As
∈a (61,120], =L 01 and <τL 0 τ =( 2,3,4,5), indicating

that system (2) eventually evolves to a periodic orbit. From
the bifurcation diagram shown in figure 3(b), one can clearly
see that, starting from the periodic region (for instance, the
phase diagrams are shown in figures 4(a) and (b)), with a
increasing, the state y goes through a process of hyperchaos
(figure 4(c)), chaos and finally to the periodic orbit

3

Phys. Scr. 90 (2015) 045210 X Wu et al



(figure 4(d)).

= = = −a c d bCase III. Fix 36, 20, 1 and vary .

When the parameters =a 36, =c 20 and = −d 1 are
fixed while parameter b is varied, the spectrum of Lyapunov
exponents and the corresponding bifurcation diagram of state
y versus b are shown in figure 5. As ∈b [0,0.24),

∈b (13.3,15.7], ∈b [16.03,16.15], ∈b [16.35,16.42),
∈b (16.65,17.56), ∈b [17.84,17.92], ∈b [18.2,18.44],
∈b [19,19.1], ∈b (19.48,19.52] and ∈b [19.68,19.76], the

maximum Lyapunov exponent L1 equals zeros and other four
Lyapunov exponents are negative, representing that system
(2) has a periodic orbit. When ∈b [0.24,0.58],

∈b [0.61,0.66], ∈b (6.2,13.3], ∈b (15.7,16.03),
∈b (16.15,16.35), ∈b [16.42,16.65], ∈b [17.56,17.84),
∈b (17.92,18.2), ∈b (18.44,19), ∈b (19.1,19.48],
∈b (19.52,19.68) and ∈b (19.76,20], only >L 0,1 implying

that system (2) is chaotic. When ∈b (0.58,0.61) and
∈b (0.66,6.2], the Lyapunov exponents L1 and L2 are

positive, which means that system (2) is hyperchaotic.
Figure 5 reveals that periodic orbit, chaos and hyperchaos
appear alternately with b increasing gradually from 0 to 20.

= = = −a b d cCase IV. Fix 36, 3, 1 and vary .

In this case, we fix =a 36, =b 3, = −d 1 and only
change c. Figure 6 shows the Lyapunov exponents spectrum
and the bifurcation diagram with respect to parameter c.
When ∈c [0,11.8) and ∈c (29.24,30], system (2) is peri-
odic, in which the maximum Lyapunov exponent L1 equals
zero; while ∈c [11.8,24.78], ∈c (24.88,26.5],

∈c (27.35,28.08), ∈c (28.5,28.8] and ∈c (29,29.1], system
(2) has two positive Lyapunov exponents, implying that it is a
hyperchaotic system. When ∈c (24.78,24.88],

∈c (26.5,27.35], ∈c [28.08,28.5], ∈c (28.8,29] and
∈c (29.1,29.24], system (2) has a single positive Lyapunov

exponent, which means that this system has a chaotic orbit.
Figure 6(b) displays clearly the whole evolution process of

Figure 1. Lyapunov exponents spectrum and bifurcation diagram of system (2) with =a 36, =b 3, =c 20, ∈ −d [ 50, 0].

Figure 2. Phase portraits of the hyperchaotic system (2) with different d .

4

Phys. Scr. 90 (2015) 045210 X Wu et al



Figure 3. Lyapunov exponents spectrum and bifurcation diagram of system (2) with =b 3, =c 20, = −d 1, ∈a [21, 120].

Figure 4. Phase diagrams of the 5D system (2) with different a.
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system (2), i.e., from period to hyperchaos, chaos and finally
to period again.

3. A new secure communication scheme via GFPS of
the uncertain 5D hyperchaotic system

In this section, we will introduce a new secure communica-
tion method based on GFPS of the new 5D hyperchaotic
system (2) with unknown parameter d. Figure 7 describes the
proposed communication system consisting of a modulation,
a transmitter (drive), a receiver (response) at the receiving end
of the communication, and a demodulation. The message
signal to be transmitted is modulated into the parameter of the
chaotic transmitter system by employing an invertible func-
tion, and the resulting system is still hyperchaotic. The
resulting chaotic signals are sent to the receiver end through a
public channel. In the receiver side, by designing suitable
controllers, the desired synchronization between the trans-
mitter and receiver systems can be obtained, and the unknown
parameter can also be identified at the same time. Then the
message signal can be recovered from the estimated para-
meter by performing the proposed demodulation method. In
the following, we will illustrate the secure communication
system via GFPS of the new 5D hyperchaotic system with
unknown parameter in detail.

