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Emergence of amplitude and oscillation death in identical coupled oscillators
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We deduce rigorous conditions for the onset of amplitude death (AD) and oscillation death (OD) in a system of
identical coupled paradigmatic Stuart-Landau oscillators. A nonscalar coupling and high frequency are beneficial
for the onset of AD. In strong contrast, scalar diffusive coupling and low intrinsic frequency are in favor of the
emergence of OD. Our finding contributes to clearly distinguish intrinsic geneses for AD and OD, and further
substantially corroborates that AD and OD are indeed two dynamically distinct oscillation quenching phenomena

due to distinctly different mechanisms.
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Coupled nonlinear oscillators constitute an excellent frame-
work to enhance our understanding on the emerging collective
behaviors of several natural systems. Oscillation quenching
is such a fundamental and ubiquitous emergent phenomenon
naturally occurring in diverse fields including physics, biology,
and engineering [1-3], which have been an active area
of intense investigation recently [4,5]. The phenomenon of
suppression of oscillations has been structurally distinguished
into two different quenching processes, namely, amplitude
death (AD) and oscillation death (OD) [5].

For many years, these two types of oscillation quenching
were often misinterpreted in the literature. Only very recently,
clear boundaries between AD and OD have been established
from differences in their manifestations and applications [5,6].
AD refers to the cessation of oscillations by stabilizing
an already existing unstable steady state of the uncoupled
systems through coupling, resulting in a stable homogeneous
steady state (HSS) [4]. Initially it was believed that frequency
mismatch and time-delayed coupling were the two main
sources for the onset of AD [7-14], but later studies revealed
that AD can also be induced by dynamic and conjugate
couplings [15-17]. OD appears due to the birth of a new
set of stable fixed points under coupling, which disrupts
the system’s symmetry, resulting in a stable inhomogeneous
steady state (IHSS) [18-21]. Thus the manifestations of AD
and OD are clearly different, as AD retains symmetry [4],
but the emergence of OD induces asymmetry through the
birth of stable inhomogeneous steady states in coupled (even
homogeneous) systems [5,6]. In addition, both AD and OD
have distinct practical applications. For example, AD serves as
a desirable control technique to suppress harmful oscillations
in lasers [22], neuronal systems [23], or a healthy cell
signaling network [24]. On the other hand, OD has strong

“zouwei2010@mail.hust.edu.cn

1539-3755/2014/90(3)/032906(5)

032906-1

PACS number(s): 05.45.Xt, 87.10.—e

implications in synthetic genetic networks [25-27] and is
especially revealed as a background mechanism for cellular
differentiation [28,29].

Extensive investigations have been carried out both theo-
retically and experimentally on AD for more than a couple
of decades, whereas investigations on OD are comparatively
less and are in their infancy. However, there has been a
recent burst of research activities devoted to OD, since
Koseska et al. clearly distinguished the transition from AD
to OD via Turing bifurcation in nonidentical oscillators [6].
In particular, it has been shown that an AD-OD transition
occurs in delay-coupled Stuart-Landau oscillators with a
low degree of heterogeneity and in identical oscillators with
dynamic and conjugate couplings [30]. Such a transition has
been also identified in nonlinear oscillators with symmetry-
breaking repulsive coupling [31,32] and mean-field diffusive
coupling [33]. Furthermore, the transition from AD to OD has
been experimentally observed in electronic circuits with mean-
field coupling [34]. Very recently, an interesting connection
between the chimera state and OD, termed as chimera death,
has been established in a network of Stuart-Landau oscillators
with one-dimensional nonlocal coupling [35].

To robustly observe both AD and OD in a system of
coupled identical nonlinear oscillators, the following basic
questions remain as open problems. Under what circumstances
are both AD and OD robustly observed in a given system
of coupled oscillators? Can the known scenarios that can
induce AD favor the onset of OD or not? Are the underlying
dynamical mechanisms different or the same? In this paper, we
address the above challenging problems by deducing rigorous
conditions under which both AD and OD can be observed in
a given system of coupled identical nonlinear oscillators. In
particular, we find that both AD and OD are observed in quite
strong contrast conditions and thereby different mechanisms.
Specifically, one-dimensional diffusive coupling is in favor
of OD, but is adverse to AD; and a low intrinsic frequency
facilitates OD but inhibits AD.
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We consider the following system of two Stuart-Landau
oscillators [1] with diffusive coupling:

xj'=Pij—WYJ+K[xk(f—T)—Xj(I)], "

yi =wx;+ Pjy; +aK[y(t — 1) — y;(®)],
where P; = 1 —x? — yjz., j.k=1,2, and j # k. The value
of K (K > 0) governs the diffusive coupling strength, and
(r > 0) is the propagation time delay. The parameter o (0 <
o < 1) determines the nature of the coupling rate between the
x and y components, where « = 1 corresponds to a nonscalar
coupling and o = 0 to a scalar one [7]. Systems of coupled
Stuart-Landau oscillators serve as a paradigmatic model for
exploring AD by both analytical and numerical means [4].
However, this model has been only recently employed to reveal
the OD phenomenon. The Stuart-Landau oscillator represents
a normal form near a supercritical Hopf bifurcation. It has a
stable limit-cycle motion Z = x + iy = ¢'*’ and an unstable
focus at the origin Z = 0. In the Cartesian coordinates, it is
given by x = Px —wy and y = wx + Py, where P =1 —
1Z]> =1—x%—y2

