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Abstract
This article studies a recently introduced information-theoretic approach to 
detect and quantify the causal couplings in a complex cardiovascular system. 
In the first step a causal algorithm detects the coupling delays and in the second 
step the causal strength of each coupling mechanism is quantified using the 
recently introduced momentary information transfer. As an example, the 
method is applied to time series of respiration, systolic and diastolic blood 
pressure, and heart rate of pregnant healthy women and women suffering from 
pre-eclampsia. A possible explanation for the influence of heart rate on systolic 
blood pressure is found and some differences between healthy women and 
patients are discussed.

Keywords: causality, information theory, pre-eclampsia, baroreflex

(Some figures may appear in colour only in the online journal)

1.  Introduction

Complex interactions in the cardiovascular system have been studied using model-based 
approaches as well as by applying various coupling measures, starting from cross correlation 
and spectral methods via mutual predictability and sequence statistics to information-theoretic 
methods (Granger 1969, Cohen and Taylor 2002, Porta et al 2002, Rosenblum et al 2002, 
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Paluš and Stefanovska 2003, Laude et al 2004, Nollo et al 2005, Cammarota and Rogora 
2006, Faes et al 2006, Schelter et al 2006, Marwan et al 2007, Paluš and Vejmelka 2007, 
Dhamala et al 2008, Leistritz et al 2013, Schulz et al 2013, Stankovski et al 2013, Bopp  
et al 2014). Probably the most prominent coupling in the cardiovascular system is the so-
called baroreflex, which is the change of the heart rate in response to the increase and decrease 
of systolic blood pressure. The diagnostic relevance of the baroreflex sensitivity has been 
proven in many studies, such as in Malberg et al (2007) where this parameter and two others 
were used to improve the standard diagnostic tool of pre-eclampsia (Doppler sonography). 
This serious disorder is characterized by hypertension (mean systolic/diastolic blood pres-
sure greater than 140/90 mmHg) and proteinuria of more than 300 mg a day during the third 
trimester of pregnancy. Laude et al (2004) studied this interaction using bivariate sequence 
statistics. Most of the above-mentioned works are based on bivariate methods. A bivariate 
analysis has also been used to reconstruct the interaction between heart rate, systolic and 
diastolic blood pressure, and respiration in de Boer’s beat-to-beat model of hemodynamic 
fluctuations and baroreflex sensitivity (deBoer et al 1987). However, the most critical prob-
lem of this bivariate analysis is the influence of the respiration on both heart rate and systolic 
blood pressure. Several different multivariate approaches have been used to overcome this, 
such as using Granger causality (Porta et al 2000). In particular, methods which take non-
linear behavior into account have given new results about the complex structure of such an 
interaction. For example, Riedl et al (2010) found the same coupling pattern in both healthy 
pregnant women and patients suffering from pre-eclampsia. The patterns include the influence 
of respiration on heart rate, systolic blood pressure, and diastolic blood pressure, the influence 
of heart rate on diastolic blood pressure, and the effect of diastolic blood pressure on systolic 
blood pressure. The only difference was found in the morphologies of the couplings in both 
groups. Surprisingly, the authors did not detect a coupling of heart rate and systolic blood 
pressure, which led them to the conclusion that the baroreflex in pregnant women measured 
by Malberg et al (2007) results from the simultaneous influence of respiration on both heart 
rate and blood pressure.

The approach in Riedl et al (2010) was still based on a (nonlinear) model. Here we 
study the interactions in the model-free framework of information theory. This over-
comes the possibility of a misspecified model in an assessment of causal interactions. On 
the other hand, model-based approaches can yield more insights into the functional form 
of a dependency, as discussed in Riedl et al (2010), and are typically better estimable. 
The most straightforward way to generalize the Granger causality in an information-
theoretic framework is via transfer entropy (Schreiber 2000). As analyzed in Runge et 
al (2012b), the drawback of this approach is that it does not include causal lags and 
it suffers from the curse of dimensionality, which is why it has mostly been used in a 
bivariate setting. Here we study the causal interactions for the general multivariate case, 
including causal lags, using the theory of graphical models adapted to time series (Runge 
et al 2012b). We also utilize information-theoretic measures to address a second goal: 
measuring the strength in a meaningful way (Runge et al 2012a). This novel approach 
is compared with lagged mutual information, transfer entropy, and symbolic coupling 
traces (Wessel et al 2009) on a dataset of pregnant healthy women and women suffering 
from pre-eclampsia. One important result is that a multivariate analysis unveils the influ-
ence of heart rate on systolic blood pressure as only indirectly mediated via diastolic 
blood pressure. This finding indicates a flaw in the extraction of baroreflex sensitivity 
by means of standard bivariate sequence methods and spectral approaches based on high 
frequency power (Laude et al 2004).
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2.  Method

