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Abstract

In this paper, the exponential leader-following consensus problem is investigated for a class of nonlinear stochastic networked
multi-agent systems with partial mixed impulses and unknown time-varying but bounded delays. The main feature of partial
mixed impulses is that time-varying impulses are not only composed of synchronizing and desynchronizing impulses simulta-
neously but they are also injected into a fraction of nodes in multi-agent systems. Three kinds of partial mixed impulses are
proposed: fixed partial mixed impulses, periodic partial mixed impulses, and try-once-discard-like partial mixed impulses. By
means of the Lyapunov function theory and the comparison principle, conditions are derived for ensuring global exponential
leader-following consensus under the presented three kinds of partial mixed impulses. Simulations of leader-following consen-
sus of robotic systems are provided to validate the effectiveness of the proposed results and to show the advantages of the
proposed partial mixed impulses.

Key words: Leader-following consensus, Tracking control, Multi-agent Systems, Complex networks, Impulsive Effects,
Pinning control.

1 Introduction

Coordination, as a very important topic in collective coop-
erative motion, which is one of the most common and spec-
tacular manifestation of coordinated behavior in nature and
plays an important role in various contexts, such as biologi-
cal networks, power networks, transportation networks, cli-
mate networks, social networks and technical networks [8,
18, 21, 24]. In modelling complex networks and multi-agent
systems with self-dynamics, inherent time-delays [2,6,19,20]
and stochastic disturbances [14, 21] are widely observed in
implementations of electronic networks, and genetic regula-
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tory networks and injections of control inputs in large-scale
networked systems. On the other hand, the states of vari-
ous dynamical networks and/or multi-agent systems such as
communication networks, large-scale chemical process net-
works and biological networks often suffer from instanta-
neous disturbances and undergo abrupt changes at certain
instants, which may arise from switching phenomena, con-
trol requirements or frequency change, i.e., systems exhibit
impulsive effects including stabilizing and destabilizing ef-
fects [5, 10,22,25,26,28].

In recent years, pinning control, like leader-following consen-
sus or controllability [21], has sparked interests of many re-
searchers, since there exists a common requirement to regu-
late the behavior of large ensembles of interacting units from
engineering, social and biological systems by a rather small
effort [1, 7, 11, 14, 18]. Pinning control has been investigated
by utilizing various control techniques, such as state feedback
control [1], adaptive control [1, 20, 21] and impulsive con-
trol [11, 14]. Unfortunately, up to now, coordination results
for networked multi-agent systems or dynamical networks
with both synchronizing and desynchronizing impulses, in
which only a part of the nodes experience impulsive effects,
have been widely overlooked in the literature primarily due
to the difficulty in a mathematical derivation. This remains
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an important challenge in modelling time-varying proper-
ties of networked multi-agent systems and its generality of
including the impulsive pinning strategy as a special case.

Actually, for a class of nonlinear stochastic networked multi-
agent systems with partial time-varying impulses and un-
known time-varying delays, it is theoretically challenging
and practically difficult to establish easy-to-verify criteria
for ensuring consensus. The inherent features of the leader-
following consensus (tracking control) problem for stochastic
delayed networked multi-agent systems with partial mixed
impulses pose some fundamental difficulties: 1) How can
we properly define partial time-varying/mixed impulses, in
which the time-varying features reside in two aspects: only
a fraction of nodes are subjected to impulses and the set
of nodes injected with impulses is also time-varying? 2) Is
it possible for us to establish a connection of partial mixed
impulses with networked-induced constraints in networked
control systems such as time-varying sampling intervals and
competition of multiple nodes [3,16,27]? 3) How can we de-
velop an effective technique to obtain mathematically veri-
fiable leader-following consensus criteria and quantify con-
sensus regions against such kind of partial mixed impulses?
The answers to these questions may well explain why the
tracking control problem for networked multi-agent systems
with or without partial mixed impulses is still open.

Motivated by the above discussion, three kinds of partial
mixed impulses are proposed and studied here, i. e., fixed
partial mixed impulses, periodic partial mixed impulses,
and try-once-discard-like partial mixed impulses are pre-
sented and discussed in detail. Based on the proposed three
types of partial mixed impulses, the global mean square
leader-following consensus problem is investigated for a
class of stochastic networked multi-agent systems with un-
known time-varying delays. Compared with the works of
impulsive effects in uncoupled dynamical systems [13, 26],
complex networks [4, 10, 11, 14, 28] and networked control
systems [3, 16, 27], the main contributions of this paper are
mainly threefold: (1) a novel concept of partial mixed im-
pulses is proposed for the first time, which can encompass
several well-known impulses [4,10,13,14,26]; (2) we establish
a connection between the proposed impulses and networked-
induced constraints like time-varying sampling intervals
and competition of multiple nodes in networked control sys-
tems [3,16,27]; and (3) three different kinds of partial mixed
impulses are investigated and compared; meanwhile, effects
of systems’ parameters on the size of consensus regions are
characterized. This paper is organized as follows. In Section
II, some preliminaries regarding the model, partial mixed
impulses and assumptions are briefly outlined. In Section
III, leader-following consensus conditions are presented by
means of the comparison principle. In Section IV, simula-
tions are exploited to show the effectiveness of the obtained
results. The conclusions are given in Section V.

