
 
 

 

Originally published as:  

 
Donges, J., Petrova, I., Loew, A., Marwan, N., Kurths, J. (2015 Online first): How 

complex climate networks complement eigen techniques for the statistical analysis of 

climatological data. - Climate Dynamics  

 

DOI: 10.1007/s00382-015-2479-3 

 

Available at http://link.springer.com 

 

© Springer 

 

http://dx.doi.org/10.1007/s00382-015-2479-3
http://link.springer.com/


Climate Dynamics manuscript No.
(will be inserted by the editor)

How complex climate networks complement eigen techniques for the
statistical analysis of climatological data

Jonathan F. Donges · Irina Petrova · Alexander Loew · Norbert Marwan · Jürgen
Kurths

Received: date / Accepted: date

Abstract Eigen techniques such as empirical orthogonal func-1

tion (EOF) or coupled pattern (CP) / maximum covariance2

analysis have been frequently used for detecting patterns3

in multivariate climatological data sets. Recently, statisti-4

cal methods originating from the theory of complex net-5

works have been employed for the very same purpose of6

spatio-temporal analysis. This climate network (CN) anal-7

ysis is usually based on the same set of similarity matrices8

as is used in classical EOF or CP analysis, e.g., the corre-9

lation matrix of a single climatological field or the cross-10

correlation matrix between two distinct climatological fields.11

In this study, formal relationships as well as conceptual dif-12

ferences between both eigen and network approaches are de-13

rived and illustrated using global precipitation, evaporation14

and surface air temperature data sets. These results allow15

us to pinpoint that CN analysis can complement classical16

eigen techniques and provides additional information on the17
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higher-order structure of statistical interrelationships in cli-18

matological data. Hence, CNs are a valuable supplement to19

the statistical toolbox of the climatologist, particularly for20

making sense out of very large data sets such as those gen-21

erated by satellite observations and climate model intercom-22

parison exercises.23

Keywords climate networks · empirical orthogonal24

functions · coupled patterns · maximum covariance25

analysis · climate data analysis26

1 Introduction27

Climatologists have long been interested in studying corre-28

lations between climatological variables for gaining an un-29

derstanding of the Earth’s climate system’s large-scale dy-30

namics (Katz 2002). Pioneering work in this field was done31

by Sir Gilbert T. Walker in the beginning of the 20th cen-32

tury while attempting to find precursory patterns for Indian33

monsoon events using statistical methods (Walker 1910),34

which culminated in the discovery of the tropical Walker35

circulation and the Pacific Southern Oscillation (a part of36

the El Niño-Southern Oscillation known as ENSO). Later,37

new measurement devices as well as the rapid increase in38

available computing power allowed to investigate statisti-39

cal interdependency structures of global or regional clima-40

tological fields x(t) = {xi(t)}Ni=1 such as surface air tem-41

perature, pressure, or geopotential height (Fukuoka 1951;42

Lorenz 1956) (here, i is a spatial index, e.g., labeling N me-43

teorological measurement stations or grid points in an ag-44

gregated data set, and t denotes time).45

Nowadays, techniques of eigenanalysis such as empiri-46

cal orthogonal functions (EOFs) (Kutzbach 1967; Wallace47

and Gutzler 1981; Hannachi et al 2007) and coupled pat-48

terns (CPs) (Bretherton et al 1992) are standard tools for49

finding spatial as well as temporal patterns in climatological50
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data (von Storch and Zwiers 2003). Their applications range51