2.1.  Conditional mutual information

Information theory provides a genuine framework for the model-free study of couplings 
among time series. Mutual information (MI) and its conditional extension conditional mutual 
information (CMI) are well-known information-theoretic functionals (Cover and Thomas 
2006). CMI is defined using Shannon entropies H as

� ∣ ≡ ∣ − ∣I X Y Z H Y Z H Y X Z( ; ) ( ) ( , ) (1)

which can be phrased as the decrease in uncertainty about Y given Z if additionally X is known. 
CMI can be used to assess (Granger) causality because it is zero if and only if X and Y are inde-
pendent conditionally on Z. In figure 1(b) the CMI I(X;Y∣Z) would be zero if there was no link 
X → Y but the mutual information I(X;Y) would still be non-zero due to the common driver Z. 
Instead of the commonly used binning estimators, here we use an advanced nearest-neighbor 
estimator (Frenzel and Pompe 2007) that is most suitable for variables taking on a continuous 
range of values. This estimator has as a free parameter for the number of nearest-neighbors 
k, which determines the size of hyper-cubes around each (high-dimensional) sample point. 
Small values of k lead to a lower estimation bias but higher variance, and vice versa. Note that 
stationarity is required for an estimation from a (multivariate) time series.

2.2. Time series graphs

The present discussion has not included the important aspect of causal lags or delays, which 
are crucial to determine causal interactions in time series, as initiated by the works of Granger. 
The more detailed time-resolved picture in figure  1(a) shows that, given Xt  −  1  →  Yt does 
not exist, Xt − 1 and Yt are not independent given only the common driver Zt − 2 as a condi-
tion. Rather, additionally Yt − 1 needs to be included in the conditions to exclude all of the 

Figure 1.  Causal interactions in a multivariate process X. (a) Example of a time series 
graph (see definition in text). Note that stationarity implies that ‘Xt − τ → Yt’ whenever 
‘Xt′ − τ → Yt′’ for any t′. The set of parents PYt (blue boxes) separates Yt from the past of 
the whole process P∖−Xt Yt, which is used in the algorithm to estimate the graph. Here 
MIT between Xt − 1 and Yt (black dots) is the conditional mutual information conditional 
on both the parents of Xt − 1 (red box) and Yt (blue boxes). (b) Process graph, which 
aggregates the information in the time series graph for better visualization (the labels 
denote the lags, the link colors encode the MIT strength, and the node colors denote the 
autodependency MIT strength).

J Runge et alPhysiol. Meas. 36 (2015) 813
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paths connecting the two. These subtle interactions can be captured with time series graphs 
stemming from the theory of graphical models. In the graphical model approach the condi-
tional independence properties of a multivariate process are visualized in a graph, which are 
called time series graphs (Dahlhaus 2000, Eichler 2012) for the case of time-ordered data. 
Figure 1(a) shows an example. Each node in a time series graph represents a subprocess of a 
multivariate discrete time process X at a certain time t. Subprocesses/nodes Xt − τ and Yt for 
τ > 0 are connected by a directed link ‘Xt − τ → Yt’ if

� ∣ ∖ >τ τ−
−

−I X Y XX( ; { }) 0,t t t t (2)

i.e. if they are not independent conditionally on the past of the whole process, which implies a 
lag-specific Granger causality with respect to X. If Y ≠ X, then we say that the link ‘Xt − τ → Yt’ 
represents a coupling at lag τ, while for Y = X it represents an autodependency at lag τ. Since 
contemporaneous associations—even so not causal—are also often of interest, we also define 
the links between Xt and Yt by

� ∣ ∖ >+
−( )I X Y X YX; { , } 0,t t t t t1 (3)

where the contemporaneous present Xt∖{Xt, Yt} is also included in the condition. These links 
are marked by a straight line ‘Xt–Yt’. In the case of a multivariate autoregressive process, this 
definition corresponds to non-zero entries in the inverse covariance matrix of the innovations 
(Eichler 2012). In this graph the parents and neighbors of a node Yt are defined as

� τ≡ ∈ > →τ τ− −P Z Z Z YX{ :  ,  0,  } ,Y t t tt (4)