3.1. Modulation

For transmitting an arbitrary continuous-time message signal
regardless of its size, we consider modulating it into the
parameter d of system (2). Let s t( ) represent the message
signal. Suppose ⩽ ⩽d d d ,1 2 where = −d 11 and =d 0.2

Obviously, system (2) is always hyperchaotic in this range. It
is known that the arc tangent function satisfies:

π π⋅ ∈ −arctan () ( 0. 5 , 0. 5 ). Let us define a new parameter
ρ t( ). In order to obtain ρ ∈ −t( ) ( 1, 0), we present the fol-
lowing modulation technique:

ρ
π

π

=
−

+
+

= −

( ) ( )
t

d d
s t

d d

s t

( ) arctan ( ( ))
2

1
arctan ( ( )) 0.5. (5)

2 1 1 2

In the following, we will use ρ t( ) as the parameter of
system (2), which will be explained in detail later.

3.2. Transmitter

Replacing the parameter d in system (2) with the new para-
meter ρ t( ) obtained in section 3.1, we get

ρ

̇ = −
̇ = − + +
̇ = −
̇ = +
̇ = − −

x a y x

y x z cy v

z x y bz

w x z t w
v x y

( ),

,

,

( ) ,
.

(6)

1 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

Since ρ ∈ −t( ) ( 1, 0), the resulting system (6) is still
hyperchaotic. We take system (6) as the transmitter system.
x ,1 y ,1 z ,1 w1 and v1 are the chaotic signals and need to be
transmitted to the receiver via a public channel. Since system
(6) is hyperchaotic, it is hard to extract a message from the
signals transmitted in the channel.

3.3. Receiver

Consider the receiver system as follows:

ρ

̇ = − +
̇ = − + + +
̇ = − +
̇ = + +
̇ = − − +

x a y x u

y x z cy v u

z x y bz u

w x z t w u
v x y u

( ) ,

,

,

ˆ ( ) ,
,

(7)

2 2 2 1

2 2 2 2 2 2

2 2 2 2 3

2 2 2 2 4

2 2 2 5

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

where ρ tˆ ( ) is the unknown parameter to be estimated, u t( )i

( =i 1,2,3,4, 5) are the controllers to be designed. Thus, the
control objective is to find u t( )i and ρ tˆ ( ) such that both the
transmitter system and the receiver system achieve GFPS, and
ρ tˆ ( ) converges to the actual value of ρ t( ).

Let us introduce the following state errors:

α
α
α
α
α

= −
= −
= −
= −
= −

e x t x

e y t y

e z t z

e w t w

e v t v

( ) ,
( ) ,

( ) ,
( ) ,

( ) ,

(8)

1 2 1 1

2 2 2 1

3 2 3 1

4 2 4 1

5 2 5 1

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

and the parameter estimate error as

ρ ρ= −ρe t tˆ ( ) ( ). (9)

The time derivative of the error signals (8) is

α α
α α
α α
α α
α α

̇ = ̇ − ̇ − ̇
̇ = ̇ − ̇ − ̇
̇ = ̇ − ̇ − ̇
̇ = ̇ − ̇ − ̇
̇ = ̇ − ̇ − ̇

e x t x t x

e y t y t y

e z t z t z

e w t w t w

e v t v t v

( ) ( ) ,
( ) ( ) ,

( ) ( ) ,
( ) ( ) ,

( ) ( ) .

(10)

1 2 1 1 1 1

2 2 2 1 2 1

3 2 3 1 3 1

4 2 4 1 4 1

5 2 5 1 5 1

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

Substituting equations (6) and (7) into equation (10), we
have

α α
α α

α
α α

ρ α α
α

α α α

̇ = − + − − ̇ +
̇ = − + + −

− ̇ +
̇ = − + − − ̇ +
̇ = + + −

− ̇ +
̇ = − − + + − ̇ +

ρ

e ae ay a t y t x u

e ce x z t x z v t v

t y u

e be x y t x y t z u

e e t e w x z t x z

t w u

e x y t x t y t v u

( ) ( ) ,

( ) ( )
( ) ,

( ) ( ) ,

ˆ ( ) ( )

( ) ,
( ) ( ) ( ) .