from statistical predictions (Lorenz 1956; Brunet and Vau-52

tard 1996; Repelli and Nobre 2004), over the definition of53

climate indices (Power et al 1999; Leroy and Wheeler 2008)54

to evaluating the performance of climate model simulation55

runs (Handorf and Dethloff 2009, 2012). While numerous56

linear and nonlinear extensions have been proposed (Ghil57

and Malanotte-Rizzoli 1991; Ghil et al 2002), e.g., rotated58

or simplified EOFs (Hannachi et al 2007) and other methods59

of dimensionality reduction such as neural network-based60

nonlinear principal component analysis (PCA) (Hsieh 2004)61

or isometric feature mapping (ISOMAP) (Tenenbaum et al62

2000; Gámez et al 2004), classical EOF and CP analysis63

have remained among the most popular statistical techniques64

applied in climatology so far.65

In the last decade, complex network theory has been in-66

troduced as a powerful framework for extracting informa-67

tion from large volumes of high-dimensional data (New-68

man 2003; Boccaletti et al 2006; Newman 2010; Cohen and69

Havlin 2010) such as those generated by neurophysiolog-70

ical or biochemical measurements, quantitative social sci-71

ence as well as climatological observations and modeling72

campaigns. While EOFs, CPs, and related methods effec-73

tively rely on a dimensionality reduction, network techniques74

allow to study the full complexity of the statistical interde-75

pendency structure within a multivariate data set. In these76

climate networks (CNs), which were first introduced by Tso-77

nis and Roebber (2004); Tsonis et al (2006), nodes corre-78

spond to time series of climate variability at grid points or79

observational stations and links indicate a relevant statistical80

association between two such time series. For quantifying81

statistical associations, linear covariance or Pearson correla-82

tion can be used analogously to EOF and CP analysis (Tso-83

nis and Roebber 2004; Tsonis and Swanson 2008; Yamasaki84

et al 2008), but nonlinear measures such as mutual informa-85

tion (Donges et al 2009a,b; Barreiro et al 2011) or trans-86

fer entropy (Runge et al 2012a) may be employed as well87

with care (Hlinka et al 2014). Among other applications,88

CNs have been used to uncover global impacts of El Niño89

events (Tsonis and Swanson 2008; Yamasaki et al 2008; Go-90

zolchiani et al 2011; Martin et al 2013; Radebach et al 2013),91

trace the flow of energy and matter in the surface air temper-92

ature field (Donges et al 2009a), unravel the complex dy-93

namics of the Indian summer monsoon (Malik et al 2012;94

Stolbova et al 2014), detect community structure enabling95

statistical prediction of climate indices (Tsonis et al 2011;96

Steinhaeuser et al 2011, 2012) as well as intercomparisons97

between climate models and observations (Steinhaeuser and98

Tsonis in press; Feldhoff et al 2014), and study large-scale99

circulation patterns and prominent modes of variability in100

the atmosphere (Tsonis et al 2008; Donges et al 2011c; Ebert-101

Uphoff and Deng 2012a,b). Furthermore, CN analysis has102

recently been employed to improve forecasting of El Niño103

episodes (Ludescher et al 2013, 2014), predict extreme pre-104

cipitation events over South America (Boers et al 2014a)105

and to derive early warning indicators for the collapse of106

the Atlantic meridional overturning circulation (Mheen et al107

2013). Extending upon the majority of studies focussing on108

recent climate variability, the CN approach has also been109

applied to study late Holocene Asian summer monsoon dy-110

namics based on data from paleoclimate archives (Rehfeld111

et al 2013)112

The main aim of this contribution is to put the recent113

CN approach into context with standard eigenanalysis, since114

both classes of methods are often based on the same set of115

statistical similarity matrices. We briefly review both classes116

of techniques to establish a common notation. Formal re-117

lationships are then derived between empirical orthogonal118

functions or coupled patterns and frequently used CN mea-119

sures such as degree or cross-degree, respectively. These re-120

lationships are illustrated empirically using global satellite121

observations of precipitation and evaporation fields as well122

as surface air temperature reanalysis data. We furthermore123

illustrate and argue in which settings higher-order CN mea-124

sures such as betweenness may contain information comple-125

menting classical eigenanalysis. For example, betweenness126

can be interpreted as approximating the flow of energy and127

matter within a climatological field and is particularly useful128

for identifying bottlenecks that may be particularly vulner-129

able to perturbations such as volcanic eruptions or anthro-130

pogenic influences (Donges et al 2009a, 2011c; Boers et al131

2013; Molkenthin et al 2014a). Hence, by transferring in-132

sights and tools from complex network theory and complex-133

ity science to climate research, CNs meet the need for novel134

techniques of climate data analysis facing quickly increasing135

data volumes generated by growing observational networks136

and model intercomparison exercises like the coupled model137

intercomparison project (CMIP) (Meehl et al 2005; Taylor138

et al 2012).139

This article is structured as follows: After describing the140

data to be analyzed (Section 2), we introduce eigen (Sec-141

tion 3) and network (Section 4) techniques for the statistical142

analysis of climatological data. Relationships between both143

approaches are formally derived and empirically demonstrated144

using observational climate data in Section 5. This leads us145

to pinpoint the added value of CN analysis (Section 6), be-146

fore concluding in Section 7.147

2 Data148

Imperfect retrieval algorithms and data merging of atmo-149

spheric fields that are involved in the generation of reanal-150

ysis data sets may cause uncertainties and lower quality of151

the final product of data analysis. In order to obtain consis-152

tent and representative precipitation and evaporation fields,153

in this study, the fully satellite-based HOAPS-3 (Hamburg154
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Ocean Atmosphere Parameters and Fluxes from Satellite Data,155

http://www.hoaps.org, Andersson et al (2010b, 2011)) and156

combined HOAPS-3/ GPCC (Global Precipitation Climatol-157

ogy Center, http://www.gpcc.dwd.de, Andersson et al (2010a))158

data sets are used. Regardless of the improved retrieval al-159

gorithms and high quality output product, the uniqueness of160

the HOAPS data set consists in utilization of only one satel-161

lite data set for retrieval of both, evaporation, and precipi-162

tation parameters. Originally available at the resolution of163

0.5 degrees in latitude and longitude, monthly mean precip-164

itation (x(t)) and evaporation (y(t)) anomaly fields (1992–165

2005) were resampled to T63 resolution (≈ 1.8 degrees) to166

reduce computational costs. Furthermore, areas with sea-ice167

coverage were excluded from the set of raw time series. This168

results in NP = 13, 834 and NE = 7, 986 grid points (or169

network nodes) and M = 168 samples for each time series170

for the global precipitation and evaporation data sets, respec-171

tively. The smaller number of nodes in the evaporation field172

arises because the data are only available over the oceans,173

but not over land. We use the full global data sets for com-174

paring univariate techniques of climate data analysis, but for175

clarity restrict ourselves to the North Atlantic Ocean region176

for the multivariate methods.177

Additionally, to put our work into context with earlier178

work on CN analysis (Tsonis and Swanson 2008; Yamasaki179

et al 2008; Donges et al 2009a; Steinhaeuser et al 2012),180

we study global monthly averaged surface air temperature181

(SAT) field data covering the years 01/1948–12/2007 taken182

from the reanalysis I project provided by the National Cen-183

ter for Environmental Prediction / National Center for At-184

mospheric Research (NCEP/NCAR, Kistler et al (2001)).185

This data set consists of NT = 10, 224 grid points (network186

nodes) and M = 720 samples for each time series.187

3 Eigenanalysis188

This section serves to introduce the mathematics of eige-189

nanalysis necessary for the deductions made below. Spe-190

cifically, standard EOF analysis of single climatological fields191

(e.g., the precipitation field) as well as coupled patterns based192

on a singular value decomposition of the cross-correlation193

matrix (also termed maximum covariance analysis (MCA)194

in von Storch and Zwiers (2003)) for studying statistical re-195

lationships between two climatological fields (e.g., the pre-196

cipitation and evaporation fields) are discussed. Of all the197

variants of eigenanalysis (Hannachi et al 2007), these two198

approaches appear to be the most frequently used and are199

also most closely related to CN and coupled CN analysis,200

respectively, as will be elaborated on in Section 5. For fur-201

ther details, the reader is referred to Bretherton et al (1992);202

von Storch and Zwiers (2003) or Hannachi et al (2007).203

Note, that for consistency with the CN literature (see204

Section 4), we define EOFs (CPs) based on the correlation205

EOF
analysis

Network
analysis

Fig. 1 A schematic outline of the relationship between univariate EOF
and climate network analysis in the spirit of the diagrams in Bretherton
et al (1992). The eigen decomposition (PCA) operation is represented
by the square, the thresholding operation by the disc. All vectors are
written in component form.

(cross-correlation) instead of the covariance (cross-covariance)206

matrix. The results and conclusions presented in Sections 5207

and 6 would not change qualitatively if the covariance (cross-208

covariance) matrix would be used for both eigenanalysis and209

CN construction.210

3.1 Empirical orthogonal function analysis211

Given a set of normalized time series x(t) = {xi(t)}Ni=1212

with zero mean and unit standard deviation, the correlation213

matrix CX = {CXij }ij is defined by214

CXij =
1

M

M∑
t=1

xi(t)xj(t), (1)

where M is the length (number of samples) of each time215

series.216

The aim of EOF analysis (also termed principal compo-217

nent analysis in the statistical literature (Preisendorfer and218

Mobley 1988)) is a dimensional reduction achieved by de-219

composing the data into linearly independent linear com-220

binations of the different variables that explain maximum221

variance (Hannachi et al 2007). The EOFs uk are obtained222

as solutions of the eigenvalue problem223

CXuk = λkuk. (2)

The k–th EOF uk is the eigenvector corresponding to the k–224

th largest eigenvalue λk, where uik denotes the i–th compo-225

nent of the k–th EOF (Fig. 1). The EOFs are sorted accord-226

ing to the ordering of their associated non-negative eigen-227

values λk such that λ1 ≥ λ2 ≥ · · · ≥ λR (R is the rank of228

CX ). Hence, u1 associated with the largest eigenvalue λ1 is229
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Fig. 2 Percentage of variance λk/
∑R

l=1 λl explained by EOFs uk

for the HOAPS-3 / GPCC precipitation data set. Error bars were esti-
mated using North’s rule of thumb (North et al 1982).

called the leading EOF of the underlying data set and rep-230

resents the one-dimensional projection of the data with the231

largest possible variance.232

The normalized data xi(t) can be decomposed as (Fig. 1)233

xi(t) =

R∑
k=1

λkak(t)uik, (3)

where ak(t) is the t–th component of the k–th principal234

component ak (PC) (temporal pattern) associated with the235

k–th EOF uk (spatial pattern) with236

ak(t) =

N∑
j=1

ukjxj(t). (4)

For many climatological data sets such as the precipitation237

and evaporation fields studied here, most of the variance238

in the data x(t) can be explained by a small number of239

EOFs, i.e., the eigenvalues λk decay quickly with increas-240

ing rank k (Fig. 2). Equation (3) shows that in this situation,241

only a few EOFs and PCs are needed to closely approximate242

the data which allows the dimensionality reduction of high-243

dimensional data sets.244

3.2 Coupled pattern (maximum covariance) analysis245

Given two sets of normalized time series x(t) = {xi(t)}NX
i=1,246

and y(t) = {yj(t)}NY
j=1 the cross-correlation matrix CXY =247

{CXYij }ij is defined by248

CXYij =
1

M

M∑
t=1

xi(t)yj(t), (5)

Coupled 
pattern
analysis

Network
analysis

Fig. 3 A schematic outline of the relationship between coupled pat-
tern (maximum covariance) and coupled climate network analysis in
the spirit of the diagrams in Bretherton et al (1992). The singular
value decomposition (SVD) operation is represented by the triangle,
the thresholding operation by the disc. All vectors are written in com-
ponent form.
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Fig. 4 Percentage of squared covariance σ2
k/