For @ = 1, Reddy et al. [9] have proved that the coupled
system (1) experiences AD only for T > 0. For o = 0, Koseska
et al. [6] recently showed that OD is observed in the coupled
system (1) even for T = 0. The presence of time delay 7 > 0
modulates the threshold value of K for the onset of OD,
and even renders both AD and OD to occur in the same
system for a large value of the frequency w when o = 0 [30].
Clearly, there exists a gap in the study of AD and OD in the
coupled system (1) from scalar (¢ = 0) to nonscalar (¢ = 1)
couplings. In the following, we unveil rigorous conditions for
the emergence of both AD and OD in system (1) of coupled
identical oscillators.

The fixed points of Eq. (1) can be obtained as (i) a trivial
HSS at the origin (0,0,0,0) and (ii) an IHSS (x}, y{,—x{,
—y¥) with x¥ = +w/(1 — p)/[(p — 2K)> + w?] and y} =
FVI( = p)(p = 2KP)/[(p — 2K)? + w?], where p = (1 +
a)K — /(1 —a)2K? — w?. The onset conditions for AD and
OD are determined by the characteristic eigenvalue equations
obtained from the standard linear stability analysis of the
coupled system at its HSS and IHSS, respectively.

It is noteworthy that the presence of a time delay T > 0 in
the coupling does not generate any new steady-state solutions
of coupled system (1), but rather influences the stability of
the steady states. We first treat the case of T = 0. If « =0,
it was established by the authors of Ref. [6] that an THSS
appears at K = (w? + 1)/2 via a pitchfork bifurcation and is
stabilized for K > w? + 1/4, i.e., OD occurs. When o > 0,
we deduce that the IHSS emerges in an intermediate interval

of K: 1+a—+y(1—-a)?—4aw?)/4a) <K <(1+a+
V(I —a)? —daw?)/(4a) if w? < (1 —a)?/(4a), which
analytically defines the emergence conditions for IHSS. Such
an THSS is stable for (I +a — /(I — @)? — 16aw?)/(8a) <
K <(+4a+/(1—a)?— 16aw?)/(8x) if w? <
(1 —a)? /(16a). This stable OD interval vanishes for
o> Omax = 1 4+ 8w? — /(1 +8w?2)2 — 1. To validate the
above analysis, Figs. 1(a) to 1(d) show the bifurcation
diagrams of the steady states of the coupled system (1)
with w = 10, where the thick (red) lines denote the stable
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FIG. 1. (Color online) Bifurcation diagrams of steady states of
the coupled system (1) with instantaneous coupling [left column (a)-
(d) with T = 0] and time-delayed coupling [right column (e)—(h) with
T = 0.16] for « = 0,0.0005,0.001, and 0.002, respectively. w = 10.
Thin dashed lines correspond to unstable steady states, whereas solid
black (dark gray) and solid red (light gray) lines to stable HSS (AD)
and stable IHSS (OD), respectively.

steady states and the thin (black) lines correspond to the
unstable steady states. The OD is stabilized in a broad range
of K for K > 100.25 and o = 0 as illustrated in Fig. 1(a),
whereas OD occurs only in a limited interval of coupling
strength for o« = 0.005 [Fig. 1(b)]. The stable THSS (OD)
disappears if & > . =~ 0.0006 [see Figs. 1(c) and 1(d) for
o = 0.001 and 0.002]. Note that HSS is always unstable for
all 0 < o < 1, implying that AD is impossible in identical
coupled oscillators with T = 0.

The bifurcation diagrams of the steady states of the
coupled system (1) are depicted in Figs 1(e) to 1(h) in the
presence of the propagation delay 7 = 0.16, w = 10, and
for the corresponding values of « as in Figs. 1(a) to 1(d),
respectively. It is evident from these figures that AD always
occurs in a finite interval of the coupling strength for all
0<a<1.