(11)

1 1 2 1 1 1 1 1

2 2 2 2 2 1 1 2 2 1

2 1 2

3 3 2 2 3 1 1 3 1 3

4 4 4 1 2 2 4 1 1

4 1 4

5 2 2 5 1 5 1 5 1 5

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪
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Taking the time derivative on both sides of equation (9)
yields

ρ
π

̇ = ̇ − ̇
+

ρ ( )
e t

s t

s t
ˆ ( )

( )

1 ( )
. (12)

2

Hence the synchronization problem becomes the stability
problem of the error dynamics (11).

We get the following main theorem.

Theorem 1. For given nonzero scaling functions α t( )i

=i( 1,2,3,4, 5), GFPS between the transmitter (6) and the
receiver system (7) can be achieved, and the uncertain
parameter ρ tˆ ( ) can be estimated, if the controllers and the
parameter update rule are constructed as follows:

Figure 5. Lyapunov exponents spectrum and bifurcation diagram of system (2) with =a 36, =c 20, = −d 1, ∈b [0, 20].

Figure 6. Lyapunov exponents spectrum and bifurcation diagram of system (2) with =a 36, =b 3, = −d 1, ∈c [0, 30].

Figure 7. Block diagram of the proposed secure communication
system.
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α
α

α
α

α
α

α
α

α ρ
α

α α

= − +
+ ̇ −

= −
− +
+ ̇ −

= − +
+ ̇ −

= − +
+ ̇ − +

= + −
− + ̇
× −

( )

u ay a t y

t x k e

u x z t x z

v t v

t y k e

u x y t x y

t z k e

u x z t x z

t w k e

u x y t x

t y

t v k e

( )

( ) ,
( )
( )

( ) ,

( )

( ) ,
( )

( ) ˆ ,

( )

( )

( ) ,

(13)

1 2 1 1

1 1 1 1

2 2 2 2 1 1

2 2 1

2 1 2 2

3 2 2 3 1 1

3 1 3 3

4 2 2 4 1 1

4 1 4 4

5 2 2 5 1

5 1 5

1 5 5

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪

and

ρ α
π

̇ = − + ̇
+( )

t t w e
s t

s t
ˆ ( ) ( )

( )

1 ( )
, (14)4 1 4

2

respectively, where ki =i( 1,2,3,4, 5) are positive control
gains and >k c2 .

Proof. Choose the following Lyapunov function candidate:

= + + + + + ρ( )V t e e e e e e( )
1

2
. (15)1

2
2
2

3
2

4
2

5
2 2

By calculating the derivative of V t( ) along the
trajectories of the error system (11), and using equations (13)
and (14), we have

α α

α α

α

α α

ρ α α

α

α α

α

ρ π

̇ = ̇ + ̇ + ̇ + ̇ + ̇ + ̇

= − + − − ̇ +

+ − + + −

− ̇ +

+ − + − − ̇ +

+ + + −

− ̇ +

+ − − + +

− ̇ +

+ ̇ − ̇ +

= − + − − − +

× − − <

ρ ρ

ρ

ρ ( )

[

]

]

( ) ( ) ( )

V t e e e e e e e e e e e e

e ae ay a t y t x u

e ce x z t x z v t v

t y u

e be x y t x y t z u

e e t e w x z t x z

t w u

e x y t x t y

t v u

e t s t s t

a k e k c e b k

e k e k e

( )

( ) ( )

( ) ( )
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Obviously, V t( ) is positive definite and ̇V t( ) is negative
definite. By the Lyapunov stability theorem, the

synchronization errors ei =i( 1,2,3,4, 5) asymptotically
converge to zero, i.e., GFPS between the transmitter system
(6) and the receiver system (7) is obtained, and the zero point
of the parameter error ρe is globally and asymptotically stable.
It implies that the uncertain parameter ρ t( ) is also estimated
in the receiver simultaneously. This completes the proof. □