Notations: Let N+ = {1, 2, 3, ...}. ‖ · ‖ is the Euclidean
vector norm in Rn. λmax(·) is the maximum eigenvalue
of a matrix. #D denotes the element number of the fi-
nite set D composed of the vertices to be controlled.
PC(m) denotes the class of piecewise right continuous
function ϕ : [t0 − τ, +∞) → Rm with the norm defined by
‖ϕ(t)‖τ = sup−τ≤s≤0 ‖ϕ(t + s)‖. For x : Rn → Rn, denote

x(t+) = lims→0+ x(t + s) and x(t−) = lims→0− x(t + s).
Let (Ω,F , {Ft},P) be a complete probability space with
filtration {Ft}t≥0 satisfying the usual conditions (i.e.,
the filtration contains all P-null sets and is right con-
tinuous). Denote by L2

F0([−τ, 0];Rn) the family of all
F0-measurable PC([−τ, 0];Rn)-valued random variables
ξ = {ξ(s) : −τ ≤ s ≤ 0} such that sup−τ≤s≤0E‖ξ(s)‖2 < ∞,

where E{·} stands for the mathematical expectation oper-
ator with respect to a given probability measure P. A\B
represents the set difference from set A to set B.

2 Preliminaries

In this section, some preliminaries about the model and nec-
essary assumptions are given. The problem formulation is
briefly outlined. Three kinds of partial mixed impulses are
proposed.

Consider the following reference state or the leader state:

ds(t) =[As(t) + Bf̃1(s(t), t) + Cf̃2(s(t− τ(t)))]dt

+ ˜f3(s(t), s(t− τ(t)), t)dw(t),
where A, B and C are constant matrices which are defined on
Rn×n; f̃1(s(t), t) = [f̃11(s(t), t), ..., f̃1n(s(t), t)]T and f̃2(s(t−
τ(t))) = [f̃21(s(t − τ(t))), ..., f̃2n(s(t − τ(t)))]T are continu-

ous nonlinear vector functions; f̃3(., ., .) is the noise inten-
sity function; w(t) is a scalar Brownian motion defined on
(Ω,F , {Ft},P) satisfying E{dw(t)} = 0 and E{[dw(t)]2} =
dt; τ(t) is an unknown but bounded time-varying delay sat-
isfying 0 < τ(t) ≤ τ , which is named by internal time-delay.

We consider the following nonlinear networked multi-agent
system with stochastic disturbances and unknown time-
varying delays, which can be forced to the leader state s(t):

dxi(t) =[Axi(t) + Bf̃1(xi(t), t) + Cf̃2(xi(t− τ(t)))]dt

− dki(xi(t)− s(t))dt + d

N∑
j=1

gijxj(t)dt

+ f̃3(xi(t), xi(t− τ(t)), t)dw(t),

i = 1, 2, ..., N,

(1)

where xi(t) ∈ Rn is the state vector of the ith node; d stands
for the control gain; L = (gij)N×N is the undirected cou-
pling matrix representing the coupling topology, which is
defined as follows: if there is a connection between nodes i
and j (i 6= j), gij = gji = 1 > 0; otherwise gij = gji = 0

(i 6= j). For diagonal elements of L, gii = −∑N
j=1,j 6=i gij , i =

1, 2, ..., N . Assume that only one node  in the network has
the information from the reference state s(t), i. e., k = 1,  ∈
{1, 2, ..., N} and ki = 0 for i ∈ {1, 2, ..., N}\{}. Here, L is
assumed to be connected. According to [1, 7], all the eigen-
values of M = L − K = (mij)N×N are negative, where K
is a N ×N diagonal matrix whose the th diagonal element
is k and the others are zero. For multiple nodes having the
information from the reference state s(t), the results in the
following still hold. The initial conditions of system (1) are
assumed to be xi(t) = ϑi(t),−τ ≤ t ≤ 0, i = 1, 2, . . . , N ,
where ϑi(t) ∈ L2

F0([−τ, 0],Rn). In our model, only the inter-
nal delay is considered, which is widely observed in natural
and engineering systems such as regulatory networks and
milling process, etc. In multi-agent systems, communications
are also often subjected to transmission delays, which may
deteriorate the coordination performance. Therefore, it is in-
teresting and challenging to extend our results to the case
with transmission delays in the near future.

Let ei(t) = xi(t) − s(t) be the tracking error of node i be-
tween the current state xi(t) and the reference state s(t). By
including impulsive effects on a fraction of nodes into system
(1), the following impulsive effects are considered:

Ii(t) =

{ ∑+∞
k=1 ρkei(t)σ(t− tk), i ∈ D(tk),

0, i /∈ D(tk),

where ρk represent the time-varying strengths of impul-
sive effects, σ(.) is the Dirac delta function, the time series
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{t1, t2, t3, ...} is a sequence of strictly increasing impulsive
instants satisfying limk→∞ tk = +∞; #D(tk) = l, which
means that the locations of impulses are time-varying.

By considering the fact that d
∑N

j=1 gijs(t) = 0, it yields

from the impulsive effects Ii(t) that the tracking error system
between xi(t) and s(t) is




dei(t) = [Aei(t) + Bf1(ei(t), t)

+Cf2(ei(t− τ(t)))]dt

+d
∑N

j=1 mijej(t)dt

+f3(ei(t), ei(t− τ(t)), t)dw(t),

i = 1, 2, ..., N,

ei(t
+
k ) = ei(t

−
k ) + ρkei(t

−
k ), i ∈ D(tk).

(2)

where f1(ei(t), t) = f̃1(xi(t), t)−f̃1(s(t), t), f2(ei(t−τ(t))) =

f̃2(xi(t−τ(t)))− f̃2(s(t−τ(t))) and f3(ei(t), ei(t−τ(t)), t) =

f̃3(xi(t), xi(t − τ(t)), t) − f̃3(s(t), s(t − τ(t)), t). The error
system in (2) without impulses is similar to [12], in which
the stability analysis of uncertain stochastic neural networks
with unbounded time-varying delays was investigated. Dif-
ferent from [12], the model here takes into account three
kinds of impulsive protocols and the effects of these impul-
sive protocols on tracking performance are investigated.