It is to be noted that time-delayed coupling stabilizes IHSS
(OD) with a much lower threshold value of the coupling
strength at K. = 57.544 < w? + 1/4 for @ = 0 [comparing
Figs. 1(a) and 1(e)], and facilitates OD in a much larger range
of coupling strength for o = 0.0005 [comparing Figs. 1(e)
and 1(f) to Figs. 1(a) and 1(b)]. More interestingly, the
propagation delay can induce OD in a pronounced interval of
the coupling strength for certain values of o [see Fig. 1(g)
with o = 0.001], where the IHSS is unstable without the
propagation delay for the same value of o [see Fig. 1(c)
with @ = 0.001]. However, if the coupling rate « is beyond
a certain value o,x, the IHSS becomes unstable and OD is
impossible even in the presence of time delay in the coupling
as illustrated in Fig. 1(h) for « = 0.002. Note that both AD
and OD are found in the same system (1) of coupled identical
oscillators in the presence of the propagation delay as shown in
Figs. 1(e) to 1(g) for t = 0.16, whereas only OD is observed in
the absence of the propagation delay as depicted in Figs. 1(a)
to 1(b).
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FIG. 2. (Color online) AD and OD regimes of the coupled sys-
tem (1) in the parameter space of (7, K) for different coupling rates
a:(@)a =0, (b)x =0.0005, (c) « = 0.001, (d) « = 0.002. w = 10.
The black (dark gray) and red (light gray) regions represent the stable
HSS (AD) and stable IHSS (OD), respectively. The dashed blue lines
indicate the limit of K for the emergence of IHSS.

To get a complete picture of the effect of propagation
delay on AD and OD in the coupled system (1), Figs. 2(a)
to 2(d) depict the regimes of stable HSS and IHSS in the
parameter space of (t, K) for @ = 0, 0.0005, 0.001, and 0.002,
respectively, for the same value of w as in Fig. 1. The black
(dark gray) and red (light gray) regions indicate the stable
HSS (AD) and IHSS (OD), respectively. The dashed blue lines
demarcates the boundary of K for the emergence of IHSS for
a given «. For o = 0, the propagation delay modulates the
threshold value of K for the onset of OD and the OD regime is
unbounded and connected along both directions of T and K. To
our surprise, upon increasing « meticulously, the OD region
splits into several unconnected and bounded islands as shown
in Fig. 2(b) for o = 0.0005. Increasing o further results in
decrease in the number of these OD islands. For example, only
a single island of stable IHSSs is found in Fig. 2(c) for r > 0
and o = 0.001. The OD island is completely revoked for o
beyond a certain threshold . & 0.0016, which is confirmed
in Fig. 2(d) for & = 0.002, where the IHSSs are unstable in
the entire parameter space.

Thus it is established that increasing o eliminates the
onset of OD. This can be intuitively understood in the
following way: OD is induced through symmetry breaking
of the coupled dynamical system. When o = 1, the coupling
perfectly preserves the system’s rotating symmetry, while for
o =0, it clearly destroys the rotating symmetry which is
the mechanism for the emergence of IHSS [35]. Hence, it
is clear that increasing o from zero is detrimental for the onset
of OD.

In strong contrast, we clearly observe that the parametric
sets of AD constitute pronounced islands on the (z,k) plane
in Fig. 2. In fact, the AD island increases gradually as « is
increased. This is due to that the time-delayed contributions of
the coupled system are enhanced when « is increased. Hence,
a large value of « is beneficial for facilitating the occurrence
of AD in a large parameter space. The coupling rate « plays
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FIG. 3. (Color online) AD and OD regimes of a system of
coupled identical oscillators (1) with @ = 0.001 on the (7, K) plane
for different values of the frequency w: (a) w =9, (b) w=2_8,
(¢) w=7, and (d) w = 6. The black (dark gray) and red (light
gray) regions represent the stable HSS (AD) and stable IHSS (OD),
respectively.

two completely contrary roles in the formation of AD and OD
in the coupled identical system (1).

For the nonscalar coupling case (¢ = 1), Reddy et al
demonstrated that the size of the AD island decreases with
decreasing w, which vanishes below the threshold of wp;, ~
4.812 [9] and more than one AD island appear for high values
of w > 14.438 [10]. At this point, it is natural to wonder
if the effect of w on OD and whether multiple OD islands
can be formed in the parameter space of (t,K) by tuning w.
The answer to this question is depicted in Figs. 3(a) to 3(d),
displaying the distribution of AD and OD regions on the
(7,K) plane for w =9, 8, 7, and 6, respectively, for fixed
o = 0.001. Surprisingly, only a single OD island appears
for w =9 [Fig. 3(a)], but two OD islands are found for a
slightly lower value of w = 8 [Fig. 3(b)]. Further decreasing
w, multiple OD islands emerge and become a single connected
region, which is unbounded along the t direction as illustrated
in Figs. 3(c) and 3(d) for w = 7 and 6. This effect is more
pronounced for much smaller w. However, the corresponding
AD island monotonically decreases [see Figs. 3(a) to 3(c)] and
disappears below a certain threshold wy,, [Fig. 3(d)]. Thus,
AD and OD depend on the frequency w in quite different ways:
low frequencies restrain AD but facilitate OD.

