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Impact of a leader on cluster synchronization
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We study the mechanisms of frequency-synchronized cluster formation in coupled nonidentical oscillators and
investigate the impact of presence of a leader on the cluster synchronization. We find that the introduction of a
leader, a node having large parameter mismatch, induces a profound change in the cluster pattern as well as in
the mechanism of the cluster formation. The emergence of a leader generates a transition from the driven to the
mixed cluster state. The frequency mismatch turns out to be responsible for this transition. Additionally, for a
chaotic evolution, the driven mechanism stands as a primary mechanism for the cluster formation, whereas for a
periodic evolution the self-organization mechanism becomes equally responsible.
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The interaction between individual units of a system leads
to many emerging behaviors, among which synchronization is
one of the most fascinating phenomenon, which has been gain-
ing tremendous attention since the first experimental demon-
stration of the phenomena by Huygens [1]. The unexpected
sway and twist of the Millennium Bridge, synchronization
of the neurons in the brain, and synchronous fireflies [2–4]
are a few examples of synchronization in real-world systems.
Synchronization is defined as an emergence of some relation
between the functional of two processes due to interaction [3].
Earlier studies on coupled nonidentical oscillators have shown
that exact synchronization is hard to achieve when there is
a parameter mismatch in the local dynamics [3], rather, they
exhibit phase or generalized synchronization [5,6]. Addition-
ally, there exists a nontrivial transition to the global phase
synchronization in a population of globally coupled chaotic
nonidentical oscillators [7]. Moreover, cluster pattern and
frequency of the nodes in a cluster have been shown to be
controlled by local external forcing as well as by changing the
network architecture [8]. Furthermore, the coupled oscillators
with heterogeneous coupling have been reported to exhibit
synchronization triggered by the oscillators having strong
couplings, further facilitating the synchronization among the
nodes having weak coupling [9].

We present results of cluster synchronization due to its
importance and occurrence in various real-world systems
represented in terms of interacting units [10]. We study mech-
anisms of formation of frequency-synchronized clusters in
coupled nonidentical oscillators and investigate the influence
of a leader on the dynamical evolution of other nodes. One
possible way of defining a leader is to make the natural
frequency of a node much higher than that of other nodes
in the network [11,12]. This is one of the traditional ways to
define a leader in the coupled dynamics on network models.
Some other ways of defining leaders are those which depend
upon the application and motivation of the problem, e.g.,
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Ref. [13] considers a leader that exchanges information with its
neighbors as well as has access to its own state. In Ref. [14] the
neuron that fires first is considered as leader. Further, a leader
can be assigned based on its degree in a network [15]. Our work
reveals that the difference of the natural frequency of a node
with the rest decides its impact on the cluster synchronization
and dynamical evolution of all other nodes. We present
the results for the coupled Rössler oscillators on various
possible networks, such as one-dimensional (1D) lattice, scale-
free and random networks. Earlier works have shown that the
network properties, such as degree and betweenness centrality,
play an important role in the synchronizability of coupled
oscillators [16], and based on the analysis of small-world
networks it has been shown that the synchronizability can
be enhanced by raising the maximum degree of the network
as well as by reducing the maximum betweenness [17]. A
recent work on power grid also emphasizes on the structural
importance of perturbed nodes for stability of the synchronized
state [18].

This paper reports that a combination of the degree and
natural frequency mismatch of a node with other nodes decides
the role of a leader in the network, particularly, its impact on
the phenomena of cluster formation. We demonstrate that an
enhancement in the betweenness centrality does not enhance
the impact of a leader if the degree is maintained. Apart from
the impact of a leader on the cluster synchronization, we
report various different mechanisms of cluster formation in
the presence of a leader. The earlier works on the coupled
maps have identified two different phenomena for the cluster
synchronization, namely, the driven (D) and the self-organized
(SO) [19]. The SO synchronization refers to the state when
clusters are formed due to the intracluster couplings and D
synchronization refers to the state when clusters are formed
due to the intercluster couplings. Furthermore, for coupled
chaotic oscillators having randomly distributed frequencies, it
has been reported that with an increase in the coupling strength,
the nodes with smaller frequency mismatch synchronize and
form a synchronized cluster [6], while we find that if the natural
frequency of the nodes are distributed in a narrow band, at
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lower couplings the synchronization between pairs of nodes
that are not directly connected is preferred. Using a simple
star network model, we demonstrate that the D mechanism
is preferred over SO due to a common coupling environment
D synchronized nodes may have. Further, the presence of a
leader causes an enhancement in the synchronization between
the directly connected nodes thus leading to a transition from
the D to the mixed or dominant SO clusters state. We study
phase synchronization of the coupled oscillators, where the
dynamics of the ith oscillator can be written as