∑R
l=1 σ

2
l between

HOAPS-3 / GPCC precipitation (X) and HOAPS-3 evaporation (Y )
data sets over the North Atlantic region (see Fig. 7) that is explained
by pairs of coupled patterns pX

k , pY
k . Most of the data sets’ cross-

covariance is captured by a small number of modes with the largest
singular values σk. Error bars were estimated using North’s rule of
thumb (North et al 1982).

where M is the length (number of samples) of each time249

series. R in the following denotes the rank of CXY .250

Maximum covariance analysis identifies spatially ortho-251

normal pairs of coupled patterns pXk = {pXik}
NX
i=1, pYk =252

{pYjk}
NY
j=1 that explain as much as possible of the temporal253
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covariance between the two fields x(t) and y(t) (Brether-254

ton et al 1992; von Storch and Zwiers 2003). The coupled255

patterns can be found by solving the system of equations256

(CXY )TpXk = σkp
Y
k

CXY pYk = σkp
X
k (6)

by means of a singular value decomposition of CXY (Fig. 3).257

Here, the pXk are an orthonormal set of R vectors called258

left singular vectors, the pYk are an orthonormal set of R259

vectors called right singular vectors, and the σk are non-260

negative numbers called singular values, ordered such that261

σ1 ≥ σ2 ≥ · · · ≥ σR. Here, R denotes the rank of CXY .262

The total squared covariance explained by a certain pair of263

patterns pXk , pYk is σ2
k. Therefore, the leading coupled pat-264

terns pX1 , pY1 explain the largest fraction of squared covari-265

ance between the two fields of interest. In our example, tak-266

ing into account only a few pairs of coupled patterns with the267

largest σk already explains most of the covariance between268

the precipitation and evaporation fields (Fig. 4).269

The fields x(t),y(t) can be expanded in terms of the270

coupled patterns as271

xi(t) =

R∑
k=1

aXk (t)pXik, (7)

yi(t) =

R∑
k=1

aYk (t)p
Y
ik. (8)

The expansion coefficients are obtained by projecting272

aXk (t) =
R∑
i=1

pXikxi(t), (9)

aYk (t) =

R∑
i=1

pYikyi(t). (10)

4 Network techniques273

Complex network analysis offers a general framework for274

studying the structure of associations (links) between ob-275

jects (nodes) that are of interest in many disciplines. Typ-276

ical examples include the internet or world wide web in277

computer science, road networks and power grids in engi-278

neering, food webs in biology or social networks in sociol-279

ogy (Newman 2003; Boccaletti et al 2006; Newman 2010;280

Cohen and Havlin 2010). It has become popular recently in281

several fields of science to apply the wealth of concepts and282

measures from complex network theory for the analysis of283

data that is even not given explicitly in network form. In284

network-based data analysis, a data set at hand, e.g., con-285

sisting of time series such as electroencephalogram, climate286

records, or spatiotemporal point events such as earthquake287

aftershock swarms, first has to be transformed to a network288

representation by means of a suitable algorithm or mathe-289

matical mapping. The resulting networks are referred to as290

functional networks to distinguish them from structural net-291

works that are derived from systems with a more obvious292

graph structure, e.g., social networks or power grids. Ex-293

amples of functional networks include gene regulatory net-294

works in biology (Hempel et al 2011), functional brain net-295

works in neuroscience (Bullmore and Sporns 2009), CNs in296

climatology (Donges et al 2009a,b, 2011c), or networks of297

earthquake aftershocks in seismology (Davidsen et al 2008).298

Forming a distinct class of methods, techniques for the network-299

based analysis of single or multiple time series such as recur-300

rence networks (Xu et al 2008; Marwan et al 2009; Donner301

et al 2010) and visibility graphs (Lacasa et al 2008) have302

recently been studied intensively with a focus on (paleo-303

)climatological applications (Donges et al 2011a,b; Hirata304

et al 2011; Donner and Donges 2012; Feldhoff et al 2012).305

The first functional network analysis of fields of climato-306

logical time series x(t) was presented by Tsonis and Roeb-307

ber (2004), introducing the term climate network1. Climate308

network analysis offers novel insights by transferring the309

toolbox of measures and algorithms from complex network310

theory to the study of climate system dynamics. Climate net-311

works are simple graphs (i.e., there are no self-loops and at312

most one link between each pair of nodes) consisting of N313

spatially embedded nodes i that correspond to time series314

xi(t) representing observations, reanalyses, or simulations315

of climatological variables at fixed measurement stations,316

grid cells, or certain predefined regions. Links {i, j} repre-317

sent particularly strong or significant statistical interdepen-318

dencies between two climate time series xi(t), xj(t), where319

usually a filtering procedure is applied first to reduce the ef-320

fects of the annual cycle (Donner et al 2008).321

Put differently, for a pairwise measure of statistical asso-322

ciation Sij such as Pearson correlation (Tsonis and Roebber323

2004; Tsonis et al 2006), mutual information (Donges et al324

2009b,a; Paluš et al 2011), transfer entropy (Runge et al325

2012a), or event synchronization (Malik et al 2012; Boers326

et al 2013; Stolbova et al 2014; Boers et al 2014b), a CN’s327

adjacency matrix is given by328

Aij =

{
Θ (Sij − Tij) if i 6= j,

0 otherwise,
(11)

1 Note that the term climate network is also used in distinct contexts
that are unrelated to graph theory or data analysis, e.g., for describ-
ing collections of climatological/weather observation stations like the
Greenland climate network (Steffen and Box 2001) or associations of
political organizations dealing with anthropogenic climate change such
as the Climate Network Europe (Raustiala 2001).
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where Θ(·) is the Heaviside function, Tij denotes a thresh-329

old parameter, and Aii = 0 is set for all nodes i to ex-330

clude self-loops. Usually, the threshold is fixed globally, i.e.,331

Tij = T for all node pairs (i, j). However, Tij may also be332

set for each pair individually to only include links with val-333

ues of Sij exceeding a prescribed significance level, e.g.,334

determined from a statistical test using surrogate time se-335

ries (Paluš et al 2011). In most studies, symmetric measures336

of statistical interdependency Sij = Sji have been consid-337

ered, leading to undirected CNs. However, Gozolchiani et al338

(2011), Malik et al (2012) and Boers et al (2014b) exploited339

asymmetries in the cross-correlation function as well as in340

a measure of event synchronization to reconstruct directed341

CNs.342

In the following, univariate and coupled CNs are intro-343

duced for studying the statistical interdependency structure344

within single fields as well as between two fields, respec-345

tively, together with graph-theoretical measures that are typ-346

ically used for their quantification. For consistency with eige-347

nanalysis (see Section 3), we restrict ourselves to linear Pear-348

son correlation at zero lag as the measure of statistical asso-349

ciation, i.e., Sij = |Cij |.350

4.1 Univariate climate networks351

Given a climatological field x(t), the adjacency matrix A =352

{Aij}ij of the associated climate network is given by353

Aij = Θ(
∣∣CXij ∣∣− T )− δij (12)

with a prescribed global threshold 0 ≤ T ≤ 1, where δij354

denotes Kronecker’s delta (see Eq. (1) for the definition of355

CXij ). The absolute value of Pearson correlation
∣∣CXij ∣∣ is com-356

monly used, typically because negative correlations are con-357

sidered equally important as positive ones (Tsonis and Roeb-358

ber 2004). Among others, univariate CNs have been studied359

by Tsonis et al (2006); Tsonis and Swanson (2008); Tsonis360

et al (2008); Yamasaki et al (2008); Gozolchiani et al (2008);361

Yamasaki et al (2009); Donges et al (2009a,b); Tsonis et al362

(2011); Berezin et al (2012); Gozolchiani et al (2011); Guez363

et al (2012); Paluš et al (2011); Donges et al (2011c); Tomin-364

ski et al (2011); Zou et al (2011); Malik et al (2012); Rhein-365

walt et al (2012); Rehfeld et al (2013).366

The degree ki is the most frequently applied measure for367

studying CNs. It gives the number of network neighbors for368

each node i and is defined as369

ki =

N∑
j=1

Aij =

N∑
j=1

Θ(
∣∣CXij ∣∣− T )− 1. (13)

