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Node-weighted measures for complex networks with directed
and weighted edges for studying continental moisture recycling
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Abstract – In many real-world networks nodes represent agents or objects of different sizes or
importance. However, the size of the nodes is rarely taken into account in network analysis,
possibly inducing bias in network measures and confusion in their interpretation. Recently, a
new axiomatic scheme of node-weighted network measures has been suggested for networks with
undirected and unweighted edges. However, many real-world systems are best represented by
complex networks which have directed and/or weighted edges. Here, we extend this approach and
suggest new versions of the degree and the clustering coefficient associated to network motifs for
networks with directed and/or weighted edges and weighted nodes. We apply these measures to
a spatially embedded network model and a real-world moisture recycling network. We show that
these measures improve the representation of the underlying systems’ structure and are of general
use for studying any type of complex network.
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Introduction. – In the course of the last decade com-
plex network theory has become of great interest and has
been widely applied in different domains including biol-
ogy [1], communication [2], social science [3], economy [4]
and climatology [5–8]. The systems of interest are modeled
as networks with nodes representing agents (e.g., cortical
areas, topics in Wikipedia, locations on the Earth) and
edges standing for interactions between them (e.g., trans-
mission of signals, hyperlinks, trades and statistical corre-
lations). Several statistical measures have been developed
to investigate the architecture of complex networks, e.g.,
by counting neighbors or measuring the tendency to form
triangles [9,10].

In most of the studies, nodes represent agents or ob-
jects of different sizes or importance (for example hetero-
geneity in demography among countries, in surface area
among gridded data points and in capacity among air-
ports). However, the size of the nodes is rarely taken
into account in the network properties, which can in-
duce bias and ambiguity in the network measures [11].
In climate networks [5,7,12], certain network measures

tend to artificially increase towards the poles due to a de-
crease in surface area represented by the nodes and thus
an increase in node density [13]. Similarly, a region in the
brain which is central with respect to its number of con-
nections is not necessarily central when considering the
volume of the brain it is connected to [11].

Recently, a novel framework for node-weighted net-
work measures has been suggested based on the con-
cept of “node-splitting invariance” (n.s.i.), i.e., network
measures unaffected by local aggregation or splitting of
nodes [11]. Using node weights like volumes of the regions
in brain networks, surface areas in climate networks, mar-
ket values in world trade networks, sizes of the IP address
space in the world-wide-web networks and article sizes
in Wikipedia, the n.s.i. network measures improve the
representation of the systems compared to their standard
counterparts [11,13]. However, n.s.i. network measures
have been suggested only for networks with undirected
and unweighted edges so far. This means that connections
are considered to be symmetric and edges are usually es-
tablished between nodes if the strength of the connection
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between them (for example statistical correlation in the
case of climate networks) exceeds a certain threshold.

However, many real-world systems are best represented
by networks with directed and/or weighted edges. Exam-
ples include world trade networks (with edge weights pro-
portional to the amount traded with distinction between
import and export), social networks (with edge weights
proportional to the intensity of connection between peo-
ple), air transport networks (with edge weights propor-
tional to the number of available seats in flights between
two airports) [14] and moisture recycling networks (with
edge weight proportional to the amount of moisture trans-
ported between grid cells) [15].

In this work we use the n.s.i framework to suggest mea-
sures (degree, strength and clustering coefficient possibly
associated with motifs) for networks with directed and/or
weighted edges by assigning weights to all nodes in the
network as well. We apply our novel measures to two spa-
tially embedded networks in which node weights are pro-
portional to surface areas that are represented by them:
1) a benchmark network model in which edge weights
depend on the geographical distance between nodes (in
consistency with a previous study on the length scales of
moisture feedback) [16] and 2) a real-world network in
which the edges represent direction and amount of mois-
ture traveling from its source (evapotranspiration) to its
final destination (precipitation) in South America. We
show that the proposed n.s.i. measures improve the rep-
resentation of the system compared to standard measures.

