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Characterization of the chaos-hyperchaos transition based on return times
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We discuss the problem of the detection of hyperchaotic oscillations in coupled nonlinear systems when
the available information about this complex dynamical regime is very limited. We demonstrate the ability of
diagnosing the chaos-hyperchaos transition from return times into a Poincaré section and show that an appropriate
selection of the secant plane allows a correct estimation of two positive Lyapunov exponents (LEs) from even a
single sequence of return times. We propose a generalized approach for extracting dynamics from point processes
that allows avoiding spurious identification of the dynamical regime caused by artifacts. The estimated LEs are
nearly close to their expected values if the second positive LE is essentially different from the largest one. If both
exponents become nearly close, an underestimation of the second LE may be obtained. Nevertheless, distinctions
between chaotic and hyperchaotic regimes are clearly possible.
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I. INTRODUCTION

A chaos-hyperchaos transition in complex nonlinear sys-
tems is relatively easy to identify if the mathematical model
of the considered system is known. Based on the standard
approaches for determining the Lyapunov exponents [1,2],
parameter values associated with the appearance of two or
more positive LEs can then be estimated in a quite accurate
way. The Lyapunov spectrum (λ1, λ2, ..., λk) provides a clear
quantification of the increased complexity associated with
a hyperchaotic state as compared with chaotic oscillations
described by a single positive LE. The higher complexity
of this state is caused by bifurcations of unstable periodic
orbits embedded in the chaotic attractor [3]. However, the
characterization of this increased complexity becomes more
difficult when the dynamical equations are unknown as is often
the case in natural systems as in physiology or earth science.

Recently, an effective method for detection of chaos-
hyperchaos transitions based on the recurrence plots (RPs)
was proposed [4] that can be used even for relatively short
time series, and its application for model and experimental
systems was verified [5]. The method [4,5] distinguishes
between the discussed dynamical regimes based on several
measures introduced for RPs [6]. Although the possibility of
diagnosing hyperchaos from time series was demonstrated
in many studies, the question of how much information is
required for a correct identification of complex dynamical
regimes with two or more positive LEs still remains open.

Unlike the method [4], in this work we consider an idea
of restoring the averaged instantaneous frequency of complex
oscillations to estimate two largest LEs using very limited
information about complex dynamical regimes. We discuss
the problem of analyzing hyperchaotic dynamics in coupled
nonlinear systems based on return times into a Poincaré section
that has a relation to the more general problem of quantifying
systems dynamics from point processes [7] and, in particular,
the reconstruction of dynamical systems [8]. During the last
few decades this problem was discussed for several types of

simple neuron models, including threshold crossing (TC) and
integrate-and-fire (IF) models [9]. The TC model describes
the generation of spikes when an input signal x(t) crosses
some threshold value � in one direction, while the IF model
produces corresponding events if the integral from an input
signal x(t) reaches a selected constant value θ , and this integral
is set to zero after the generation of each spike. There is an
analogy between interspike intervals of the TC model and
return times into the Poincaré section introduced as x(t) = �,
if x(t) is the phase space coordinate.

An approach for computing dynamical characteristics from
return times was proposed in Ref. [10], and it was shown that
the averaged instantaneous frequency of complex oscillations
restored from the sequence of return times enables us to
estimate the largest LE even when the intersections of the
plane x(t) = � do not occur during some rotations of the phase
space trajectory [11]. A necessary condition is that the mean
return time is less than the prediction time for the analyzed
dynamical regime [11,12]. However, the approach [10] can
lead to spurious identification of the dynamical regime
caused by artifacts. Due to this, we consider in this paper
a generalized approach being able to correctly detect chaotic
and hyperchaotic oscillations. We show that this generalized
approach is able to diagnose the chaos-hyperchaos transition
using a single sequence of return times into a Poincaré section
if the latter is appropriately selected. We demonstrate that
the estimated LEs are nearly close to the values computed
using the mathematical model of the considered system when
the analyzed dynamical regime is quantified by essentially
different values of λ1 and λ2. When λ1 � λ2, the detection
of the chaos-hyperchaos transition is also provided despite an
underestimated value of the second LE.