In addition, inspired by the impulsive effects from networked
control systems [16, 23] and complex networks [14], we pro-
pose the following three kinds of partial mixed impulsive ef-
fects to characterize the set D(tk) of partial mixed impulses:

D(tk) =





R1,

R2(tk),

R3(tk),

where R1 ⊆ V := {1, 2, ..., N} is a fixed set and #R1 = l,
in which the locations of synchronizing and desynchroniz-
ing impulses are fixed along the time evolution; R2(tk) and
R3(tk) are time-varying sets, in which the locations of impul-
sive effects are time-varying according to certain protocols.
It should be mentioned that in [16,23], the protocols adopted
are used to update the states in the controller and the plant.
Here, the three kinds of partial mixed impulsive effects are
more pertinent to reflect the stabilizing effects in [6, 10].

UnderR1, the updating equation at tk in (2) can be rewritten
as follows:

ei(t
+
k ) = ei(t

−
k ) + δR1(i)ρkei(t

−
k ), (3)

where δR1(·) is the characteristic function of the setR1, i. e.,
δR1(i) = 1 if i ∈ R1; otherwise, δR1(i) = 0. In R1, the nodes
subjected to impulsive effects are known beforehand, which
is similar to the usual pinning control, leader-following con-
sensus or controllability problem [18,21] and can be viewed
as a static protocol. We refer this kind of impulses as fixed
partial mixed impulses.

Under R2(tk), the updating equation at tk in (2) can be
formulated as follows:

ei(t
+
k ) = ei(t

−
k ) + δR2(tk, i)ρkei(t

−
k ),

where δR2(tk, ·) is the characteristic function of the set
R2(tk) defined by:
i) when s + l − 1 ≤ N{

δR2(tk, i) = 1, if i ∈ [s, s + l − 1] ∩ V,

δR2(tk, i) = 0, otherwise,
or

ii) when s + l − 1 > N{
δR2(tk, i) = 1, if i ∈ ([s, N ] ∪ [1, l − α]) ∩ V,

δR2(tk, i) = 0, otherwise,

where s = k−INT(k−0.1, N)∗N , α = N−s+1 and INT(a, b)
is a function to return the integer part of a divided by b. For
example, if N = 3, l = 2, we get the following relationship:




R2(tk) = {1, 2}, if k = 1,

R2(tk) = {2, 3}, if k = 2,

R2(tk) = {3, 1}, if k = 3,

...

It is worth mentioning that this kind of impulses is related
to the idea of intermittent impulsive synchronization tech-
nique [13]. Different from [13], we propose three kinds of
impulses and study the tracking control of networked multi-
agent systems, which presents a unified framework of impul-
sive control techniques.

Under R3(tk), the updating equation at tk in (2) is written
as:

ei(t
+
k ) = ei(t

−
k ) + δR3(tk, i)ρkei(t

−
k ),

in which δR3(tk, i) is defined as follows:
i) one can reorder the vectors e1(t), e2(t), ..., eN (t) in the
following way ‖ep1(t)‖ ≥ ‖ep2(t)‖ ≥ ... ≥ ‖epl(t)‖ ≥ ... ≥
‖epN (t)‖, when ρk ∈ M. Then, R3(tk) = {p1, p2, ..., pl};
ii) one can reorder the vectors e1(t), e2(t), ..., eN (t) in the
following way ‖ev1(t)‖ ≤ ‖ev2(t)‖ ≤ ... ≤ ‖evl(t)‖ ≤ ... ≤
‖evN (t)‖, when ρk ∈ B. Then, R3(tk) = {v1, v2, ..., vl}.
Here, we present an example for showing the real-world ap-
plications of the proposed three kinds of impulses. For a
class of mechanical systems including robotic manipulators
and rigid bodies in a network described by Euler-Lagrange
equations [18]:

Mi(qi)q̈i + Ci(qi, q̇i)q̇i = ui, i = 1, 2, ..., N,
where qi ∈ Rp is the vector of generalized coordinates,
Mi(qi) ∈ Rp×p is the symmetric positive-definite inertia ma-
trix, Ci(qi, q̇i)q̇i ∈ Rp is the vector of Coriolis and centrifu-
gal torques and ui is the vector of torques produced by the
actuators associated with the i-th system. ui is taken as
ui = −∑N

j=1 gij(qi − qj) −
∑N

j=1 gij(q̇i − q̇j) − Si(qi − q0),

where Si ∈ Rp×p is symmetric positive definite. The leader’s
vector of generalized coordinates and vector of generalized
coordinate derivatives are denoted by, respectively, q0 and
q̇0. In order to track the leader under R3(tk), a scheduler
knows the real-time errors between q̇i− q̇0 at t−k and then de-
termines the agents to update their coordinate derivatives q̇i.
According to the proposed impulses, the agents receive the
decision information from the scheduler through a wireless
network and then smartly update their q̇i at tk. For R1 and
R2(tk), the proposed impulses can also be applied similarly.