Preliminaries. – Consider a graph G = (V,E) with a
given set of nodes V , edges E and the number of nodes
|V | = N . Each node in the network is identified by a nat-
ural number i = 1, . . . , N . A = {aij} ∀ i, j = 1, . . . , N
is the adjacency matrix of size N × N with aij = 1 iff
there is an edge connecting node i ∈ V and j ∈ V (i �= j)
and aij = 0 otherwise. If the network is directed (i.e., the
edges have a direction associated to them), A is in gen-
eral not symmetric (aij �= aji) and aij = 1 iff there is a
directed edge originating from node i ∈ V and pointing
towards node j ∈ V and zero otherwise. We can assign to
each edge Eij an intensive weight mij ∈ [0, 1] representing
the strength of the dependency between nodes i and j and
define an edge weight matrix M = {mij} ∀ i, j = 1, . . . , N
(from now on we omit ∀ i, j = 1, . . . , N). In this work
we will present measures for different types of networks:
binary undirected networks (BUN), edge-weighted undi-
rected networks (WUN), binary directed networks (BDN)
and edge-weighted directed networks (WDN).

In addition, we assign to each node i a positive
and extensive weight wi representing the size or im-
portance of the node (sizes, surfaces, volumes, masses
etc.) [11]. We define the total weight W =

∑
i∈V wi as

the node-weighted counterpart of the number of nodes N .
A framework has been introduced that allows for the
definition of node splitting invariant (n.s.i.) network
measures which takes into account the weight of the nodes.

For transferring standard network measures to their n.s.i
counterparts we follow a four step construction mechanism
as described in [11]: a) sum up weights wi whenever the
original measure counts nodes or strengths, b) treat ev-
ery node i ∈ V as if it were connected with itself, c) allow
equality for i and j wherever the original measure involves
a sum over distinct nodes i and j and d) “plug in” n.s.i.
versions of measures wherever they are used in the defi-
nition of other measures. Step b) is needed because the
twin nodes that result from a splitting of one given node
are linked due to their similarity. As a result, the node re-
sulting from the merging of the twin nodes is connected to
itself [11]. To achieve this step, we connect each node to it-
self using the extended adjacency matrix A+ = {a+

ij}i,j∈V

with a+
ij = aij and a+

ii = 1. An equivalent extended edge
weight matrix is not needed as it is common to assign a
weight to the self-loops already which can be equal to zero
if the node is not connected to itself.

Definition of measures. – In this section we will
present some of the common local network measures f(G),
in particular the degree and clustering coefficient for net-
works with directed and/or weighted edges, and their n.s.i
counterparts f∗(G). Other global or local measures (e.g.,
the betweenness centrality) can also be corrected using
the n.s.i. framework [11] but will not be developed in this
paper.

Degree and strength. The degree and its n.s.i coun-
terpart called “area-weighted connectivity” in the con-
text of spatially embedded networks has been described
for BUN [5,11]. We generalize to the case of a directed
network (BDN and WDN). For a node i, the in-degree
kin

i =
∑

j �=i aji is the number of edges pointing towards
i and the out-degree kout

i =
∑

j �=i aij is the number of
edges originating from i. As these measures only count
nodes, making them n.s.i. can be achieved by considering
steps a), b) and c) in the construction mechanism. Hence,
kin∗

i =
∑

j∈V wja
+
ji and kout∗

i =
∑

j∈V wja
+
ij . In the case

of an undirected network (BUN and WUN), it is easy to
see that the n.s.i degree is k∗

i = kin∗
i = kout∗

i .
For edge-weighted networks the concept of degree is ex-

tended to the one of strength. In a WDN, the in-strength
sin

i =
∑

j �=i mji measures the total strength of edges point-
ing towards i and the out-strength sout

i =
∑

j �=i mij mea-
sures the total strength of edges originating from i. Using
steps a), b) and c), the n.s.i. versions of these measures
are sin∗

i =
∑

j∈V wjmji and sout∗
i =

∑
j∈V wjmij . If the

network is not directed (WUN), we have s∗i = sin∗
i = sout∗

i .
While the standard version of the in- and out-degree and

the in- and out-strength can take integer values between
0 and N − 1, the n.s.i version of these measures can take
real numbers between 0 and W .