II. COMPUTING LYAPUNOV EXPONENTS FROM
RETURN TIMES

The main idea underlying the approach [10] consists of the
following steps. Let us consider a chaotic system with x(t)
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being one of the phase space coordinates and introduce the
Poincaré section as x(t) = �. If Ti are the times of crossings
of this section in one direction, and Ii are return times, Ii =
Ti+1 − Ti , then we may estimate the points

ω(Ti) = 2π

Ii

(1)

representing the values of the instantaneous frequency of
chaotic oscillations x(t) averaged during a return time Ii . The
values ω(Ti) are qualitatively treated as the samples of the
instantaneous frequency introduced via the Hilbert transform
that are obtained using an averaging method with a varying
window [10]. Moreover, these samples are known only at
discrete time moments Ti . In order to analyze dynamical
properties of the considered regime, we need to introduce a
constant time step between data points. The latter can be done
by interpolation of the samples ω(Ti) with a smooth function,
e.g., a cubic spline. Although we do not exactly reproduce
the true dependence of the instantaneous frequency, the time
series ω(j�t) obtained in such a way allows approximate
reconstruction of the chaotic attractor with the standard delay
method [13] and, therefore, estimation of dynamical and
geometrical properties of the reconstructed attractor. A good
quality of determining Lyapunov exponents with this approach
(with an error of about 10%) was demonstrated in Refs. [10,11]
using different chaotic oscillators.

In order to compute LEs from the interpolated time series
ω(j�t) we used the method for LEs estimation proposed
by Wolf et al. [14]. Although the approach [10] provides a
possibility to estimate two LEs, its application to a single
sequence of return times related to hyperchaotic oscillations
was not studied.

Aiming to quantify dynamical features of hyperchaotic
regimes based on return time sequences, we consider the
following paradigmatic model of two coupled Rössler oscilla-
tors [15]:

dx1

dt
= −w1y1 − z1 + γ (x2 − x1),

dy1

dt
= w1x1 + ay1,

dz1

dt
= b + z1(x1 − c), (2)

dx2

dt
= −w2y2 − z2 + γ (x1 − x2),

dy2

dt
= w2x2 + ay2,

dz2

dt
= b + z2(x2 − c).

Here the parameters a, b, and c govern the dynamics of each
subsystem, and γ characterizes the coupling strength. The
basic frequencies w1 = w0 + � and w2 = w0 − � have a
small mismatch � that provides distinctions of the considered
dynamics of both individual oscillators. In this study, the
following parameter set is chosen [16]: a = 0.15, b = 0.2,
γ = 0.02, w0 = 1.0, � = 0.0093. The parameter c varies
in the range [6.8,8.0] including regions of both, chaotic,
and hyperchaotic oscillations. The transition to hyperchaos
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FIG. 1. (Color online) Dependencies of λ1 and λ2 versus the
parameter c of the coupled Rössler oscillators (2). Circles indicate
“true” values estimated with the method [1]. Squares are related
to LEs estimated from the sequences of return times into the
plane x1 = 0. Diamonds denote LEs computed from two sequences
of return times into the planes x1 = 0 and x2 = 0, when the
restored attractor contains delayed coordinates related to the averaged
instantaneous frequencies for both subsystems. Triangles are related
to LEs estimated from a single sequence of return times into the plane
x2 + y1 = 0. The arrow marked by A shows the chaos-hyperchaos
transition.

is illustrated in Fig. 1, where the dependencies of the two
largest LEs versus the parameter c are illustrated. The first LE
is positive in the whole considered range of c verifying the
presence of exponential instability of trajectories associated
with the chaotic oscillations. The second LE λ2 > 0 for
c > 7.0 quantifying the presence of a more complicated
dynamical regime. Circles in Fig. 1 correspond to “true” values
of LEs estimated using the standard approach [1], i.e., based on
the known mathematical model (2). The approach [1] assumes
that LEs are estimated by consideration of the long-term
evolution of the axes of an infinitesimal sphere of initial states
using the so-called fiducial trajectory associated with the center
of the sphere and the Gram-Schmidt reorthonormalization. In
order to reach the convergence of LEs, the fiducial trajectory
may include thousands or millions orbital periods (mean return
times). The obtained values are used for comparison with the
estimations performed from point processes.

In contrast to the former estimation we now analyze a time
series consisting of only 2000 samples. Squares in Fig. 1 mark
the values of two LEs computed from the sequences of return
times into the plane x1 = 0. Note that a consideration of time
intervals between intersections of this plane in one direction
allows obtaining of only the largest positive LE estimated
within the approach described in Refs. [10,11], while a zero
value is obtained for the second LE, which is different from the
expected exponent λ2. We can, therefore, conclude that a single
sequence of return times into the plane x1 = 0 is not enough for
diagnostics of hyperchaos. The latter circumstance is caused
by inappropriate selection of the secant plane, which does
not provide enough information about the whole dynamics
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of coupled oscillators. The analogous situation is observed for
the secant plane introduced as x2 = 0. Thus, consideration of a
secant plane introduced for only one subsystem of the coupled
oscillators (2) does not allow a correct characterization of
hyperchaotic dynamics.