Ẋi = f (Xi,ωi) + ε

ki

N∑

i=1

Aijh(Xi,Xj ); i = 1, . . . ,N, (1)

where, Xi ∈ Rm is the m-dimensional state vector of the
ith oscillator and f : Rm → Rm provides the dynamics of
an isolated oscillator and h is the coupling function. A is
the adjacency matrix of the network defined as: Aij = 1, if
oscillators i and j interact, otherwise Aij = 0. The degree of a
node is defined as ki = ∑N

j=1 Aij and the parameter ε defines
the strength of overall coupling among the oscillators.

Coupled Rössler oscillators on networks can be written as
a set of the following ordinary differential equations:

ẋi = −ωiyi − zi

ẏi = ωixi + ayi + ε

ki

N∑

j=1

Aij (yj − yi) (2)

żi = b + zi(xi − c).

Here ωi is the natural frequency of the ith oscillator, which we
consider randomly distributed in the interval 1 < ω < 1.05 [6].
We take a node acting as a leader when its natural frequency
is much greater than the rest of the nodes in the network
(ωL � 1.05). Later on we will explain that the strength of
this natural frequency mismatch of a node together with the
degree of the node decide the impact of a leader in a network.
In Eq. (2), a = 0.15, b = 0.4, and c = 8.5 for which the
uncoupled dynamics is chaotic [3]. Further the phase θ and
the averaged partial frequency of the ith oscillator can be
defined as θi = arctan yi

xi
and �i = 〈θ̇i(t)〉, respectively. Here,

we note that the frequency �i is in general different from
the intrinsic frequency ωj . The uncoupled oscillators [i.e.,
ε = 0 in Eq. (1)] evolve independently. With an increase in
ε, the formation of synchronized clusters is observed as ε

exceeds a critical value εcs . Frequency of oscillators may be
synchronized forming clusters, i.e., �l

i = �l ; j = 1, . . . ,Nl ,
where �l is the synchronization frequency of cluster l and Nl

is the number of oscillators in the lth cluster and l = 1, . . . ,C;
C is the maximum number of clusters.

Depending on the connections between the nodes, repre-
sented by the adjacency matrix, and the synchronized clusters,
three phenomena of cluster formation have been identified:
driven (D), self-organized (SO), and mixed [19]. The quantities
fintra = Nintra/Nc and finter = Ninter/Nc, stand as measures
for SO and D clusters respectively, where Nintra and Ninter

are the numbers of intracluster and intercluster couplings,
respectively. In Ninter, couplings between two isolated nodes
are not included. Nc is the total number of connections in the
network. The state that corresponds to fintra

∼= 0 and finter > 0

is defined as the ideal D clusters state; fintra > 0 and finter = 0
correspond to the ideal SO state; fintra �= 0 and finter ≫ fintra

correspond to the dominant D; and finter �= 0 and fintra ≫
finter correspond to the dominant SO clusters state. We take
|fintra − fintra| < 0.2, to define the mixed clusters state [20].
For the higher values, the dominant D and dominant SO region
will shrink and the mixed region will grow, while for lower
values the reverse will happen. Further, we define a cluster
pattern as a particular state that contains information of all
the pairs of synchronized nodes distributed in various clusters
in the network. A change in the pattern refers to the case
when the nodes in the different clusters get rearranged [21].
Furthermore, we define cluster synchronizability in terms of
the number of the nodes participating in a cluster. Based on
this, we say cluster synchronizability enhances if the number
of nodes participating in the clusters increases. Further, there
might be a situation when all the nodes participate in cluster,
for that cluster synchronizability may be enhanced if the size of
a cluster increases or the total number of the clusters reduces.

Starting with a set of random initial conditions, we evolve
the coupled dynamics [Eq. (2)] on different networks, namely,
1D lattice, scale-free, and random networks. After an initial
transient we study the cluster synchronization. We consider
the evolution of coupled oscillators without any leader,
followed by the investigation of synchronized clusters in the
presence of a leader. In the following we discuss the cluster
synchronization for all the networks.