Maxima in the spatial pattern k with values of the degree370

that are much larger than average are referred to as super-371

nodes or hubs (Tsonis and Roebber 2004; Tsonis et al 2006).372

These super-nodes indicate regions in the underlying field373

that are particularly strongly correlated to many other parts374

of the globe which are typically related to teleconnection375

patterns (Tsonis et al 2008). For example, in the HOAPS-3376

/ GPCC precipitation data the most strongly connected re-377

gion in the tropical Pacific (Fig. 5B) corresponds to the El378

Niño-Southern Oscillation that is known to display global379

teleconnections (Ropelewski and Halpert 1987; Halpert and380

Ropelewski 1992; Tsonis et al 2008).381

Path-based centrality measures from network theory re-382

veal higher-order patterns in the statistical interdependency383

structure of a climatological field (Donges et al 2009a,b;384

Paluš et al 2011). High-order, in this context, refers to struc-385

tures such as paths or network motifs that consist of two386

or more links, in contrast to the degree that is restricted387

to counting pairwise relationships between nodes. In this388

study, shortest-path closeness and betweenness are consid-389

ered. Closeness centrality c = {ci}Ni=1 (CC) measures the390

inverse mean network distance of node i to all other nodes391

via shortest paths and is defined as392

ci =
N − 1∑N
j=1 lij

, (14)

where lij denotes the length of a shortest (or geodesic) path393

connecting nodes i and j, i.e., the smallest number of links394

that are passed when traveling from i to j in the CN. In395

contrast, betweenness b = {bi}Ni=1 (BC) counts the rela-396

tive number of shortest paths connecting any pair of nodes397

j, k that include node i and is defined as398

bi =

N∑
j=1

N∑
k=1

njk(i)

njk
. (15)

Here, njk denotes the total number of shortest paths between399

j, k. njk(i) gives the size of the subset of these paths that in-400

clude i. CC and BC have been applied for comparing differ-401

ent types of CNs (Donges et al 2009b), revealing a backbone402

of energy flow in the surface air temperature field (Donges403

et al 2009a), unraveling the complex dynamics of the pre-404

cipitation field during the Indian summer monsoon (Malik405

et al 2012), and studying the signatures of El Niño and La406

Niña events (Paluš et al 2011). See Section 6 for a more in407

depth discussion of the interpretation of these CN measures.408

4.2 Coupled climate networks409

One option for condensing information from more than one410

climatological observable in a CN is to define links based411

on statistical interdependencies between multivariate time412

series describing the dynamics of multiple observables rec-413

orded at the same locations/nodes. For example, Steinhaeuser414
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A

Leading EOF u1

B

Degree k

C

Percentage of variance explained by u1

Fig. 5 Maps of (A) first EOF u1, (B) climate network degree field k,
and (C) local percentage of variance explained by first EOF u1, 100×
Corr(xi(t), a1(t))2 (homogeneous correlation map, see Björnsson
and Venegas (1997)), for the global HOAPS-3 / GPCC precipitation
data set. The climate network construction threshold T = 0.27 was
chosen to yield a link density of ρ = 0.01 (Eq. (25)). Note the sim-
ilarity in the patterns displayed in panels (A)–(C) that is explained in
Section 5.

VY

VX

EXY

EXX

EYY

Fig. 6 A coupled climate network as it is constructed in this work,
where VX and VY denote the set of nodes in the subnetworks corre-
sponding to grid points in data sets x(t) and y(t), respectively. EXX

and EY Y are sets of internal links within the subnetworks describing
statistical relationships within each climatological field, while EXY

contains information on their mutual statistical interdependencies. Fig-
ure is adapted from (Donges et al 2011c).

et al (2010) analyzed a CN constructed from surface air tem-415

perature, pressure, relative humidity, and precipitable water416

to extract regions of related climate variability. In contrast to417

this multivariate approach, coupled CNs are designed to rep-418

resent statistical dependencies within and between two cli-419

matological fields x(t) = {xi(t)}NX
i=1, y(t) = {yj(t)}NY

j=1 or420

within and between different regions (Donges et al 2011c).421

For this purpose, all time series from each of the involved422

climatological fields are associated to NX + NY nodes in423

the resulting network (Fig. 6). A coupled CN is defined by424

its adjacency matrix A that is obtained by thresholding the425

correlation matrix C of the concatenated fields x(t),y(t),426

analogously to Eq. (12). Decomposing C as427

C =

(
CX CXY

(CXY )T CY

)
(16)

suggests to view coupled CNs as networks of networks or428

multilayer networks (Zhou et al 2006; Buldyrev et al 2010;429

Gao et al 2011; Boccaletti et al 2014), where subnetworks430

(network layers) GX = (VX , EXX) and GY = (VY , EY Y )431

are the induced subgraphs of the sets of nodes VX , VY be-432

longing to data sets x(t), y(t), respectively (Fig. 6). While433

the edge sets EXX , EY Y describe the fields’ internal corre-434

lation structure based on the correlation matrices CX ,CY ,435

the set of cross-edges EXY captures dependencies between436

both fields and is based on the cross-correlation matrix CXY
437

(Fig. 3). Coupled CNs have been applied for studying the438

Earth’s atmosphere’s general circulation structure (Donges439

et al 2011c), processes linking climate variability in the North440

Atlantic and North Pacific regions via the Arctic (Wieder-441

mann et al 2013, in prep.), global atmosphere-ocean inter-442

actions (Feng et al 2012). Also, the coupled CN approach443

underlies the method developed in Ludescher et al (2013,444

2014) for forecasting El Niño events.445

The statistical interdependency structure between fields446

x(t), y(t) can be quantified with a set of graph-theoretical447
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A

Leading CP p1
X

B

Leading CP p1
Y

C

Cross-degree kXY

D

Cross-degree kYX

E

Cross-covariance explained by p1
Y

F

Cross-covariance explained by p1
X

Fig. 7 Maps of leading pair of coupled patterns (A) pX
1 and (B) pY

1 , coupled climate network cross-degree fields (C) kXY and (D) kY X ,
and percentage of cross-covariance explained by first pair of coupled patterns (E) pY

1 , 100 × Corr(xi(t), aY1 (t))2, and (F) pX
1 , 100 ×

Corr(yi(t), aX1 (t))2 (heterogeneous correlation maps, see Björnsson and Venegas (1997)), for the HOAPS-3 / GPCC precipitation (X) and
HOAPS-3 evaporation (Y ) data sets over the North Atlantic. For constructing the coupled climate network, a threshold T = 0.47 was chosen to
yield a cross-link density of ρXY = 0.01 (Eq. (31)) resulting in internal link densities ρX = 0.01 and ρY = 0.06 (Donges et al 2011c).
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measures developed for investigating the topology of net-448

works of interacting networks (Donges et al 2011c). The449

cross-degree kXY = {kXYi }NX
i=1 is the number of neighbors450

of node i ∈ VX in subnetwork GY :451

kXYi =
∑
j∈VY

Aij =

NY∑
j=1

AXYij =

NY∑
j=1

Θ(|CXYij | − T ). (17)