Remark 1. ρk is a constant for each instant tk and the
strength of ρk is time-varying for different instants tk, k ∈
N+ along the time evolution for all three types of impulses
mentioned above. When |1 + ρk| > 1, i. e., ρk ∈ B :=
(−∞,−2)∪(0, +∞), impulsive effects will destroy consensus
and can be referred as desynchronizing impulses. On the
other hand, when |1 + ρk| < 1, i. e., ρk ∈ M := (−2, 0),
impulsive effects will be useful for achieving consensus and
can be called synchronizing impulses. Specially, if |1+ρk| = 1
(ρk ∈ Z := {−2} ∪ {0}), the impulsive effects are neither
harmful nor useful for consensus. We only consider time-
varying impulses ρk ∈ B∪M and it is not difficult to extend
our results to the case of ρk ∈ Z.
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Remark 2. Under R2(tk), this kind of partial mixed impul-
sive effects can also be regarded as a static protocol. Such
a kind of impulsive effects is periodic and can be referred
as round robin (RR) static protocol from the perspective of
networked control systems [16, 23]. Under R3(tk), the im-
pulses are similar to the try-once-discard (TOD) protocol,
which is a dynamical protocol. Here, if there are error states
that have the same norm under synchronizing and desyn-
chronizing impulses, i. e., ‖epθ1‖ = ‖epθ2‖ = ... = ‖epθν‖ or
‖evθ1‖ = ‖evθ2‖ = ... = ‖evθν‖, we can randomly choose the
nodes from them to satisfy #D(tk) = l. In order to describe
both synchronizing and desynchronizing impulses simultane-
ously, we assume that the strengths of desynchronizing im-
pulses take values from a finite set I = {ε1, ε2, . . . , εr}, which
contains r elements and I ⊂ B. Meanwhile, the strengths of
synchronizing impulses are chosen fromH = {η1, η2, . . . , ηq},
which involves q elements and H ⊂ M.

Remark 3. In networked control systems, there are several
networked-induced constraints such as time-varying sam-
pling intervals and competition of multiple nodes access-
ing networks [6, 27]. The time-varying sampling and the
competition of network nodes can be handled by RR and
TOD protocols, which are special cases of the proposed im-
pulses and have been successfully used in controlling real-
world networked systems, such as batch reactors and disk
drives [3, 16, 23]. In [16, 23], only one node is subjected to
an impulse and its strength is ρk = −1 at all the instants.
To the best of the authors’ knowledge, this is the first time
to introduce RR-like or TOD-like protocols for investigating
leader-following consensus (tracking control) of multi-agent
systems, which would promote the investigation of consen-
sus by using techniques from networked control systems. In
addition to this difference, there still exist two major differ-
ences with [16, 23]: it is allowed here that impulses exist in
several nodes instead of a single one at tk and both synchro-
nizing and desynchronizing impulses are considered at the
same time.

Remark 4. The comparison with existing results is divided
into several parts: 1) Compared with several tracking control
problems in [7, 24], nonlinearities, impulsive effects, time-
delays and stochastic disturbances are taken into account
here at the same time, which makes our model more prac-
tical. 2) Different from distributed consensus of agent sys-
tems via adaptive control [20], this work adopts three kinds
of impulsive control techniques and studies leader-following
consensus. 3) Different from previous works on synchroniza-
tion or consensus of complex networks or impulsive sys-
tems [4, 10, 14], the time-varying features of impulsive ef-
fects reside in twofold: a) the locations of impulsive effects
on nodes are time-varying; b) the strengths of impulsive
effects are time-varying, which include synchronizing and
desynchronizing effects simultaneously. Since only a fraction
of nodes are subjected to mixed impulsive effects, we call
this kind of impulses as partial mixed impulses. In this pa-
per, inspired by [16, 23], we propose three kinds of partial
mixed impulses. It is worth mentioning that partial mixed
impulses are quite general. When l = N , all three types of
partial mixed impulses reduce to the impulses in [28] and
how a fraction of nodes with impulsive effects affects track-
ing performance is overlooked, which is now an important
issue in control theory and natural science. In addition, we
establish a close relationship between the proposed impulsive
effects and networked-induced constraints like time-varying
sampling intervals and competition of network nodes in net-
worked control systems [16,23,27]. When ρk ∈ M, the third
type of partial mixed impulses in this paper reduces to the
impulses in [14] and a unified framework for impulses and
scheduling policies is not considered. Therefore, our proposed

impulses are quite general to encompass several well-studied
impulses in [4, 10, 14, 16, 23, 28] as special cases and can de-
scribe more practical situations.

Remark 5. In [1] and [11], the pinning problems of networks
were investigated under a single state feedback controller
and a single impulsive controller, respectively. In [1], it is
proved that, if the global coupling strength d is sufficiently
large, a coupled complex network can be pinned to a target
without assuming symmetry irreducibility, or linearity of the
couplings. In [11], under the assumption of the network con-
taining a spanning tree, the network can achieve consensus
when the impulsive controller is injected on the root node
with an appropriate impulsive strength and intervals. Differ-
ent from [11], our model involves time-delays and stochas-
tic disturbances. The importance of our results is to employ
scheduling techniques inspired from networked control sys-
tems [16, 23] to investigate pinning problems. Although our
impulsive controller renders a good tracking performance
due to the consideration of scheduling techniques, the im-
plementation requires more real-time information than [11].
Therefore, it is promising to adopt the techniques in [11]
without monitoring tracking errors ei(t).

In the following, we assume that ei(t) is right continuous
at t = tk, i.e., ei(tk) = ei(t

+
k ). Hence, the solution of (2) is

a piecewise right-hand continuous function with discontinu-
ities at t = tk for k ∈ N+. It is worth mentioning that we can
still get the same results according to the impulsive control
theory when ei(t) is left continuous at t = tk [9]. The proof
is similar by following [9] and we do not repeat it any more.

The following assumptions and definitions are required to
present our results.
Assumption 1. The nonlinearities f̃1(., .) and f̃2(.) satisfy
the following Lipschitz conditions for ∀x, y ∈ Rn:

‖f̃1(x, t)− f̃1(y, t)‖ ≤ φ1‖x− y‖,
‖f̃2(x)− f̃2(y))‖ ≤ φ2‖x− y‖,

where φ1 and φ2 are positive constants.
Assumption 2. The noise intensity function f̃3 satisfies the
uniformly Lipschitz continuous conditions

trace[(f̃3(x1, y1, t)− f̃3(x2, y2, t))
T

× (f̃3(x1, y1, t)− f̃3(x2, y2, t))]

≤ ‖Σ1(x1 − x2)‖2 + ‖Σ2(y1 − y2)‖2,
where Σ1 and Σ1 are matrices with appropriate dimensions.