Clustering coefficient and motifs. In simple networks
(BUN), the clustering coefficient measures the tendency
to form clusters or triangles formed by three connected
nodes. It is defined as the ratio between the number of

58005-p2



Node-weighted measures for directed and edge-weighted networks

Table 1: Network motifs taxonomy (“Mid.” stands for Middleman), patterns and the associated quantities used in the calculation
of the directed clustering coefficients. On the left side, quantities that are used in the standard version: ti is the number of
triangles formed by i, t̃i is the edge-weighted counterpart of ti and Ti is the maximum number of such triangles that i can
form [14]. On the right side, the n.s.i versions of these quantities are given.

Tax. Patterns ti t̃i Ti t∗i t̃∗i T ∗
i

Cycle (A)3ii (M̂)3ii kin
i kout

i − kbil
i (A′)3ii (M̂ ′)3ii k∗in

i k∗out
i

Mid. (AAT A)ii (M̂M̂T M̂)ii kin
i kout

i − kbil
i (A′AT ′

A′)ii (M̂ ′M̂T ′
M̂ ′)ii k∗in

i k∗out
i

In (AT A2)ii (M̂T M̂2)ii kin
i (kin

i − 1) (AT ′
(A′)2)ii (M̂T ′

(M̂ ′)2)ii (k∗in
i )2

Out (A2AT )ii (M̂2M̂T )ii kout
i (kout

i − 1) ((A′)2AT ′
)ii ((M̂ ′)2M̂T ′

)ii (k∗out
i )2

triangles which involve the node i and the total number
of triangles that i could have formed [14]:

Ci =

∑
j �=i

∑
h�=(i,j) aijaihajh

ki(ki − 1)
=

(A3)ii

ki(ki − 1)
. (1)

The n.s.i version of this measure obtained by using all
four steps has already been suggested for BUN [11]:

C∗
i =

∑
j∈V

∑
h∈V wjwha+

ija
+
iha+

jh

(k∗
i )2

=
((A′)3)ii

wi(k∗
i )2

, (2)

with A′ = {a+
ijwj}.

In the case of a WUN, one has to take into account the
edge weights involved in the triangles. There are several
ways to define the contribution of the triangle depending
on the application of the network analysis. Here, in agree-
ment with [14], we decide to take the geometric mean of
the weights of the three involved edges. The clustering
coefficient for edge-weighted networks is then

C̃i =

∑
j �=i

∑
h�=(i,j) m

1/3
ij m

1/3
ih m

1/3
jh

ki(ki − 1)
=

(M̂3)ii

ki(ki − 1)
, (3)

with M̂ = M [1/3] = {m1/3
ij }.

The n.s.i version of this measures then reads as

C̃∗
i =

∑
j∈V

∑
h∈V wjwhm

1/3
ij m

1/3
ih m

1/3
jh

(k∗
i )2

=
((M̂ ′)3)ii

wi(k∗
i )2

,

(4)
with M̂ ′ = {(mij)1/3wj}.

In directed networks, the notion of cluster or triangle
is replaced by the notion of network motifs [17]. Four
types of network motifs have been emphasized depending
on the direction of the edges involved in the triangle [14]
(see table 1 for illustration). In the case of a BDN, the
clustering coefficient of nodes i associated to a motif is
defined as Ci = ti/Ti, the fraction between the number
of triangles ti that belong to the particular motif actually

formed by i and the total number of triangles Ti of that
motif that i could have formed [14]. The numerator ti
can be calculated by simple operations on the adjacency
matrix A and the denominator Ti can be calculated by
using the in-degree, out-degree and the bilateral degree
(kbil

i =
∑

j �=i ajiaij is the number of bilateral edges be-
tween i and its neighbors) (see table 1). This measure has
been generalized for the case of WDN by taking into ac-
count the edge-weighted contribution of the triangles [14]
and becomes C̃i = t̃i/Ti, where t̃ is the edge-weighted
counterpart of t and can be calculated by substituting the
matrix A with the matrix M̂ = M [1/3] = {m1/3

ij }.
The n.s.i version of these measures becomes

C∗
i =

t∗i
wiT ∗

i

, (5a)