Analogously, the cross-degree kY X = {kY Xj }NY
j=1 is given452

by453

kY Xj =
∑
i∈VX

Aij =

NX∑
i=1

AXYij =

NX∑
i=1

Θ(|CXYij | − T ). (18)

Similarly to degree in univariate climate networks, regions i454

in field x(t) with a large cross-degree kXYi are considered455

to be strongly dynamically interrelated with many locations456

in field y(t) and vice versa. For the precipitation and evap-457

oration data sets (Fig. 7C,D), such regions with high cross-458

connectivity correspond to major covariability areas of evap-459

oration and precipitation fields driven by the North-Atlantic460

Oscillation (NAO) (Andersson et al 2010b; Petrova 2012).461

Furthermore, analogously to univariate climate networks,462

generalizations of path-based measures for network of net-463

works can be derived (Donges et al 2011c). Here, cross-464

closeness and cross-betweenness are considered. Cross-close-465

ness cXY = {cXYi }NX
i=1 (cross-CC) measures the inverse466

mean network distance of node i ∈ VX to all nodes j ∈ VY467

via shortest paths and is defined as468

cXYi =
NX +NY − 1∑

j∈VY
lij

. (19)

Cross-betweenness bXY = {bXYi }NX
i=1 (cross-BC) counts469

the relative number of shortest paths connecting any pair of470

nodes j ∈ VX , k ∈ VY that include node i ∈ VX and is471

defined as472

bXYi =
∑
j∈VX

∑
k∈VY

njk(i)

njk
. (20)

For nodes j in field y(t), the measures cY X = {cY Xj }NY
j=1473

and bY X = {bY Xj }NY
j=1 are obtained from analogous ex-474

pressions following Donges et al (2011c). Interpretations of475

coupled CN measures will be discussed in Section 6.476

5 Relationships between eigen and climate network477

analysis478

Comparing the results of eigen and CN analysis, notable479

similarities become apparent, e.g., in the leading EOF u1480

and CN degree k for the HOAPS-3 / GPCC precipitation481

data (Fig. 5). Analogous relations are observed when in-482

specting leading coupled patterns and coupled CN cross-483

degree for HOAPS-3 / GPCC precipitation and HOAPS-484

3 evaporation data (Fig. 7). To explain these similarities,485

in this section, formal relationships between patterns from486

eigen and CN analysis are derived and illustrated empiri-487

cally for global precipitation and evaporation data sets. Re-488

lations between single field (EOFs and univariate CN mea-489

sures, Section 5.1) as well as multiple field patterns (cou-490

pled patterns and coupled CN measures, Section 5.2), and491

temporal patterns are discussed. Note that similar relation-492

ships hold when both eigen and network analysis are based493

on a type of symmetric similarity matrix that is different494

from linear correlation at zero lag, e.g., considering mutual495

information (Donges et al 2009a,b) or the ISOMAP algo-496

rithm (Tenenbaum et al 2000; Gámez et al 2004).497

5.1 Single field patterns498

As the correlation matrix CX is symmetric and, hence, di-499

agonalizable, it can be decomposed with respect to its eigen-500

system such that501

CXij =

R∑
k=1

uikλkujk. (21)

If the leading EOF u1 explains a large fraction of the total502

variance, i.e., if λ1 � λ2, then CXij can be approximated as503

CXij ≈ λ1ui1uj1. (22)

Inserting this expression into the definition of CN degree504

(Eq. (13)) yields505

ki ≈
N∑
j=1

Θ(λ1 |ui1uj1| − T )− 1. (23)

This approximation explains the empirically observed sim-506

ilarity between degree k and the leading EOF u1 (compare507

Fig. 5, panels A and B, for the precipitation data set) in the508

following way: All nodes j with |uj1| > T
λ1|ui1| contribute509

to the degree ki at node i, hence, a larger |ui1| typically leads510

to more positive contributions to the sum in Eq. (23) and,511

therefore, to a larger degree ki. Consequently, CN degree k512
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Fig. 8 Linear correlations between spatial patterns from eigen and
network techniques for climate data analysis. Pearson correlation be-
tween (A) the absolute values of the first two EOFs |u1|, |u2| and
CN measures degree k, closeness c and betweenness b for HOAPS-
3 / GPCC precipitation data as well as (B) the first coupled pat-
terns pX

1 ,p
Y
1 and coupled CN measures cross-degree kXY ,kY X ,

cross-closeness cXY , cY X , and cross-betweenness bXY ,bY X for
HOAPS-3 / GPCC precipitation (X) and HOAPS-3 evaporation data. In
both panels, correlations are displayed for varying network construc-
tion threshold T , where the corresponding p-value according to the
Student’s t-test is given on the upper horizontal axis. Vertical lines in
panels (A) and (B) indicate the thresholds used in Figs. 5 and 7, re-
spectively.

and the vector of absolute values of the leading EOF’s ele-513

ments |u1| are expected to be positively correlated.514

For the global precipitation data set, a large positive cor-515

relation between k and |u1| is indeed detected for interme-516

diate thresholds T of the order where CNs are typically con-517

structed (Donges et al 2009b), while for smaller and larger518

thresholds, the correlation decreases (Fig. 8A). The latter is519

expected, since both for T → 0 (fully connected network)520

and T → 1 (network devoid of links), the CN contains no521

information about the climatological field anymore and the522

degree field is constant with ki → N − 1 and ki → 0 for all523

nodes i, respectively. Hence, maximum pattern correspon-524

dence is expected for intermediate thresholds T (for these as525

well as computational reasons, results for T = 0 and T = 1526

are not included in Fig. 8). Notably, selecting T as maximiz-527

ing the correlation between degree k and the leading EOF528

|u1| could provide a criterion for an informed choice of the529

threshold T . Such a choice would approximate a situation530

where the information that the CN contains on linear statis-531

tical interdependencies in the field of interest is maximized.532

Further work is needed to develop more suitable criteria for533

defining binary CNs with maximum information content.534

Furthermore and as expected, the correlation between de-535

gree k and the second EOF |u2| is mostly smaller than that536

between degree and leading EOF (Fig. 8A).537

Using the full eigen-decomposition of CX , an exact re-538

lationship between the degree k and all EOFs uk together539

with their associated eigenvalues λk can be derived as540

ki =

N∑
j=1

Θ

(∣∣∣∣∣
R∑
k=1

uikλkujk

∣∣∣∣∣− T
)
− 1. (24)

Using this expression, the scalar link density541

ρ =
〈ki〉Ni=1

N − 1
(25)

can likewise be expanded or approximated, where 〈·〉 de-542

notes the arithmetic mean. Similarly, a relationship between543

area-weighted EOFs (Hannachi et al 2007), the area-weighted544

degree (Heitzig et al 2012) (also called area weighted con-545

nectivity (Tsonis et al 2006)) and all other network measures546

directly expressible in terms of the adjacency matrixAij can547

be derived.548

5.2 Coupled patterns549

The cross-correlation matrix CXY can be decomposed in550

terms of singular values and coupled patterns as (Fig. 3)551

CXYij =

R∑
k=1

σkp
X
ikp

Y
jk. (26)

The relationship between cross-degree kXY , kY X and cou-552

pled patterns pXk , pYk can then be derived as above:553
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kXYi =

NY∑
j=1

Θ

(∣∣∣∣∣
R∑
k=1

σkp
X
ikp

Y
jk

∣∣∣∣∣− T
)

(27)