�N ≡ ∈ −X X X YX{ : , } .Y t t tt (5)

2.3.  Causal algorithm

In Runge et al (2012b) an algorithm for the estimation of these time series graphs by itera-
tively inferring the parents is introduced. This algorithm is a modification of the PC algorithm 
(Spirtes and Glymour 1991, Spirtes et al 2000) (which is named after its inventors Peter 
Spirtes and Clark Glymour). The main idea is to iteratively unveil the links by testing for 
conditional independence between all possible pairs of nodes conditioned on iteratively more 
conditions and testing all of the combinations among them. Thereby, the dimension stays as 
low as possible in every iteration step. This important feature helps to alleviate the curse of 
dimensionality in estimating CMIs. The algorithm starts with no a priori knowledge about the 
links and iteratively learns the set of parents and neighbors for each Y:

For every Y, first we estimate unconditional dependencies I(Xt − τ; Yt) and initialize the 
preliminary parents τ τ= ∈ < ⩽ >͠ τ τ− −P X X I X YX{ : , 0 , ( ; ) 0}Y t t tmaxt . This set contains also 
indirect links which are now iteratively removed by testing whether the dependence between 
Yt and each P∈ ͠τ−Xt Yt conditioned on the incrementally increased set of conditions P P⊆͠ ͠

Y
n i

Y
,
t t 

vanishes:

	(n)	 Iterate n over increasing number of conditions, starting with some n0 > 0:

n.1. � Iterate i through all of the combinations of picking n nodes from P͠Yt to define the 

conditions P͠Y
n i,

t  in this step and estimate P∣ ͠τ−( )I X Y;t t Y
n i,

t  for all P∈ ͠τ−Xt Yt. After each 
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step the nodes Xt − τ with P∣ =͠τ−( )I X Y; 0t t Y
n i,

t  are removed from P͠Yt and the i-iteration 

stops if all of the possible combinations have been tested.

If the cardinality P∣ ∣⩽͠ nYt , then the algorithm converges; else, increase n by one and iterate again.

Once the parents of each process are known, the same algorithm for τ = 0 can be used to 
infer the contemporaneous neighbors NYt, where now undirected links are removed if 

P N P N∣ =͠ ͠( )( )I X Y; , , 0t t Y Y
n i

Y
n i, ,

t t t .

2.4.  Shuffle significance test

In Runge et al (2012b) a shuffle test is used for testing whether ∣ >͠τ− P( )I X Y; 0t t Y
n i,

t . An ensem-

ble of M values of P* ∣ ͠τ−( )I X Y;t t Y
n i,

t  is generated where * τ−Xt  is a shuffled sample of Xt − τ, i.e. 

with the indices permuted. Note that t − τ refers to lagged sequences and the CMI is estimated 
by averaging over time. If, however, a large enough ensemble from measurements from differ-
ent subjects is available, then the time average can also be replaced by an ensemble average. 
Here, we use time-averaging. The CMI values are then sorted and for a test at a given α-level, 
the α M-th value is taken as a significance threshold. A numerical study on the detection and 
false positive rates of the algorithm is given in Runge et al (2012b).

2.5.  Momentary information transfer

Time series graphs encode the existence of a lag-specific causality but they are not meant to 
assess the causal strength in a meaningful way. To this end, momentary information transfer 
(MIT) (Pompe and Runge 2011, Runge et al 2012a, Runge et al 2014) between X at some 
lagged time t − τ in the past and Y at time t is the CMI that measures the part of entropy of Y 
that is shared with the source entropy of X:

� P Pτ→ ≡ ∣ ∖τ τ− − τ−( )I I X Y X( ) ; { } , .X Y t t Y t X
MIT

t t (6)

MIT is well interpretable because it excludes past information, not only from Y but also from 
X. In figure 1(a) the MIT of the link X → Y can be better interpreted than the MI I(X;Y) because 
it excludes common information due to Z that obscures the strength of the actual coupling 
mechanism between X and Y. As is demonstrated analytically and numerically in Runge et al 
(2012a), and on climate data in Runge et al (2014), this feature helps to exclude the mislead-
ing effects of autocorrelation and external drivers.