The heterogeneity in degree of the scale-free networks [23]
provides several options for choosing a leader in the network
yielding very different structural properties to the leader.
For example, a hub may be assigned as a leader making
it the highest-degree node and consequently best connected
with the rest of the nodes in the network, or a periphery
node may be assigned as a leader, which makes the leader
worse connected with the rest of the nodes. As depicted
in Fig. 1(a), without a leader the coupled dynamics (2)
leads to the dominant D clusters at all the couplings except
at very high values where mixed clusters exist. For sparse
networks considered here, we find that while the network
exhibits a good cluster synchronization, accompanied with
many small clusters, the maximum number of nodes in a
cluster does not exceed 20% of the network size. The D
clusters correspond to the chaotic evolution as reflected by
the largest Lyapunov exponent [Fig. 1(c)]. What follows is
that a small mismatch in the natural frequencies of the directly
connected nodes does not allow them to synchronize with each
other, whereas the synchronization between a pair of nodes that
are connected through other nodes gets facilitated through a
common coupling environment. For example, the frequency of
the nonidentical peripheral nodes in a star network synchronize
with each other, while leaving the hub out of the clusters [24]
as the dynamics of the peripheral nodes from Eq. (1) can be
written as

Ẋi = f (Xi,ωi) + ε(Xh − Xi); i = 2, . . . ,N.

The hub provides the common coupling to the peripheral nodes
and thus drives them to form a D synchronized cluster. It is,
however, interesting to observe the similar behavior for other
sparse networks, which consist of many starlike structures
instead of having the ideal situation.
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FIG. 1. (Color online) (a) and (b) present variation of finter (closed circle), fintra (open circle), fNL (fraction of nodes in the largest cluster)
(open square) and Fclus (fraction of nodes forming clusters) (open triangle) with increase in ε and ωL for the random (a) and scale-free networks
(b), (d), (e), (f) of N = 50, 〈k〉 = 2. (c) presents the variation of the largest Lyapunov exponent (λ) with change in the coupling strength for the
random (solid line) and scale-free (dashed line) networks. NL, L, and PL represent the no-leader hub being leader and peripheral node being
leader cases, respectively. The figures are obtained by taking average over 20 random initial conditions.

Upon making a node a leader by enhancing its natural
frequency higher than that of the other nodes, we find that
the coupled dynamics leads to a transition from the dominant
D to the mixed clusters state [Fig. 1(f)]. The natural frequency
of the leader, which leads to this transition, depends on the
degree of the node. A hub node being the leader generates the
transition at relatively lesser frequency as compared to that
required for a peripheral node being the leader. For example,
for a hub being a leader, the mixed cluster state is observed
for ωL � 2 [Fig. 1(d)], while for the peripheral node being the
leader the mixed clusters are observed for ωL � 3 [Fig. 1(e)].

For a hub being the leader, at weak couplings (ε < 2.2) the
clusters remain to be governed by the D mechanism [Fig. 1(c)]
as observed for that without leader. With an increase in the
coupling strength, for ε > 3, there is an enhancement in the
SO synchronization. We emphasize that as the D mechanism is
still playing a role in the cluster formation, with the inclusion
of the SO mechanism the final cluster state becomes of the
mixed type. Moreover, number of nodes in the largest cluster
increases [Fig. 1(f)]. Additionally, in the same coupling regime
there is a change in the dynamical evolution. The dynamics in
this regime becomes periodic [Figs. 2(b) and 2(c)] against the
chaotic evolution observed for the no-leader case [Fig. 2(a)].
Another impact of the inclusion of a leader in the network
is that it may lead to a completely different clusters pattern
[Figs. 3(b) and 3(d)] than observed for the no-leader case
[Figs. 3(a) and 3(c)].

Inclusion of a peripheral leader at small couplings leaves the
dynamical evolution unchanged. Whereas at strong couplings
the frequency mismatch of the nodes connected with the leader
enhances the SO synchronization similar to that observed

for the hub being the leader. This enhancement in the SO
synchronization can be explained using the revelation that
the parameter mismatch between two nodes leads to a more
stable synchronization [25], where a node having large natural
frequency dominates the evolution with other nodes, which are
directly connected with it leading to the synchronization.

We remark that the impact of a leader, whose degree
lies in between the highest and the lowest degree, lies in
between these two. For example, without the leader, for the ER
networks [23], the D phenomena is the prime reason behind
the cluster synchronization, however, with the inclusion of
a leader, there is an increase in the SO phenomena. With
a further increase in the coupling strength, for ε > 4.0, the
SO synchronization enhances further as indicated by the
enhancement in the value of fintra leading to the mixed clusters
[Fig. 4(b)]. The enhancement in the SO synchronization is
associated with the enhancement in the fraction of nodes in
the largest cluster as depicted in Fig. 4(b). The snapshots
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FIG. 2. (Color online) Projection of the phase portraits of cou-
pled Rossler oscillators for the no-leader and leader case for a
scale-free network of N = 50,〈k〉 = 2 at ε = 2.4.
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FIG. 3. (Color online) Snap shots showing the change in the
cluster pattern for random and scale-free networks of N = 50,
〈k〉 = 2 at ε = 8. (a), (d) are plotted for random network and (c),
(d) are plotted for scale-free network. The open (red) dots show that
the corresponding nodes are synchronized and the closed (black)
dots show that the corresponding nodes are connected. The snap shot
is plotted after renumbering the nodes so that the nodes forming a
cluster come nearby. The star represents the position of the leader
in the cluster after rearranging the nodes. NL and L represent the
no-leader and leader cases, respectively.