Assumption 2 is quite popular in dealing with stochastic
disturbances when analyzing the stability of stochastic dif-
ferential equations (see [15] and the references therein). In
addition, Assumption 2 is used to confine the intensities of
stochastic disturbances via linear terms of states, which can
facilitate a mathematical derivation.

Assumption 3. f̃1(0, t) = 0, f̃2(0) = 0 and f̃3(0, 0, t) = 0.

Definition 1. The stochastic delayed networked multi-agent
system in (1) with partial mixed impulses is said to globally
exponentially track the leader state s(t) in mean square if
there exist λ > 0, T0 > 0 and M > 0 such that for any initial
values ϑi(.) (i = 1, 2, ..., N),

E
N∑

i=1

‖ei(t)‖2 = E
N∑

i=1

‖xi(t)− s(t)‖2 ≤ Me−λt,

∀i = 1, 2, ..., N,

hold for all t > T0.

Definition 2. The average impulsive interval of the syn-
chronizing impulses is not larger than Ťi and the average
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impulsive interval of the desynchronizing impulses is not less

than T̂j , if there exist positive numbers Ťi and T̂j such that

Ňi(T, t) ≥ T − t

Ťi

−N0,

and

N̂j(T, t) ≤ T − t

T̂j

+ N0,

hold for N0 ≥ 0, Ťi, T̂j , i = 1, 2, . . . , q, j = 1, 2, . . . , r, where

Ňi(T, t) and N̂j(T, t) stand for the number of the synchro-
nizing impulsive sequence with impulsive strengths ηi and
desynchronizing impulsive sequence with impulsive strengths
εj on the interval (t, T ), respectively. Without loss of gener-
ality, N0 = 0 is set throughout this paper.

Lemma 1. [26] Let 0 ≤ τi(t) ≤ τ , F (t, u, ū1, ū2, . . . , ūm) :

R+×
m+1︷ ︸︸ ︷

R× . . .× R→ R be nondecreasing in ūi for each fixed
(t, u, ū1, . . . , ūi−1, ūi+1, . . . , ūm), i = 1, 2, . . . , m, and Ik(u)
be any monotonically nondecreasing function: R → R in u.
Suppose that u(t), v(t) ∈ PC(1) satisfy{

D+u(t) ≤ F (t, u(t), u(t− τ1(t)), . . . , u(t− τm(t))),

u(t+k ) ≤ Ik(u(t−k )), k ∈ N+,

and{
D+v(t) > F (t, v(t), v(t− τ1(t)), . . . , v(t− τm(t))),

v(t+k ) ≥ Ik(v(t−k )), k ∈ N+,

where the upper-right Dini derivative D+y(t) is defined as

D+y(t) = limh→0+(y(t + h)− y(t))/h. Then u(t) ≤ v(t), for
−τ ≤ t ≤ 0 implies that u(t) ≤ v(t), for all t ≥ 0.

3 Main results

In this section, we will investigate the leader-following
consensus problem of the nonlinear stochastic networked
multi-agent system in (1) with partial mixed impulses and
unknown time-varying delays by virtue of the comparison
principle and stochastic analysis techniques. Firstly, we
study tracking control of the nonlinear stochastic networked
multi-agent system in (1) with partial mixed impulses under
R3(tk). Next, we extend the results to the cases with R1

and R2(tk) and other kinds of specific situations.

Theorem 1. Under D(tk) = R3(tk), suppose that Assump-
tions 1 and 2 hold, the average impulsive interval of syn-
chronizing impulses is not larger than Ťi, i = 1, 2, ..., q and
the average impulsive interval of synchronizing impulses is

not less than T̂j , j = 1, 2, ..., r. Then, the nonlinear stochas-
tic networked multi-agent system in (1) with partial mixed
impulses and unknown time-varying delays will globally ex-
ponentially track the leader s(t) in mean square, if the fol-
lowing inequality holds

µ− υ > 0, (4)

where

µ =− (β +

q∑
i=1

ln Ψ̌i

Ťi

+

r∑
j=1

ln Ψ̂j

T̂j

), Ψ̌i = ψ̌i,

Ψ̂j =





Nψ̂j

N − l
, if l/N ≤ 1

2

(
1− 1

(2ε2j + 4εj + 1)

)
,

(1 + εj)
2, otherwise,

ψ̂j =
N + lεj(εj + 2)

N
∈ (1, +∞), j = 1, ..., r,

ψ̌i =
N + lηi(ηi + 2)

N
∈ (0, 1), i = 1, ..., q,

β =2dλmax(M) + λmax(A + AT ) + λmax(Σ
T
1 Σ1)

+ 2
√

λmax(BT B)φ1 +
√

λmax(CT C)φ2,

υ =
√

λmax(CT C)φ2 + λmax(Σ
T
2 Σ2).

Then, the nonlinear stochastic networked multi-agent system
in (1) with partial mixed impulses and unknown time-varying
delays can globally exponentially track s(t):

E
N∑

i=1

‖ei(t)‖2 ≤ χe−λt,

where χ = E
∑N

i=1 sup−τ≤s≤0{‖ϑi(s)‖2} and λ > 0 is a

unique solution of λ− µ + υeλτ = 0.