3.4. Demodulation

As GFPS between the transmitter and receiver systems
appears, one can identify the parameter ρ tˆ ( ) based on theo-
rem 2. According to the invertible transformation function
(5), the original message signal can be recovered as

π ρ= +( )( )s t tˆ ( ) tan ˆ ( ) 0.5 . (16)

Here s tˆ ( ) represents the recovered signal. When the
desired synchronization takes place, we have ρ ρ→t tˆ ( ) ( ) as

→ ∞t . One further gets

π ρ π ρ= + → = +( )( )s t t s t tˆ ( ) tan ˆ ( ) 0.5 ( ) tan( ( ( ) 0.5))

as → ∞t . Therefore, the receiver can extract the message
signal successfully from ρ tˆ ( ) by the above modulation
method.

Remark 1. The cordinate rotation digital computer (CORDIC)
algorithm is traditionally used for the implementation of
trigonometric functions. Besides general scientific and
technical computation, the CORDIC algorithm has been
utilized for various applications such as signal and image
processing, communication systems and robotics [35–38]. In
practical engineering, the arctan and tangent functions can be
implemented based on the CORDIC algorithm. The hardware
architectures of implementing arctan function and tangent
function are shown in figures 8 and 9, respectively.

Remark 2. In figure 8, the inputs χ χ ∈ −∞ +∞, ( , )1 2 are
IEEE 754 standard single precision floating point numbers.
The floating point numbers χ1 and χ2 are firstly preprocessed
in the input data format transform unit to obtain two fixed
point integer numbers, i.e., χ̄1 and χ̄ ,2 where
χ χ ∈ − +¯ , ¯ [ 1, 1].1 2 χ̄1 and χ̄2 are considered as the inputs of
CORDIC unit. Next, the CORDIC algorithm is employed to
compute the arctan function by using χ̄1 and χ̄ ,2 and one can
get the result μ. The CORDIC algorithm has been
implemented by many ways with software and hardware
[36, 38]. Finally, in the output data format transform unit, we
convert the fixed point integer number μ into the IEEE 754
standard single precision floating point number μ̄. Corre-
sponding software simulation and hardware experiment can
be conducted on FPGAs [39].

Figure 8. Hardware architecture of implementing arctan function.
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Remark 3. In figure 9, the circular CORDIC algorithm is
firstly applied to get two results, i.e., ϖsin and ϖcos , with
the input ϖ. Then we use ϖsin and ϖcos as the inputs of the
linear CORDIC-based computation unit, and the value of

ϖtan can be obtained by means of the linear CORDIC

algorithm. The implementation of the circular CORDIC
algorithm has been reported in the literature [37, 39–41]. The
linear CORDIC algorithm only involves with addition and
shift operations, which makes it very convenient implement
on the hardware.

Figure 9. Hardware architecture of implementing tangent function.

Figure 10. The hyperchaotic attractors of the resulting system (6).

Figure 11. Simulation results of secure communication based on GFPS of the 5D hyperchaotic system when the information signal is a
bounded signal s(t) = 2 sin(0.5t) + 6 cos(5t).

Figure 12. The hyperchaotic attractors of the resulting system (6).
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4. Simulation results

In this section, computer simulations are performed to show
the efficiency of the proposed communication system. The
ODE45 algorithm is adopted to solve the differential
equations. The system parameters are set as =a 36, =b 3
and =c 20. In the following simulations, for saving space,
we consider two cases: (i) choose a bounded message signal
for secure communication; (ii) choose an unbounded message
signal for secure communication.

4.1. A bounded information signal for secure communication

Here the message signal hidden in the transmitter system is
= +s t t t( ) 2 sin(0.5 ) 6 cos(5 ). Obviously, ⩽s t( ) 8. By

equation (5), ρ t( ) can be obtained as follows:

ρ
π

= + −t t t( )
1

arctan (2 sin (0.5 ) 6 cos (5 )) 0. 5. (17)

The initial conditions for the transmitter system (6) and
the receiver system (7) are arbitrarily chosen as = −x (0) 2,1

=y (0) 1,1 =z (0) 3,1 =w (0) 01 and =v (0) 4;1 = −x (0) 5,2

=y (0) 0,2 =z (0) 2,2 = −w (0) 12 and =v (0) 3,2 respec-
tively. The initial value of the unknown parameter ρ tˆ ( ) is
taken as ρ = −ˆ (0) 0. 1. Let the control gains be

= = = =k k k k 101 3 4 5 and =k 30.2 The scaling functions
are selected randomly as α =t v t( ) ( ),1 1 α = −t t( ) cos( ) 3,2

α = +t z t( ) ( ) 1,3 1 α = − +t tsin(10 ) 3 cos(2 ) 54 and
α = − t8 5 sin(0. 2 )5 .