≈
NY∑
j=1

Θ
(
σ1
∣∣pXi1pYj1∣∣− T ) , (28)

kY Xj =

NX∑
i=1

Θ

(∣∣∣∣∣
R∑
k=1

σkp
X
ikp

Y
jk

∣∣∣∣∣− T
)

(29)

≈
NX∑
i=1

Θ
(
σ1
∣∣pXi1pYj1∣∣− T ) . (30)

The approximations hold for the maximum singular value554

fulfilling σ1 � σ2 ≥ · · · ≥ σR. R is the rank of the cross-555

correlation matrix CXY . By a similar argument as given556

above this shows that kXY and |pX1 | (kY X and |pY1 |) are557

expected to be positively correlated which is consistent with558

our results regarding the interdependency structure between559

precipitation and evaporation fields. While in our example,560

the correspondence between the resulting patterns is some-561

what less pronounced than in the single-field setting (Fig. 8B),562

still regions with a strongly negative loading in the leading563

coupled patterns pX1 and pY1 appear as super nodal struc-564

tures in the cross-degree fields (Fig. 7). When studying vary-565

ing network construction thresholds T , as in the case of566

single-field patterns, the correlation between the absolute567

values of the leading pair of coupled patterns and cross-568

degree fields is maximum for intermediate T and decreases569

for T → 0 and T → 1 (Fig. 8B). Also, consistently with570

Eqs. (27) and (29), the correlation between the second pair571

of coupled patterns and cross-degree fields is always smaller572

than that observed for the leading pair of coupled patterns573

(results not shown).574

The scalar cross-link densities (Donges et al 2011c)575

ρXY =

〈
kXYi

〉NX

i=1

NY

ρY X =

〈
kY Xj

〉NY

j=1

NX
(31)

can also be expanded and approximated in terms of CPs and576

singular values using the above expressions. Analogously,577

area-weighted coupled patterns (von Storch and Zwiers 2003)578

are related to the area-weighted cross-degree introduced by579

Feng et al (2012) and Wiedermann et al (2013).580

5.3 Temporal patterns581

In EOF analysis, temporal patterns (principal components)582

ak(t) describing the evolution of their associated spatial pat-583

terns uk are easily obtained by projecting the data x(t) onto584

the latter patterns uk (Eq. (4)). Analogously, the same holds585

for multivariate extensions such as coupled pattern analy-586

sis (Bretherton et al 1992; von Storch and Zwiers 2003),587

see Section 3. In CN analysis, however, the temporal evo-588

lution of spatial network measure patterns such as the de-589

gree k or betweenness b cannot be directly obtained from590

the adjacency matrix A and x(t). To allow the study of591

non-stationarities in the statistical interdependence structure592

of climatological fields, several authors have investigated593

the evolving local (e.g., k(t) or b(t)) and global properties594

of CNs A(t) constructed from temporal windows sliding595

over the time series data (Gozolchiani et al 2008; Yamasaki596

et al 2008, 2009; Gozolchiani et al 2011; Guez et al 2012;597

Berezin et al 2012; Carpi et al 2012; Martin et al 2013; Rade-598

bach et al 2013; Ludescher et al 2013, 2014). A similar strat-599

egy could be applied to coupled CN analysis.600

It should be noted that unlike in the above sections, no601

direct relationship can be derived linking temporal patterns602

from eigen and network analysis. The reason for this is two-603

fold. First, temporal patterns ak(t) of standard EOF analysis604

are based on the full data set x(t), while the evolving spa-605

tial network patterns are computed from subsets (defined by606

temporal windows) of x(t). Second, since temporal patterns607

ak(t) of eigenanalysis are merely scalar prefactors in the608

expansion Eq. (3) (see Figs. 1 and 3), the spatial EOF pat-609

terns uk are time-independent, whereas evolving CN mea-610

sures such as k(t) can vary independently at every location i.611

Hence, in contrast to standard EOF patterns, the spatial pat-612

terns in the network properties derived from evolving CNs613

are explicitly time-dependent. The latter case is analogous614

to extended EOF analysis, where standard EOF analysis is615

applied in a sliding-window mode as well (Fraedrich et al616

1997).617

6 Discussion618

The relationships derived in the previous section provide619

guidance on deciding how and in which applications CN620

analysis can be expected to yield information that is com-621

plementary to the results of eigenanalysis. Particularly, we622

will focus on a discussion and climatological interpretation623

of single field and coupled patterns derived from precipita-624

tion and evaporation data (Section 6.1) and relate this to a625

study of single field patterns for global surface air temper-626

ature data (Section 6.2). Based on these insights, we point627

out some methodological as well as practical potentials of628

CN analysis of climatological fields (Section 6.3).629

6.1 Precipitation and evaporation data630

For the HOAPS-3 / GPCC precipitation and HOAPS-3 evap-631

oration data sets, pronounced similarities between the fea-632
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tures observed in the degree or cross-degree fields and those633

in the leading EOF or coupled patterns that are derived from634

the same data have been described and explained mathe-635

matically (Section 5). More specifically, active regions dis-636

playing strong correlations with many other locations, and,637

hence, a large degree or cross-degree (termed super-nodes638

in the context of CN analysis (Tsonis and Roebber 2004;639

Tsonis et al 2006; Barreiro et al 2011)) correspond to re-640

gions with large positive or negative loading in the lead-641

ing EOF or coupled patterns. For example, this can be ob-642

served for the equatorial Pacific in the precipitation data643

(Fig. 5A,B). The spatial similarity between the amplitude644

of the leading EOF and CN degree field reveals the well-645

known ENSO variability pattern (Ropelewski and Halpert646

1987). Particularly, the patterns in the explained variance647

fraction (Fig. 5C) closely resemble high connectivity areas648

of the CN resembling most prominent ENSO teleconnec-649

tions (Andersson et al 2010b; Halpert and Ropelewski 1992;650

Ropelewski and Halpert 1987). Additional dipole informa-651

tion described by the EOF is typically preserved by neigh-652

bors of the network’s major super-nodes (not shown here,653

see Petrova (2012) and Kawale et al (2013)).654

Considering the bivariate analysis of precipitation and655

evaporation data over North Atlantic (Fig. 7), regions with656

a strongly negative loading in the leading pair of coupled657

patterns appear as super nodal structures in the cross-degree658

fields obtained from coupled CN analysis. Areas with a high659

fraction of explained cross-covariance (Fig. 7E,F) well cor-660

respond to the coupled network topology as indicated by661

the cross-degree fields (Fig. 7C,D) and all together depict662

major covariability areas of evaporation and precipitation663

driven by the NAO. The cross-degree field kXY (Fig. 7C),664

displaying the number of strong correlations between pre-665

cipitation variability at a certain location with evaporation666

dynamics at all other grid points, reveals teleconnections as-667

sociated to the NAO over the southern tip of Greenland as668

well as a positive NAO signal over Portugal and a negative669

NAO signal over Norway (Andersson et al 2010b). In turn,670

the cross-degree field kY X (Fig. 7D), showing the number671

of strong correlations between evaporation dynamics at one672

point and precipitation variability at all other locations, is673

only available over the ocean and follows the covariance674

structure of the main evaporation determinant parameters675

with NAO (Cayan 1992; Marshall et al 2001).676

Beyond the frequently studied degree k, complex net-677

work theory provides a wealth of additional measures that678

can be used to study higher-order properties of the statisti-679

cal interdependency structure within and between climato-680

logical fields. For example, the mentioned measures based681

on the properties of shortest paths in (coupled) CNs such as682

(cross-) closeness c (cXY , cY X ) and (cross-) betweenness683

b (bXY ,bY X ) (Fig. 9) have been argued to give insights684

on the local speed of propagation as well as the preferred685

A

Leading EOF u1

B

Closeness c

C

Betweenness b (log10 scale)