Proof. Consider the following Lyapunov function:

V (t) =

N∑
i=1

eT
i (t)ei(t). (5)

Then, for any t ∈ [tk−1, tk), according to the Itô-differential
formula [15], the operator L can be calculated as follows:

L V (t) =

N∑
i=1

2eT
i (t)[Aei(t) + Bf1(ei(t), t) + Cf2(ei(t− τ(t)))]

+ d

N∑
i=1

N∑
j=1

2eT
i (t)mijej(t)

+

N∑
i=1

trace[fT
3 (ei(t), ei(t− τ(t)), t)

× f3(ei(t), ei(t− τ(t)), t)]. (6)

By Assumption 1, we have
∑N

i=1 eT
i (t)Bf1(ei(t), t) ≤√

λmax(BT B)φ1

∑N
i=1 eT

i (t)ei(t).

Similarly, one gets from Assumption 1 and 2ab ≤ a2 + b2,

2

N∑
i=1

eT
i (t)Cf2(ei(t− τ(t)))

≤2

N∑
i=1

√
‖ei(t)‖2

√
‖Cf2(ei(t− τ(t)))‖2

≤
√

(λmax(CT C))φ2

N∑
i=1

(‖ei(t)‖2 + eT
i (t− τ(t))ei(t− τ(t))).

(7)
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From Assumption 2, it can be checked that
N∑

i=1

trace[fT
3 (ei(t), ei(t− τ(t)), t)

× f3(ei(t), ei(t− τ(t)), t)]

≤
N∑

i=1

[eT
i (t)ΣT

1 Σ1ei(t) + eT
i (t− τ(t))ΣT

2 Σ2ei(t− τ(t))].

(8)

Due to the fact that the connection matrix L is connected,
it yields that

2d

N∑
i=1

N∑
j=1

mije
T
i (t)ej(t)

=2d

N∑
i=1

N∑
j=1

mij

n∑

k=1

eik(t)ejk(t)

=2d

n∑

k=1

N∑
i=1

N∑
j=1

mijeik(t)ejk(t)

=2d

n∑

k=1

(ek(t))T M(ek(t))

≤2dλmax(M)

N∑
i=1

eT
i (t)ei(t), (9)

where ek(t) = (e1k(t), ..., eNk(t))T for k = 1, ..., n. Substi-
tuting (7)-(9) into (6), we have

EL V (t) =E
N∑

i=1

βeT
i (t)ei(t)

+ E
N∑

i=1

υeT
i (t− τ(t))ei(t− τ(t))

=βEV (t) + υEV (t− τ(t)). (10)
In the following, we aim to derive the relationship between
V (t+k ) and V (t−k ) such that the results can fit into the frame-
work of Lemma 1. When t = tk, k ∈ N, according to (2), one
gets

V (t+k ) =

N∑
i=1

eT
i (t+k )ei(t

+
k )

=
∑

i∈D(tk)

eT
i (t+k )ei(t

+
k ) +

∑

i/∈D(tk)

eT
i (t+k )ei(t

+
k )

=
∑

i∈D(tk)

(1 + ρk)2eT
i (t−k )ei(t

−
k ) +

∑

i/∈D(tk)

eT
i (t−k )ei(t

−
k ).

(11)

Denote



Φ1(t
−
k ) = max{‖ei(t

−
k )‖ : i ∈ R3(tk)}, if ρk ∈ B,

Φ2(t
−
k ) = min{‖ei(t

−
k )‖ : i /∈ R3(tk)}, if ρk ∈ B,

Φ3(t
−
k ) = min{‖ei(t

−
k )‖ : i ∈ R3(tk)}, if ρk ∈ M,

Φ4(t
−
k ) = max{‖ei(t

−
k )‖ : i /∈ R3(tk)}, if ρk ∈ M.

(12)

First, we consider the situation of ρk = εk ∈ B. For ψ̂k =
N + lεk(εk + 2)

N
∈ (1, +∞), one can verify that the following

equation holds,

N − l =
[ψ̂k − (1 + εk)2]l

1− ψ̂k

≥ 0. (13)

Then, one has from (12)∑

i∈R3(tk)

(1 + ρk)2eT
i (t−k )ei(t

−
k )

≤l(1 + εk)2Φ2
1(t

−
k )

≤l(1 + εk)2Φ2
2(t

−
k )

=
l(1 + εk)2

N − l
(N − l)Φ2

2(t
−
k )

≤ l(1 + εk)2

N − l

∑

i/∈R3(tk)

eT
i (t−k )ei(t

−
k ). (14)

Therefore, substituting (14) and (13) into (11), it can be
checked that

V (t+k ) ≤
[ l(1 + εk)2

N − l
+ 1

] ∑

i/∈R3(tk)

eT
i (t−k )ei(t

−
k )

=
ψ̂k − ψ̂k(1 + εk)2

ψ̂k − (1 + εk)2

∑

i/∈R3(tk)

eT
i (t−k )ei(t

−
k )

=
ψ̂k(1− (1 + εk)2)

l
N

εk(εk + 2)− εk(εk + 2)

×
∑

i/∈R3(tk)

eT
i (t−k )ei(t

−
k )

≤ Nψ̂k

N − l

N∑
i=1

eT
i (t−k )ei(t

−
k ). (15)

Therefore, when ρk = εk,

V (t+k ) ≤ Nψ̂k

N − l
V (t−k ). (16)

Note that the following inequality also holds for ρk = εk:

V (t+k ) ≤ (1 + εk)2V (t−k ). (17)

Comparing (16) and (17), we define Ψ̂k as follows:

Ψ̂k =





Nψ̂k

N − l
, if l/N ≤ 1

2
(1− 1

(2ε2k + 4εk + 1)
),

(1 + εk)2, otherwise.

(18)

Similarly, we consider the case of ρk = ηk, getting ψ̌k =
N + lηk(ηk + 2)

N
∈ (0, 1) and N − l =

[ψ̌k − (1 + ηk)2]l

1− ψ̌k

≥ 0.