Figure 10 displays the hyperchaotic behavior of the
resulting system (6). The simulation results of the proposed
secure communication system are given in figure 11. In
figure 11(a), we see that the synchronization errors ei

=i( 1,2,3,4,5) asymptotically converge to zero quickly. That
is, GFPS between the transmitter system and the uncertain
receiver system is achieved under the controllers (13) and the
parameter update rule (14). Figure 11(b) depicts the original
message signal s t( ) (blue and solid line) and the recovered
signal s tˆ ( ) (red and dotted line) via the demodulator (16). It is
easily seen that the reconstructed signal s tˆ ( ) coincides with
the message signal s t( ) with good accuracy. This can be

Figure 13. Simulation results of secure communication based on GFPS of the 5D hyperchaotic system when the information signal is an
unbounded signal s(t) = 10 + t.
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further validated by figure 11(c) which shows the message
signal recovery error −s t s tˆ ( ) ( ). As expected, the signal
recovery error quickly converges to zero and the commu-
nication goal is attained.

4.2. An unbounded information signal for secure
communication

In this section, we simulate the presented secure commu-
nication system with an unbounded message signal. For
example, the message signal = +s t t( ) 10 , where
∣ ∣ < ∞s t( ) . From equation (5), we get

ρ
π

= + −t t( )
1

arctan (10 ) 0.5. (18)

Corresponding initial values are arbitrarily set as follows:
=x (0) 3,1 =y (0) 2,1 = −z (0) 1,1 =w (0) 2,1 =v (0) 5,1

=x (0) 2,2 = −y (0) 4,2 = −z (0) 3,2 =w (0) 5,2 =v (0) 02

and ρ = −ˆ (0) 0. 1. The control gains are given as
= = = =k k k k 401 3 4 5 and =k 60.2 We randomly choose

the scaling functions as α = +t t( ) 6 2 sin(0.5 ),1

α = +t t( ) 2 3 cos( ),2 α = −t t( ) 2 sin( ) 1,3 α = −24 and
α = − t2 sin( )5 .

The hyperchaotic attractors of the resulting system (6) are
depicted in figure 12. Numerical results for GFPS between the
transmitter and receiver systems via the controllers (13) and
the parameter update rule (14) and its application to secure
communication are illustrated in figure 13. Figure 13(a)
describes the time evolution of the synchronization errors ei

=i( 1,2,3,4,5), which shows that the time response of the
errors approach the origin very fast. So the desired synchro-
nization is obtained. The original message signal s t( ) and the
recovered one s tˆ ( ) are plotted in figures 13(b) and (c),
respectively. Figure 13(d) displays the error signal

−s t s tˆ ( ) ( ) between the message signal s t( ) and the recov-
ered one s tˆ ( ). As seen, the signal error tends to zero in a very
short time. Thus, the message signal is recovered accurately.

5. Conclusion

This paper presents a new 5D hyperchaotic system generated
from the Lü hyperchaotic system. Some basic dynamical
behaviors of the system are explored by investigating its
Lyapunov exponents spectrum and bifurcation diagrams. And
various phase portraits of the system has been demonstrated
by computer simulations. Furthermore, combining GFPS of
the new 5D hyperchaotic system with the parameter mod-
ulation technique, we have introduced a new chaotic secure
communication method. In contrast to existing chaotic secure
communication approaches, there are no limitations on the
message size in our scheme. Under this structure, the message
signal can successfully and secretly be transmitted through
four main functions, i.e., modulation, chaotic transmitter,
chaotic receiver and demodulation. Finally, numerical simu-
lations have been provided to verify the effectiveness and the
feasibility of the presented secure communication scheme.
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