in Fig. 3 depict that inclusion of the leader decreases the
number of clusters while keeping almost all the nodes forming
the clusters, thereby enhancing the cluster synchronization as
defined in the model section.

The 1D lattice provides an ideal example of a homogeneous
network. The introduction of a leader in this arrangement leads
to a similar behavior as exhibited by the random and scale-free
network depending upon the degree of the lattice, which also
becomes the degree of the leader [Fig. 4(d)], which on one
hand rules out any impact of structural position or preference
of the leader and on other hand demonstrates the importance
of the degree of the leader in a network. What follows is that
the impact of a leader on other nodes is high if the leader
has a large degree, in the absence of which the leader should
increase the coupling strength in order to bring about the same
impact.

Further, in order to demonstrate the robustness of the
phenomenon that the introduction of a leader exhibits a
change in the mechanism of cluster formation, we consider
the Kuramoto model, which is one of the most celebrated
mathematical models for coupled oscillators [26].

θ̇i(t) = ωi + ε

N

N∑

i=1

Aij sin(θj − θi). (3)

We find that introduction of a leader leads to a transition from
the dominant D to the dominant SO clusters state. Figure 5
demonstrates formation of the mixed or ideal D clusters
without a leader and the SO cluster in the presence of a leader.
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FIG. 4. (Color online) finter, fintra and fNL
as a function of ωL and

ε. (a), (b) correspond to the random network and (c), (d) correspond
to the 1D lattice of 〈k〉 = 4 and N = 50. All graphs are plotted for
average over 20 realizations of the initial conditions.

To conclude, we investigate the cluster synchronization and
phenomena behind the cluster formation for the diffusively
coupled Rössler oscillators and find that a leader, with its
natural frequency much higher than that of other nodes, has a
significant impact on the cluster synchronization. The cluster
synchronizability of the network is enhanced either through
an enhancement in the number of the nodes participating
in the cluster formation or due to a merging of several
smaller clusters into larger clusters or due to the formation
of larger clusters consisting of a completely new set of nodes.
Further investigations reveal that the introduction of a leader
may lead to a transition from the D to SO mechanism of
the cluster formation. Thus, in the presence of a leader,
synchronization between the directly connected nodes is
enhanced. The presence of a leader may also lead to a transition
from the chaotic to the periodic dynamical evolution and

0 10 20 30 40 50
Node

0

10

20

30

40

50

N
o
d
e

0 10 20 30 40 50
Node

NL L

FIG. 5. (Color online) Snapshots depicting changes in the cluster
pattern for scale-free networks with N = 50, 〈k〉 = 2 at ε = 3.2. The
natural frequency of the nodes are randomly distributed in the interval
1 < ω < 1.09 and ωL = 10.
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hence a leader may be introduced for chaos control [3] by
tuning the frequency of a single node. Interestingly, a leader
has the maximum impact on the cluster synchronization if it
is the highest-degree node in the network rather than being
the node that has the highest betweenness centrality. If a
leader has a lower degree, its natural frequency should be
relatively higher in order to achieve the enhancement in the
cluster synchronization. For homogeneous networks, where
all the nodes have the same degree, coupling should be high
in order to have a transition from the dominant D to the mixed
cluster state. Furthermore, the presence of a leader not only
changes the phenomena behind the cluster formation but may
also completely changes the cluster pattern.

Leaders naturally arise in real-world networks, such as
in social networks [27], neural networks [14], and protein

translation regulatory networks [28]. In social networks, a
leader may possess one of the characteristics of power,
experience, fame, or wealth, while in biological networks,
such as in neural and protein translation regulatory networks,
a leader may be one that initiates certain processes [14,28].
Our work may be extended to capture particular properties of a
leader for understanding the origin of synchronized clusters in
these systems [10]. For example, a leader may have different
coupling strength, such as in the brain network, where the
synapses become weak with age [4,29].
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