Aiming to correctly estimate the two largest (positive)
LEs in the hyperchaotic regime, the delay reconstruction [13]
based on two time series can be performed. In the latter case,
the reconstructed attractor contains half of the coordinates
introduced by the delayed time series (in our case, the
averaged instantaneous frequency) for one subsystem and
another half of the coordinates is obtained analogously for
the second subsystem. This modification of the reconstruction
stage provides a good estimation of two positive LEs (Fig. 1,
diamonds), and they are both relatively close to the expected
values. Thus, the chaos-hyperchaos transition is clearly and
correctly identified verifying advantages of the reconstruction
based on two time series. In this study we consider quite short
sequences of return times (2000 samples) in order to illustrate
the method’s performance at the condition when the limitation
of available information is caused not only by using point
processes, but also by a rather short observation time. There
remains, however, the following question: Are two sequences
of return times indeed necessary for LEs estimation, or is it
possible to use a single sequence for this purpose with an
appropriate selection of the secant plane?

In order to quantify hyperchaotic dynamics based on a
single sequence of return times, we need to introduce the
secant plane in such a way that it accounts for the dynamics of
both subsystems simultaneously and in more detail. Triangles
in Fig. 1 show the result for the secant plane introduced as
x2 + y1 = 0. In this case we use one sequence of return times
that is enough for a correct estimation of both positive LEs
quantifying the hyperchaotic regime. From the viewpoint of
the TC model, this case is related to the thresholding of a
summary signal measured at the output of both subsystems.
Thus, time intervals between zero crossings by a single (a
summary) signal provide a possibility to correctly identify
numerical measures of hyperchaotic dynamics.

To avoid spurious identification of dynamical regimes, we
substantially extended the method [10] by including several
important items:

First, the output sequence Ii should be checked for possible
artifacts including the generation of additional spikes (i.e.,
when a summation of two phase space coordinates leads to
the appearance of pairs of spikes instead of single spiking
events) or missing some spikes for large thresholds �. Such
artifacts often complicate the analysis of neural systems [17].
When missing of spikes occurs, the output sequence Ii

contains time intervals being close to the values 2T , 3T , etc.,
where T is the basic period of oscillations, i.e., the period
corresponding to the basic frequency in the power spectrum
(in the regime of the phase-coherent dynamics). In this case,
samples of the averaged frequency ω(Ti) should be estimated
as ω(Ti) = 2πm/Ii , where m is selected from the condition of
slow changes of ω(t). The latter allows us avoiding incorrect
samples of ω(Ti) caused by inappropriate choice of the secant
plane. The generation of additional spikes when two nearby
events occur whose sum is close to T also leads to incorrect
samples of ω(Ti). Without correction of these artifacts, the

estimated LEs may essentially differ from their expected
values. In particular, λ2 > 0 may be obtained in a chaotic
regime instead of a zero value.

Another extention of the method [10] for sequences of Ii

with a broad distribution of interspike intervals consists in per-
forming additional estimations depending on the interpolation
technique (splines, polynomials, etc.). If the difference of LEs
estimated for two smooth functions (different interpolation
techniques) exceeds 10%, this is a sign of a high variability of
the obtained results. In the latter case, computing LEs should
be provided depending on the main reconstruction parameters
in order to get a clear and correct characterization of the studied
dynamical regime and, in particular, of chaos-hyperchaos
transitions.

Let us note that computing LEs from time series using the
reconstruction approach [14] is accompanied by orientation
errors that have a tendency to accumulate for each sequential
LE. That is why we provide estimations of only two LEs that
can be computed with an appropriate quality. The discussed
approach is also effective when the external noise influences
the system’s dynamics if noise intensity is quite small and
the noise-induced additional divergence of trajectories is
significantly less than the scale associated with the limit of
the linear approach used to compute LEs (typically, 5%–10%
of the attractor size).