The limitation is that such a multivariate model-free causal inference analysis demands 
much longer time series lengths than linear inference methods based on, for example, partial 
correlation since the properties of the whole joint distribution are taken into account rather than 
only the first two moments. In Runge (2014) the power of CMI as an independence test is stud-
ied and it was found that—for the Gaussian model class studied there—CMI tests have good 
power up to as much as 32-dimensional conditions for a sample length of at least 1000. Note 
that, due to the efficient iterative testing scheme of the causal algorithm, this dimension refers 
to the maximum number of parents in the causal graph and not to the number of processes, 
which can be much higher. On the other hand, for a low bias of MIT, as needed for a proper 
assessment of coupling strength, one should at most condition on about eight variables for 1000 
samples to keep the relative error below about 30%, as further discussed in Runge (2014).

J Runge et alPhysiol. Meas. 36 (2015) 813
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2.6.  Bivariate symbolic coupling traces (SCT)

Another bivariate coupling measure, Symbolic Coupling Traces (SCT), developed by Wessel 
et al (2009), has been used to derive descriptive models of the cardiovascular system and its 
interactions. Here a further coarse graining of the beat-to-beat-interval based time series is 
performed via a symbolification of the time series by putting the symbol ‘1’ whenever two con-
secutive values increase and ‘0’ otherwise. From these symbol time series words of a certain 
length l (here l = 3) are built. Two of these word series are then shifted relative to each other by 
a lag τ, and the difference ΔT(τ) of the occurrences of identical (symmetrical) words (e.g. 101 
and 101) T(τ) and opposite (diametrical) words (e.g. 101 and 010) τT ( ) is computed. The lag 
shows the coupling direction, the sign of ΔT(τ) the kind of coupling (symmetric/diametric), and 
the absolute value of ΔT(τ) represents the coupling strength. According to Suhrbier et al (2010), 
the significance of the values of ΔT(τ) is determined via an empirical significance threshold.

3.  Results

We now analyze an ensemble of 13 datasets of healthy pregnant women and 10 women suffer-
ing from pre-eclampsia, as studied in Riedl et al (2010), where the measurements are described 
in more detail. The study was approved by the local ethics committee and it obtained the 
informed consent of all of the subjects. We use the time series (length 900, sampled at heart 
beats) of diastolic (D) and systolic (S) blood pressure, respiration (R), and intervals between 
successive heart beats (B). The time of the heart beats are defined by the R-peaks in the elec-
trocardiogram. From the continuous blood pressure signal the local maxima, the systolic val-
ues, and the local minima, the diastolic values, were extracted, where the n-th systolic pressure 
is inside the n-th heart beat interval and the n-th diastolic pressure follows the n-th systolic 
one. The respiratory signal was resampled at the time instants of the R-waves by interpolation, 
where the n-th value is assigned to the second R-wave of the n-th interbeat interval.

3.1.  Mutual information lag functions

First, we analyze the interactions using lagged mutual information, defined as

� τ ≡ τ−I I X Y( ) ( ; ) .XY t t
MI (7)

For τ > 0, MI measures the information in the past of X that is contained in Y. In figure 2 we 
plot the lagged MIs for all healthy subjects as a matrix of lag functions instead of the common 
plot against positive and negative lags τ. The diagonal lag functions are, therefore, the auto-MI, 
defined as I(Yt − τ;Yt) for τ > 0 (for τ = 0 this is the entropy H(Y)). In such a bivariate analysis all of 
the processes are found to be significantly associated. While one could draw some conclusions 
from the peaks (e.g. for the influence of diastolic on systolic blood pressure D → S at a lag of 
1 or 2 (in units of heart beats)), lagged MI is not intended to yield a notion of causal direction.

3.2.  Symbolic coupling trace analysis

By applying Bivariate Symbolic Coupling Traces (SCT) to the present data set one arrives 
at the coupling structure given in figure 3. As for MI also here we can identify different lags 
and it is also possible to identify contemporaneous links. While one can clearly find differ-
ences between the healthy group and the patients group suffering from pre-eclampsia, still, 
especially in the healthy group, we find many connections because the SCT—being a bivariate 
measure—does not account for information carried via a common driver. For example, the 
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lag-2 link between B and S might be explained via the lag-1 links B → D and D → S (com-
pared with figure 4).