Hence, it can be obtained that∑

i/∈R3(tk)

eT
i (t−k )ei(t

−
k )

≤(N − l)Φ2
3(t

−
k )

≤(N − l)Φ2
4(t

−
k )

=
[ψ̌k − (1 + ηk)2]l

1− ψ̌k

Φ2
4(t

−
k )

≤ [ψ̌k − (1 + ηk)2]

1− ψ̌k

∑

i∈R3(tk)

eT
i (t−k )ei(t

−
k ). (19)

Thus, we get the following inequality by some computations

V (t+k ) ≤
∑

i∈R3(tk)

(1 + ηk)2eT
i (t−k )ei(t

−
k )

+
∑

i/∈R3(tk)

eT
i (t−k )ei(t

−
k )

≤ψ̌kV (t−k ). (20)
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By considering (18) and (20) together, it yields

EV (t+k ) ≤ ΨkEV (t−k ).

where Ψk =





Ψ̂k :=
Nψ̂k

N − l
, if ρk ∈ B,

Ψ̌k := ψ̌k, if ρk ∈ M.

Now, we are in a position to utilize the comparison principle
to prove exponential tracking for the nonlinear stochastic
networked multi-agent system in (2) under R3(tk) in mean
square sense. For ∀ε > 0, let v(t) be a unique solution of the
following impulsive delayed system




v̇(t) = βv(t) + υv(t− τ(t)) + ε, t 6= tk,

v(tk) = Ψkv(t−k ), t = tk, k ∈ N+,

v(s) = E
∑N

i=1 ‖ϑi(s)‖2, − τ ≤ s ≤ 0.

(21)

From [15], it is true that t ∈ [tk, tk+1), D+EV (t) = EL V (t).
Then it follows from Lemma 1 that EV (t) ≤ v(t), t ≥ 0.
According to the formula for the variation of parameters [9],
one obtains from (21) that

v(t) = Q(t, 0)v(0) +

∫ t

0

Q(t, s)[υv(s− τ(s)) + ε]ds, (22)

where Q(t, s) (t > s ≥ 0) is the Cauchy matrix of the fol-
lowing linear impulsive system{

ż(t) = βz(t), t 6= tk, k ∈ N+,

z(t+k ) = Ψkz(t−k ), t = tk, k ∈ N+.

According to the representation of the Cauchy matrix, the
following inequality holds from Definition 1:

Q(t, s) ≤ eβ(t−s)
q∏

i=1

Ψ̌
t−s
Ťi

i

r∏
j=1

Ψ̂

t−s

T̂j

j = e−µ(t−s), (23)

where µ = −(β +
q∑

i=1

ln Ψ̌i

Ťi
+

r∑
j=1

ln Ψ̂j

T̂j
). Define χ =

E
∑N

i=1 sup−τ≤s≤0{‖ϑi(s)‖2}. It yields from (22) that

v(t) ≤ χe−µt +

∫ t

0

e−µ(t−s)[υv(s− τ(s)) + ε]ds, (24)

∀t ≥ 0. Let P (λ) = λ − µ + υeλτ . According to inequality
(4), one has P (0) = −µ + υ < 0. Since P (+∞) = +∞ and

Ṗ (λ) = 1 + τυeλτ > 0, there exists a unique solution λ > 0,
such that the following equality holds P (λ) = λ−µ+υeλτ =
0.

From (4), µ − υ > 0 holds and thus one gets for t ∈ [−τ, 0]

that v(t) = E
∑N

i=1{‖ϑi(t)‖2} ≤ χ < χe−λt + ε
µ−υ

. Now we

are in a position to prove that the following inequality holds
for any t ≥ 0

v(t) < χe−λt +
ε

µ− υ
. (25)

Suppose that (25) does not hold, there exists a t∗ > 0 such

that v(t∗) ≥ χe−λt∗ + ε
µ−υ

and

v(t) < χe−λt +
ε

µ− υ
, t < t∗. (26)

It is true from (24) and (26) that

v(t∗) ≤χe−µt∗ +

∫ t∗

0

e−µ(t∗−s)[υv(s− τ(s)) + ε]ds

<e−µt∗
{

χ +
ε

µ− υ
+

∫ t∗

0

eµs[υ(χe−λ(s−τ(s))

+
ε

µ− υ
) + ε]ds

}

=χe−λt∗ +
ε

µ− υ
, (27)

which contradicts v(t∗) ≥ χe−λt∗ + ε
µ−υ

. Therefore, (25)

holds. Let ε → 0 and from EV (t) ≤ v(t), EV (t) =

E
∑N

i=1 eT
i (t)ei(t) ≤ v(t) ≤ χe−λt, t ≥ 0 holds. Conse-

quently, this completes the proof. ¥
The following corollary is presented to show the tracking
results under R1 and R2(tk).

Corollary 1. Under D(tk) = R1 or D(tk) = R2(tk), sup-
pose that Assumptions 1 and 2 hold, the average impul-
sive interval of synchronizing impulses is not larger than
Ťi, i = 1, 2, ..., q and the average impulsive interval of syn-

chronizing impulses is not less than T̂j , j = 1, 2, ..., r. Then,
the nonlinear stochastic networked multi-agent system in (1)
with partial mixed impulses and unknown time-varying de-
lays will globally exponentially track s(t) in mean square, if
the following inequality holds

µ− υ > 0,

where µ = −(β +
q∑

i=1

ln Ψ̌i

Ťi
+

r∑
j=1

ln Ψ̂j

T̂j
), Ψ̂j = (1 + εj)

2 (j =

1, ..., r), Ψ̌i = 1 (i = 1, ..., q), β = 2dλmax(M) +

λmax(A + AT ) + λmax(Σ
T
1 Σ1) + 2

√
λmax(BT B)φ1 +√

λmax(CT C)φ2, υ =
√

λmax(CT C)φ2+λmax(Σ
T
2 Σ2). Then,

the nonlinear stochastic networked multi-agent system in
(1) with partial mixed impulses can globally exponentially
track s(t).