From the above analyses, it is evident that the stability
regions of both AD and OD critically depend on the values
of both @ and w. There exists a threshold value o, such
that if @ > o OD does not occur for any combinations of
7 and K for a fixed w [refer to Fig. 2]. For all 0 < o < 1,
there exists a minimum value wp;,, below which w < Wy,
AD is impossible on the (t, K) plane, as confirmed in Fig. 3.
For a global picture, the dependence of wy, on o for AD
[black triangles] and o, on w for OD [red squares] is shown
in Fig. 4. The larger «, the smaller wy;, is for AD; and the
smaller w, the larger aax is for OD. Interestingly, we find that
the coupled system (1) can indeed experience both AD and
OD for a certain parametric set of (7, K) when « is sufficiently
small and w is large enough [the upper-left corner of Fig. 4].
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FIG. 4. (Color online) Minimum value wy,;, (black triangles) of
w for AD and maximum value o, (red squares) of o for OD. Both
AD and OD occur in the same system of coupled identical oscillators
when o and w are located in the upper-left corner.

The above intricate dependencies of w and « for the
emergence of AD and OD are generically valid in a system
of identical oscillators with other coupling scenarios that are
known to induce AD. To verify this, we illustrate our results in
two identical Stuart-Landau oscillators with dynamic coupling
represented as

ij = Pj)Cj — wy; +K(l/lj —Xj),

yj =wx; + Pjy; +aK(; —y;), o

blj = —u; + Xz,
v; = —V; + Y.

It is notable that the fixed points of dynamically coupled
system (2) are the same as those of the delay-coupled sys-
tem (1). The coupled system (2) with &« = 0 was investigated
previously in Refs. [16,30]. Only AD has been extensively
investigated in Ref. [16], while the transition from AD to
OD has been reported in Ref. [30]. However, the intricate
dependencies of w and « for the onset of AD and OD was
not yet considered. Now, by introducing «, we elucidate the
influences of both w and & on AD and OD. Figures 5(a) to 5(d)
illustrate AD and OD regimes in the parameter space of (w, K)
fora = 0, 0.01, 0.02, and 0.03, respectively. Transitions from
AD to OD as the coupling strength K increases can be observed
for small values of « in a wide range of w [Figs. 5(a) to 5(c)]. It
is clear from these figures that upon decreasing w, the spread
of the coupling strength K for stable IHSSs (OD) increases,
whereas that of stable HSS (AD) decreases. Upon increasing
o, the spread of the OD region shrinks but that of the AD
region enlarges in the (w, K) space. Therefore, a small w is in
favor of OD but is detrimental to AD; a large o enhances AD
but inhibits OD, which are the same effects as observed in the
delay-coupled system (1).

To conclude, we have systematically explored the emer-
gence of both AD and OD in a single system of coupled
identical Stuart-Landau oscillators, with both time-delayed

PHYSICAL REVIEW E 90, 032906 (2014)

FIG. 5. (Color online) AD and OD of the dynamically coupled
system (2) in the parameter space of (w, K) for different coupling
rates o: (@) @ =0, (b) « = 0.01, (¢) « = 0.02, (d) @ = 0.03. The
black (dark gray) and red (light gray) regions represent the stable
HSS (AD) and stable IHSS (OD), respectively.

and dynamic couplings. By tuning the coupling rate « from 0 to
1, the coupling transits from scalar to nonscalar type. We found
that large « is conducive to the occurrence of AD, butis adverse
to the onset of OD. Generally, OD is favored for very small
values of o < 1. The parametric region of OD monotonically
decreases by increasing « from zero, and completely vanishes
if @ > amax. The effects of the intrinsic frequency w on AD
and OD are also examined meticulously. It is uncovered that
larger values of w facilitates the spread of AD to a larger
region when w > Wpi,. The minimum value of w (Wmpin)
increases as decreasing o from 1. In sharp contrast to this
scenario, a smaller value of w facilitates OD to occur in a larger
domain of parameters, which also results in a larger threshold
value for amax. It is also established that the same system of
coupled identical oscillators can produce both AD and OD for
sufficiently small values of « and large enough values of w.
Our results further corroborate that AD and OD are indeed
two dynamically distinct oscillation quenching phenomena
with significantly different dynamical mechanisms. It is to
be noted that we have carried out our analysis by employing
the paradigmatic Stuart-Landau oscillator, which represents a
normal form describing dynamics near a supercritical Hopf
bifurcation. Thus, our findings are expected to essentially
characterize generic features of coupled systems near Hopf
bifurcation. Finally, we firmly believe that our study serves
as a genesis and a benchmark for future investigations of AD
and OD in more complex systems, in particular, in electronic
circuits, lasers, and neuronal networks.
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