III. ROLE OF THE SECANT PLANE AND AMOUNT
OF DATA

In Fig. 1 estimation of LEs from a single point process
was performed for the plane x2 + y1 = 0, i.e., for the case of
nearly equal contribution of both subsystems of Eq. (2). If
the impact of one subsystem outperforms the contribution of
another one in a summary signal, the results may essentially
differ. Aiming to illustrate this circumstance, we considered
zero crossings of a signal at the input of the TC model selected
as k1y2(t) + k2x1(t) or k1y1(t) + k2x2(t), where k1 = sin α,
k2 = cos α. The results are presented in Fig. 2. Depending on
α we selected those secant plane for which artifacts caused
by generation of additional spikes do not occur. We see that
correct results for both exponents are related to the case when
contributions of both subsystems are comparable (α is close to
π/4 or 3π/4). If a signal of one subsystem dominates, incorrect
diagnostics of the hyperchaotic regime may occur. Note, that
the largest LE is correctly estimated in a wider range of α as
compared with λ2. This testifies that computing the second LE
represents a much more difficult procedure.

In Figs. 1 and 2 we present the case of two essentially
different positive LEs. If the second LE approaches to the first
LE (Fig. 3), the errors caused by the vector orientation in the
reconstructed phase space at the performing reorthonormal-
ization procedure may increase and accumulate for the second
LE, if the direction of the trajectories convergence for λ1

and λ2 becomes closer. The problem of estimating successive
exponents when they are close was also reported in Ref. [14],
where it was discussed that LEs with significantly different
values are easier to estimate. As a result, an underestimated
second LE may obtain; i.e., the error of computing the second
LE becomes larger than for the first LE (Fig. 3). Nevertheless,
the presence of a hyperchaotic regime is identified, and the
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FIG. 2. (Color online) Computing two largest LEs depending
from the secant plane introduced as k1y2 + k2x1 = 0 or k1y1 + k2x2 =
0, where k1 = sin α, k2 = cos α. Dashed lines mark “true” values of
LEs.

discussed approach separates between chaotic and hyper-
chaotic dynamics based on a single series of return times.

In general, the generalized approach allows to use a reduced
number of return times in order to provide an appropriate
quantification of the hyperchaotic dynamics. Large sequences
of return times decrease estimation errors and possible
fluctuations of λ1,2 caused by an inappropriate selection of
the reconstruction parameters. Nevertheless, a characterization
of the chaos-hyperchaos transition is possible for a smaller
amount of data points. Figure 4 shows how the estimated values
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FIG. 3. (Color online) Dependencies of two largest LEs versus
the parameter c of the coupled Rössler oscillators (2) for the parameter
ranges related to nearly close LEs. Circles indicate “true” values
estimated with the method [1]. Triangles correspond to λ1,2 computed
from sequences of return times into the secant plane x2 + y1 = 0
(2000 samples). Note that an underestimated λ2 is computed from
point processes that is caused by orientation errors.
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FIG. 4. (Color online) Dependencies of two largest LEs versus
the number of analyzed return times for the parameter c = 7.18 of
the coupled Rössler oscillators (2) and the secant plane x2 + y1 =
0. Dotted lines indicate “true” values of λ1,2 estimated with the
method [1].

of λ1,2 depend on the number of return times. According to this
figure, even sequences of about 500 samples allow obtaining of
two largest LEs that approach the expected values. Depending
on the required precision, the length of data series can be
selected more accurately. Thus, in order to compute λ2 with
an absolute error less than 0.005, one needs sequences of at
least 1200 return times.

IV. CONCLUSION

In summary, we extended the approach for extracting dy-
namics from point processes [10,11] in order to avoid spurious
identification of the dynamical regime caused by artifacts.
The generalized approach is able to correctly estimate two
positive LEs quantifying the dynamics of coupled nonlinear
oscillators. This estimation can be performed from quite short
sequences of return times for dynamical regimes quantifying
by essentially different values of λ1 and λ2. An important
circumstance is the selection of the secant plane. If the latter
is selected in such a way that it accounts for the whole system
dynamics, it becomes possible to obtain correct values of
positive LEs and, therefore, to detect the chaos-hyperchaos
transition. In the case of hyperchaotic oscillations with rather
close positive LEs, characterization of the chaos-hyperchaos
transition is also clearly and correctly performed despite
underestimated values of λ2.

The transition to hyperchaos was earlier studied based on
the statistics of return times and the Poincareé maps in a
number of publications. Thus, the work [18] established a
scaling law for such transition using the projections of Poincaré
maps associated with the dynamics of two coupled van der Pol
oscillators with a chaotic driving. With the statistics of the
Poincareé maps, different properties of the chaos-hyperchaos
transition were described in Ref. [19]. A promising tool for
studying this transition is the application of measures based
on RPs. The works [4,5] discussed, e.g., some measures that
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provide clear characterization of the transition to hyperchaos.
However, they typically use larger data sets as compared to the
given study.
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