Fig. 9 Maps of (A) leading EOF u1, (B) closeness field c, and (C) be-
tweenness field b for the global HOAPS-3 / GPCC precipitation cli-
mate network. The network construction threshold T = 0.27 was cho-
sen to yield a link density of ρ = 0.01.

pathways for the spread of perturbations within or between686

the studied fields, respectively (Donges et al 2009a,b, 2011c;687

Malik et al 2012; Molkenthin et al 2014a). In this way, CN688

analysis has the potential to unveil information on climate689

dynamics from climatological field data that conceptually690

supplements the results of eigenanalysis.691

Focussing on the precipitation data to further investigate692

this aspect, we find that the correlation of CC and BC to the693

first two EOFs obtained from the data are systematically and694
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Fig. 10 Percentage of variance λk/
∑R

l=1 λl explained by EOFs uk

for the NCEP/NCAR surface air temperature data set. Error bars were
estimated using North’s rule of thumb (North et al 1982).

significantly smaller than that between the degree field and695

the same EOFs (Fig. 8A). Similarly, in the bivariate case,696

the correlations of cross-CC and cross-BC with the leading697

coupled pattern are considerably smaller than those between698

the latter and cross-degree for most thresholds T (Fig. 8B).699

However, for the HOAPS-3 / GPCC precipitation data, the700

patterns observed in the leading EOF resemble those found701

in the CC and BC fields (Fig. 9) as well as those in the de-702

gree field (Fig. 5). These results can be explained from a net-703

work point of view by considering that precipitation fields704

are typically only correlated on short spatial scales and dis-705

play a smaller degree of spatial coherency when compared706

to other atmospheric variables such as pressure or temper-707

ature (Feldhoff et al 2014). In turn, this leads to a larger708

degree of randomness in the structure of CNs constructed709

from this data. In random networks, correlations between710

centrality measures such as degree, closeness and between-711

ness arise (Boccaletti et al 2006). In other words, spatially712

incoherent climatological fields can give rise to CNs with713

a notable degree of disorder in the placement of links be-714

tween different nodes which induces correlations between715

network centrality measures. For the precipitation data set716

at hand, the first eigenvalue separates from the remaining717

spectrum (Fig. 2) leading to a pronounced correlation be-718

tween the leading EOF u1 and the degree field (see Eq. 23),719

and, hence, to correlations between u1 and CC, BC.720

6.2 Surface air temperature data721

Next, we investigate the NCEP/NCAR reanalysis I surface722

air temperature (SAT) field as another frequently studied723

data set. The properties of this data are complementary to724

those of the precipitation field discussed above in two as-725

pects: (i) for the SAT data, the leading two EOFs explain726

approximately the same amount of variance (Fig. 10), while727

the leading eigenvalue separates more markedly from the re-728

mainder of the spectrum in the case of the precipitation data729

(Fig. 2), and, (ii) the SAT field is known to display a stronger730

degree of spatial coherency than the precipitation field. In731

the light of the discussion in Section 6.1, these two prop-732

erties are reflected when comparing the leading three EOFs733

and network properties for the SAT data set (Fig. 11). Firstly,734

the degree field resembles the leading EOF less than in case735

of precipitation data (Fig. 11A,D), which is expected due736

to the weaker separation of the leading eigenvalues (Sec-737

tion 5.1 and Eq. 23). Consistently, the degree field displays738

an even less pronounced similarity to the second and third739

EOFs (Fig. 11B,C,D). While the patterns found in the CC740

field (Fig. 11E) still partly resembles those in the degree741

field (Fig. 11D) as well as those in the leading two EOFs742

(Fig. 11A,B), the BC field displays markedly distinct fea-743

tures (Fig. 11F). Only in a few regions, these structures of744

high betweenness appear to coincide with patterns of large745

EOF loadings, e.g., high betweenness structures found along746

the West coasts of North and South America correspond to747

large positive loadings in the second and third EOFs, respec-748

tively.749

The observed linear wave-like structures of large BC750

in the SAT field have been interpreted as signatures of the751

transport of temperature anomalies in strong surface ocean752

currents (Donges et al 2009a,b). For example, the large be-753

tweenness structures resemble strong western boundary cur-754

rents such as the Kuroshio of the east coast of Japan or755

Eastern boundary currents such the Canary current off the756

African west coast. It should be noted that while some of757

the structures in the BC field such as the one resembling the758

North Atlantic’s subtropical gyre appear blurred, the loga-759

rithmic color scale in Fig. 11F implies that even small changes760

in color correspond to exponentially large changes in BC.761

This interpretation of high betweenness structures in CNs762

constructed based on Pearson correlation as advective struc-763

tures such as strong currents is supported by recent analyt-764

ical studies that are based on well-known fluid dynamical765

model systems (Molkenthin et al 2014a,b). Further evidence766

that is also consistent with this interpretation of between-767

ness was found in a study of vertical interactions in the at-768

mospheric geopotential height field, where regions of large769

cross-BC in the Arctic suggest that vertical air induced by770

the Arctic vortex is important for mediating the propaga-771

tion of wind field anomalies between different isobaric sur-772

faces (Donges et al 2011c). Also, Boers et al (2013) employ773

BC and further network measures for precipitation data over774

South America to highlight the importance of atmospheric775

structures such as the South American low level jet for the776

propagation of extreme rainfall events, specifically over long777

distances.778
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A
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D
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Second EOF u2

Third EOF u3

Degree k / (N-1)

Closeness c

Betweenness b (log10 scale)

Fig. 11 Maps of (A,B,C) the leading three EOFs u1, u2, u3, (D) normalized degree field k/(N − 1), (E) closeness field c, and (F) betweenness
field b for the global NCEP/NCAR surface air temperature climate network. The network construction threshold T = 0.67 was chosen to yield a
link density of ρ = 0.01. In panel (F), gray shading indicates regions with betweenness values smaller than 104.

6.3 Potentials of climate network analysis779

The examples discussed above suggest that CN analysis may780

be particularly useful in situations where (i) a dominant EOF781

(pair of coupled patterns) explaining significantly more vari-782

ance (cross-covariance) in the data than further modes does783

not exist and (ii) the climatological field of interest displays784

a certain degree of spatial coherence reflecting, e.g., winds,785

ocean currents or long-range teleconnections. Such rules could786

be useful in practice when deciding on which methodology787

should be applied to a data set of interest. While future re-788

search beyond the scope of this work is needed to address789

these suggestions, we move on to discuss the potentials of790

CN analysis from a methodological point of view.791

Considering higher-order network properties, approxi-792

mate and exact relationships akin to Eqs. (23) and (24) can793

be derived for other (coupled) CN measures of interest like794
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the local clustering coefficient (Donges et al 2009b; Malik795

et al 2012)796

Ci =
∑N
j,k=1AijAjkAki∑N
j,k=1AijAik

(32)