3.3.  Bivariate transfer entropy

Towards a causal interpretation, coupling measures need to be able to exclude information 
from a common past. Implementing this idea, Schreiber introduced transfer entropy (TE) 
(Schreiber 2000) which is the information-theoretic analogue of Granger causality. In the 
original article, TE was defined between two variables as

� → ≡ ∣I I X Y Y( ; )X Y t
l

t t
mTE ( ) ( ) (8)

where = …− −X X X( , , )t
l

t t l
( )

1  (correspondingly for Y). TE is not lag-specific and measures the 
reduction in uncertainty about Yt when learning the past of Xt, if the rest of the past of Y 
is already known. In practice this truncated TE is estimated with lag parameters l = m = 1 
because higher dimensional CMIs are difficult to estimate, especially using discrete binning 
estimators. In figure  5 we show the TE-networks of all 13 healthy subjects overlaid. The 
link color denotes the ensemble average TE and the link width the fraction of subjects for 
which this TE value was significant (95% level). As in the MI analyses, we find all of the 
variables to be significantly mutually connected. Still, the strength of TE offers some room for 

Figure 2.  Lagged mutual informations between diastolic (D) and systolic (S) blood 
pressure, respiration (R), and heart beats (B) of 13 healthy pregnant women. The 
diagonal depicts the auto-MI functions (zero-lag not shown). We rescaled the CMI to 

the (partial) correlation scale via → − ∈−I 1 e [0, 1]I2  (Cover and Thomas 2006). The 
horizontal lines show shuffle significance test levels at α = 0.95.

J Runge et alPhysiol. Meas. 36 (2015) 813



820

interpretations. For example, we observe strong TE values from the respiratory system to the 
heart rate and systolic blood pressure while the opposite directions are rather weak.

3.4.  Momentary information transfer: case study

Now we move to a full multivariate causal analysis including coupling delays. The causal 
algorithm was run using a maximum delay of four heart beats (the maximum dimension in the 

Figure 3.  Bivariate coupling traces analysis (Wessel et al 2009) of healthy subjects and 
patients. The straight lines show the contemporaneous links and the curved arrows show the 
directed links. The link width corresponds to the percentage of ensemble members where 
this link was significant (the thickest line denote 100%, the thinnest lines about 50%).

Figure 4.  Bivariate transfer entropy analysis of the 13 healthy subjects. Colors denote 
the TE value (transformed to correlation scale). The link width denotes the percentage 
of ensemble members where this link was significant.

S

DB

R
100%
robust
51.0%

0.0 0.1 0.2 0.3 0.4

TE
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n-loop in the algorithm) and conditioning on up to four parents (checking up to three different 
sets, the maximum in the i-loop). Significance at the 95% level was assessed using the shuffle 
test with 50 surrogates. CMI was estimated using k = 100 in the algorithm and k = 10 for MIT.

In figure 6 we analyze one of the healthy subjects. The MI lag functions are shown again 
for comparison. The couplings between diastolic and systolic blood pressure are shown in the 
upper left block, where one can see the effect of strong autodependencies on the MI estimate. 
The large and broad peak (grey), which is significant for both directions D → S and S → D, 
shrinks to one significant coupling D → S at lag 1 with a much smaller MIT value (black) if 
one conditions on the parents of D and S. In Runge et al (2014) the authors investigate how 
strong autodependencies can shift even the maximum to larger lags, obscuring an assessment 
of a coupling delay. While here MI still somewhat indicates a causal link, the broad peak for 
the coupling B → S (arrow marker) vanishes upon conditioning on D. This represents a case 
where only a multivariate causal analysis unveils an indirect coupling mechanism B → D → S. 
This mechanism is also robustly found in the other subjects, as analyzed in the next section.

3.5.  Momentary information transfer: comparison with patients

The analysis of all subjects is shown in figure 4 for both groups. We robustly find the causal 
chain B → D → S in healthy subjects as well as patients with pre-eclampsia, which explains 

Figure 5.  Mutual information lag functions (grey dots) and the associated 95% 
significance threshold (grey solid line). The black dots mark the significant MIT 
values of links that ‘survived’ the causal algorithm. Note that the grey line denotes 
the significance level only for MI. The fact that some MIT values are below this line 
is a consequence of the bias for the higher dimensional CMI and does not imply that 
the values are non-significant. Here the MI and MIT values are also transformed to the 
correlation scale.

J Runge et alPhysiol. Meas. 36 (2015) 813
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the lagged influence of heart rate on systolic blood pressure found in the previous bivariate 
analyses using MI, SCT, and TE (also found in Nollo et al 2005, Porta et al 2002 and Wessel 
et al 2009). More precisely, Nollo et al (2005) and Porta et al (2002) detected causal coher-
ence from B to S for both high frequencies and low frequencies. This causal chain B → D → S 
also confirms the findings of Riedl et al (2010). There, B → D is explained by the influence of 
the stroke volume on the diastolic blood pressure, depending on heart rate. This relates to the 
‘Windkessel’-function of the aortic tree, which buffers about half of the stroke volume in order 
to decrease the differences of blood pressure during filling and ejection of the heart. This func-
tion also connects both diastolic and systolic blood pressure. The strength of connection is 
mainly determined by the elastic property of the aortic tree (compliance of the ‘Windkessel’). 
Therefore, the different strength of D → S in both groups (figure 4) indicates a changed com-
pliance, which confirms the results of Dart and Kingwell (2001).