Remark 6. From Theorem 1, it can be shown that under
synchronizing impulses, an increasing of the portion of l

N
will make the conditions in Theorem 1 more feasible. Con-
versely, under desynchronizing impulses, if the portion of
l

N
increases, the conditions presented in Theorem 1 will be

more difficult to satisfy. One can also infer from Theorem 1 a
relationship among the system’s parameters: the portion of
nodes subjected to impulsive effects, the average impulsive
intervals and strengths of impulsive effects. It is also worth
mentioning that it might be unrealistic to locate impulsive
disturbances to minimize consensus errors. However, the de-
rived results exhibit the most ideal environment for consen-
sus if all the parameters are fixed except the determination
of D(tk). In addition, the results in Corollary 1 are a little
bit conservative and perhaps one can utilize the idea from
a finite-horizon interval viewpoint to present less conserva-
tive results, which will inevitably make the algorithm more
complicated.

4 Simulations

In this section, one example is given to illustrate the ef-
fectiveness of the obtained theoretical results. We consider
system (1), in which each node is to describe the dynam-
ics of robotic arms [17]. The dynamics of robotic arms is
composed of two states xi = [xi1, xi2]

T , where xi1 is the
angle and xi2 is the rotational velocity. According to [17],

f̃1(xi(t), t) = [xi2,−θ1 sin(xi1) + θ2uIN]T , where uIN is the
input torque and θ1, θ2 are fixed parameters. Hence, A =
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C =

(
0 0

0 0

)
, B =

(
1 0

0 1

)
and φ1 = θ1. Let θ1 = 9.81× 0.5

and θ2 = 2 with uIN = 10 sin(50t). The noise intensity

function is f̃3(xi(t)) = 0.5xi(t) + 0.5xi(t − τ(t)) and there-

fore Σ1 = Σ2 = 0.5, where τ(t) = et

et+1
. The connection

matrix is generated by a scale-free network with N = 100
nodes. The growth of the scale-free network starts from
three nodes and no edges. At each step, a new node with
two edges will be added to the existing network. Calculat-
ing λmax(M), we obtain λmax(M) = −0.0094. The global
coupling is d = 0.1. The following equation is used to mea-
sure the tracking errors with different kinds of impulses
E(t) = 1

N

∑N
i=1

√
(xi(t)− s(t))2.

Here, we only consider one value of synchronizing impulse
and one value of desynchronizing impulse for the sake of sim-
plicity, i. e., r = q = 1. In order to show the advantages of
TOD-like partial mixed impulses over the other two kinds
of partial mixed impulses, the comparison result is shown in
Fig. 1, when l = 50, Ť1 = 0.025, η1 = −0.46, ε1 = 0.15 and

T̂1 = 0.05. For making a fair comparison, the instants of im-
pulsive effects of the three kinds of partial mixed impulses
are the same. The only difference here is to identify the nodes
subjected to impulsive effects. We find that Theorem 1 can
be satisfied under such kind of parameters. It is shown that
the error state E(t) of the network converges most quickly
when TOD-like partial mixed impulses are used, since they
can efficiently identify the most important nodes to be con-
trolled and the least important nodes to be injected with im-
pulsive disturbances. The fixed partial mixed impulses work
better than the network without impulses, where both cases
can not track the leader s(t) successfully. The error state
achieved by periodic partial mixed impulses converges much
faster than the one achieved by fixed partial mixed impulses.
The line of periodic partial mixed impulses is close to that of
TOD-like partial mixed impulses. To sum up, TOD-like par-
tial mixed impulses work best among the three kinds of im-
pulses and periodic partial mixed impulses rank second. The
reason is that the protocols in R2 and R3 can efficiently use
synchronizing impulses and reduce the effects of desynchro-
nizing impulses according to their scheduling mechanisms.
TOD-like impulses work better than periodic impulses in
that TOD-like impulses require more real-time information
than periodic impulses.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

t

E
(t

)

 

 
without impulses
fixed partial mixed impulses
periodic partial mixed impulses
TOD-like partial mixed impulses

Fig. 1. Comparison of the three kinds of partial mixed impulses
for system (1) when λmax(M) = −0.0094, d = 0.1, l = 50,

Ť1 = 0.025, η1 = −0.46, ε1 = 0.15 and T̂1 = 0.05.

5 Conclusions

In this paper, the leader-following consensus problem has
been investigated for a class of nonlinear stochastic net-

worked multi-agent systems with partial mixed impulses and
unknown time-varying delays. The main feature of partial
mixed impulses is that the impulsive effects are time-varying
and include synchronizing and desynchronizing impulses, in
which the locations of the impulses are time-varying ac-
cording to certain protocols. In order to characterize partial
mixed impulses, we have proposed three types of impulses in
the light of networked control systems, named as fixed par-
tial mixed impulses, periodic partial mixed impulses and try-
once-discard-like partial mixed impulses, respectively. Based
on the stability theory, the impulsive control theory and
stochastic analysis techniques, theoretical conditions have
been derived for ensuring global exponential tracking control
of nonlinear stochastic networked multi-agent systems with
partial mixed impulses and unknown time-varying delays. A
simulation example was provided to compare the three types
of partial mixed impulses and to show the effectiveness of
the obtained results. In the end, we give some valuable fu-
ture topics. Firstly, it is necessary to extend the results to
more general topologies. Secondly, it is interesting to reduce
the conservativeness of the obtained results. Finally, it also
remains promising to investigate tracking control with the
proposed impulses and coupling delays.
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