by plugging in the approximation Aij ≈ Θ(|λ1ui1uj1| −797

T ) − δij or the full expansion of Aij in terms of EOFs798

(Section 5.1). However, the resulting lengthy expressions,799

particularly for path-based network measures such as CC800

and BC (Heitzig et al 2012), hardly help to gain further801

understanding other than that both eigen and network ap-802

proaches are based on the same underlying similarity ma-803

trix (Figs. 1 and 3). In contrast, taking the local clustering804

coefficient as an example illustrates the added value of the805

complex network point of view: Eq. (32) can be easily un-806

derstood as a local measure for transitivity in the correla-807

tion structure of a climatological field (Donges et al 2009b,808

2011c), while the same measure viewed as some function of809

all EOFs uk would be considered hard to interpret or mean-810

ingless in terms of eigenanalysis alone. In that sense, the811

network approach allows insights into the correlation struc-812

ture of climatological fields that go beyond and complement813

those obtainable by EOF analysis.814

It has been shown in earlier studies that the statistical in-815

formation provided by CN analysis is valuable for comple-816

menting standard techniques of eigenanalysis for tasks like817

model tuning, model validation (Feldhoff et al 2014), model818

and model-data intercomparison (Petrova 2012; Steinhaeuser819

and Tsonis in press; Fountalis et al 2013; Feldhoff et al820

2014), statistical forecasting (Steinhaeuser et al 2011), and821

explorative data analysis (Steinhaeuser et al 2010, 2012).822

Furthermore, the network approach allows to employ ad-823

vanced algorithms for pattern recognition (Kawale et al 2013),824

spatial coarse-graining (Fountalis et al 2013) or community825

detection (Tsonis et al 2011; Steinhaeuser et al 2011; Stein-826

haeuser and Tsonis 2014). Recently, a series of studies based827

on well-defined fluid-dynamical model systems has provided828

deeper insights into the structure of CNs, particularly into829

how the latter is related to the dynamics of the underlying830

physical system, as well as fostered the interpretation of CN831

measures (Molkenthin et al 2014a,b; Tupikina et al 2014).832

A particular advantage of CN analysis is that statistical833

methods originating from information and dynamical sys-834

tems theory such as transfer entropy (Runge et al 2012a,b),835

probabilistic graphical models (Ebert-Uphoff and Deng 2012a,b),836

or event synchronization (Malik et al 2012) can be natu-837

rally used for network construction, and, hence, for identi-838

fying processes and patterns which are not accessible when839

studying linear correlation matrices alone. Applying these840

modern methods of time series analysis for network con-841

struction allows, among other applications, to study the syn-842

chronization of climatic extreme events (Malik et al 2012;843

Boers et al 2013, 2014b) or to suppress the misleading ef-844

fects of auto-dependencies in time series, common drivers845

and indirect couplings by reconstructing causal interactions846

(in the statistical sense of information theory) between cli-847

matic sub-processes (Ebert-Uphoff and Deng 2012a; Runge848

et al 2012a,b, 2014). This in turn enables a more direct in-849

terpretation of the reconstructed network structures and re-850

sulting patterns in network structures in terms of climatic851

sub-processes and their interactions, avoiding the concep-852

tual problems that arise in the interpretation of results from853

purely correlation-based techniques such as classical EOF854

or CP analysis / MCA (Dommenget and Latif 2002; Jolliffe855

2003; Monahan et al 2009).856

7 Conclusions857

In summary, the main aim of this article has been to put858

the recently developed CN approach into context with stan-859

dard eigenanalysis of climatological data, since both classes860

of methods are usually based on the same set of statisti-861

cal similarity matrices, i.e., the linear correlation and cross-862

correlation matrices at zero lag. We have derived formal re-863

lationships between empirical orthogonal functions or cou-864

pled patterns and frequently used first-order CN measures865

such as degree or cross-degree, respectively. These relations866

have been illustrated empirically using global satellite ob-867

servations of precipitation and evaporation fields as well as868

reanalysis data for the global surface air temperature field.869

However, it has been shown that, and in which specific prac-870

tical settings, higher-order CN measures such as closeness871

and betweenness may contain complementary statistical in-872

formation with respect to classical eigenanalysis. We have873

argued that this information could be valuable for tasks such874

as model tuning, validation, and intercomparison as well875

as for improving statistical predictions of climate variabil-876

ity and explorative data analysis. Hence, by transferring in-877

sights and tools from complex network theory and complex-878

ity science to climate research, CNs meet the need for novel879

techniques of climate data analysis facing quickly increasing880

data volumes generated by growing observational networks881

and model intercomparison exercises like the coupled model882

intercomparison project (CMIP) (Taylor et al 2012). Fur-883

thermore, the application of advanced network-theoretical884

concepts and methods from fields like complexity science,885

information theory and machine learning promises novel and886

deep insights into Earth system dynamics, particularly con-887

sidering the complex interactions of human societies with888

global climatic and biogeochemical processes.889
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Gámez AJ, Zhou CS, Timmermann A, Kurths J (2004) Nonlinear di-1031

mensionality reduction in climate data. Nonlinear Proc Geophys1032

11(3):393–398, doi:10.5194/npg-11-393-20041033

Gao J, Buldyrev SV, Stanley HE, Havlin S (2011) Networks1034

formed from interdependent networks. Nat Phys 8(1):40–48,1035

doi:10.1038/NPHYS21801036

Ghil M, Malanotte-Rizzoli P (1991) Data assimilation in me-1037

teorology and oceanography. Adv Geophys 33:141–266,1038

doi:10.1016/S0065-2687(08)60442-21039

Ghil M, Allen M, Dettinger M, Ide K, Kondrashov D, Mann M, Robert-1040

son AW, Saunders A, Tian Y, Varadi F, et al (2002) Advanced spec-1041

tral methods for climatic time series. Rev Geophys 40(1):1–1 –1042

1–41, doi:10.1029/2000RG0000921043

Gozolchiani A, Yamasaki K, Gazit O, Havlin S (2008) Pattern of cli-1044

mate network blinking links follows El Niño events. Europhys Lett1045

83(2):28,005, doi:10.1209/0295-5075/83/280051046

Gozolchiani A, Havlin S, Yamasaki K (2011) Emergence of El Niño as1047

an autonomous component in the climate network. Phys Rev Lett1048

107(14):148,501, doi:10.1103/PhysRevLett.107.1485011049

Guez O, Gozolchiani A, Berezin Y, Brenner S, Havlin S (2012) Climate1050

network structure evolves with North Atlantic Oscillation phases.1051

Europhys Lett 98:38,006, doi:10.1209/0295-5075/98/380061052

Halpert MS, Ropelewski CF (1992) Surface temperature patterns as-1053

sociated with the Southern Oscillation. J Climate 5(6):577–593,1054

doi:10.1175/1520-0442(1992)005<0577:STPAWT>2.0.CO;21055

Handorf D, Dethloff K (2009) Atmospheric teleconnections and flow1056

regimes under future climate projections. Eur Phys J Spec Top1057

174:237–255, doi:10.1140/epjst/e2009-01104-91058

Handorf D, Dethloff K (2012) How well do state-of-the-art1059

atmosphere-ocean general circulation models reproduce1060

atmospheric teleconnection patterns? Tellus A 64:19,777,1061

doi:10.3402/tellusa.v64i0.197771062

Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal1063

functions and related techniques in atmospheric science: a review.1064

Int J Climatol 27:1119–1152, doi:10.1002/joc.14991065

Heitzig J, Donges JF, Zou Y, Marwan N, Kurths J (2012) Node-1066

weighted measures for complex networks with spatially embed-1067

ded, sampled, or differently sized nodes. Eur Phys J B 85(1):38,1068

doi:10.1140/epjb/e2011-20678-71069

Hempel S, Koseska A, Kurths J, Nikoloski Z (2011) Inner1070

composition alignment for inferring directed networks1071

from short time series. Phys Rev Lett 107(5):54,101,1072

doi:10.1103/PhysRevLett.107.0541011073

Hirata Y, Shimo Y, Tanaka HL, Aihara K (2011) Chaotic1074

properties of the Arctic Oscillation Index. SOLA 7:33–36,1075

doi:10.2151/sola.2011-0091076

Hlinka J, Hartman D, Vejmelka M, Novotná D, Paluš M (2014) Non-1077
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