Furthermore, consistent with Cohen and Taylor (2002), Faes et al (2006), Riedl et al (2010), 
Rosenblum et al (2002) and Stankovski et al (2013), we find that the link R → B (together with 
the contemporaneous link R–B) is less robust and, conversely, the links R–D and R → S are more 
robust for patients. In the case of R → S, we find a difference in both groups, which is more clear 
than in Riedl et al (2010). This coupling seems to be the cause of larger respiratory induced 
fluctuations of the systolic blood pressure, which are used for the estimation of the baroreflex 
sensitivity in Malberg et al (2007) where pre-eclampsia leads to a significant increase.

The most significant differences to Riedl et al (2010) are B → R and D → R in both groups 
with a lag of 1 and 2 heart beats, respectively. Their higher lag indicates autonomic reflexes 
or integrations rather than mechanical mechanisms. The strongest mechanisms measured with 
MIT are the causal chain B → D → S and the influences of B and D on R, where the latter is 
even stronger for patients, albeit not for all patients. A visual inspection, especially in the case 
of pre-eclampsia, shows a relation between heart rate rhythms of the very low frequency band 

Figure 6.  Causal interactions between diastolic (D) and systolic (S) blood pressure, 
respiration (R), and heart beats (B) of healthy pregnant women (top) and women suffering 
from pre-eclampsia (bottom). The colors and labels are described in figure 1(b), straight 
lines show contemporaneous links and curved arrows show directed links. The link 
width denotes the percentage of ensemble members where this link was significant.
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and modulations of the respiratory amplitude, which might be quantified by the found con-
nection B → R. The underlying mechanism of the very low frequency rhythms are unknown. 
Therefore, this frequency band is out of the scope of the traditional analysis of the heart rate 
variability. We only could find its consideration in cases of heart failure patients with peri-
odic breathing where the heart rate’s very low frequency is driven by the respiratory ones 
(Ponikowski et al 1999). A similar explanation might be given for the detected influences of 
the blood pressure values on respiration.

The absence of S → B, which is also found in Riedl et al (2010), shows that these fluctuations 
may not be used for the quantification of the baroreflex because S → B is the mechanism of the 
baroreflex by definition. Rather, the aforementioned coupling R → B and the change of the periph-
eral resistance by means of respiratory modulations of the autonomic activity seems to be the cause 
of the variations in heart rate and blood pressure, see Cohen and Taylor (2002) and Stankovski et 
al (2013), respectively. In contrast to this result, bivariate close loop models show a causal coher-
ence from S to B but only for high frequencies (Porta et al 2002, Nollo et al 2005). This finding 
indicates a flaw in the extraction of baroreflex sensitivity by means of standard sequence methods 
and spectral approaches based on high frequency power (Laude et al 2004). The contemporaneous 
connection of R and D that was detected in several subjects could be the result of a change of the 
intra-thoracic pressure filling the lungs, which leads to higher pressure on the ‘Windkessel’. Note 
that these findings hold for baroreflex measurements under resting conditions.

4.  Conclusions

We apply a recently introduced causal coupling inference approach to cardiovascular time 
series. Apart from assessing model-free information-theoretic causal associations includ-
ing causal delays as important ingredients of a coupling mechanism, we also determine its 
strength in a meaningful way that attempts to exclude the misleading effects of autocorrelation 
and external dependencies. We have used this approach in conjunction with the model-free 
conditional mutual information but it can equivalently be utilized with the linear partial corre-
lation (Runge et al 2014), which can be much easier estimated. In this preliminary application 
we confirm some of the causal mechanisms that were discussed in Riedl et al (2010) and find 
a possible explanation for the influence of heart rate on systolic blood pressure. This approach 
provides more precise insights into complex coupling structures and assists a more realis-
tic physical interpretation. We also detected some unexpected couplings that might relate to 
slower rhythms than the ones considered in traditional heart rate analysis. This points towards 
a further improvement of the method by including different time delay embeddings to obtain 
a picture of scaled coupling patterns.
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