C̃∗
i =

t̃∗i
wiT ∗

i

, (5b)

where t∗i is calculated by substituting A with A′ = {a+
ijwj}

and AT with AT ′
= {a+

jiwj}, t̃∗ by substituting M̂ with
M̂ ′ = {(mij)1/3wj} and M̂T with M̂T ′

= {(mji)1/3wj}
and T ∗ is obtained by substituting the in- and out-degree
with their n.s.i counterparts as described above. The bi-
lateral degree is no longer needed in the n.s.i version of
the measure. In fact, it was subtracted in the denomina-
tor of the clustering coefficient for the motifs Cycle and
Middleman in order to exclude the false triangles formed
by a node and a pair of directed edges pointing to and
originating from the same node [14]. In the n.s.i version
of the clustering coefficient, a node connected to itself and
bilaterally connected with another one forms a triangle
and is accounted for in the clustering coefficient. All stan-
dard and n.s.i versions of the clustering coefficient can take
values between 0 and 1.

Application 1: benchmark network. – In order
to investigate the impact of the n.s.i correction on the
network measures, we first construct an ensemble of 100
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Fig. 1: (Colour on-line) Zonal averages (symbols) and stan-
dard deviations (error-bars) of the standard and n.s.i. versions
of (A) the normalized strength and (B) the edge-weighted clus-
tering coefficient applied to the benchmark edge-weighted and
undirected network (WUN) model.

realizations of an undirected and edge-weighted (WUN)
benchmark network model. Nodes represent grid cells
which cover the global Earth surface (excluding the poles)
with a spatial resolution of Δ = 5◦ in longitude and lat-
itude resulting in a total number of N = 2592. This is
a typical representative of grids found in many datasets
used in climate and environmental sciences. The proba-
bility pij that node i and node j are linked is a function of
the geodesic distance between them1. We assign to each
edge a weight which is equal to the probability (mij = pij).
This relationship between the distance and the weights of
the edges has been used in other benchmark networks [11]
and is consistent with a previous study on the length scales
of moisture feedback [16]. In this model which is perfectly
homogeneous and isotropic, we expect the same network
properties for all latitudes. To account for the irregular
sampling, we assign to each node i ∈ V a weight which
represents the size of the portion of the Earth’s surface
it covers: wi = cos(latitudei) [5]. In addition, we con-
struct another ensemble of this benchmark network model
in which we pick randomly nλ = cos(latitudeλ) · N nodes
for each latitude λ (1654 nodes in total) such that the
globe is covered approximately homogeneously as achieved
in a previous study [18,19].

Figure 1 shows the zonal average of the standard and
the n.s.i. version of strength and edge-weighted clustering

1pij = exp(−gij/λ) with λ representing the typical length scale
and gij the geodesic distance between i and j. In this case we chose
λ = 1110 km to ensure an edge density of about 0.02.

Fig. 2: (Colour on-line) (A) Normalized n.s.i. in-strength
(sin∗/W ), (B) relative decrease of this measure compared to
the standard version ((sinW − sin∗N)/sinW ).

Fig. 3: (Colour on-line) (A) Normalized n.s.i. out-strength
(sout∗/W ) and (B) relative decrease of this measure compared
to the standard version ((soutW − sout∗N)/soutW ).

coefficient applied to these benchmark networks averaged
over all ensembles. The standard deviations of the clus-
tering coefficient are larger than those of the strength due
to finite size effect (i.e., there are more neighbors than
triangles). The standard strength and edge-weighted clus-
tering coefficient C̃ increase towards the poles. Regarding
the strength, it is due to 1) a higher number of neighbors
in this area and 2) higher weights of the edges connecting
nodes at the poles. Regarding C̃, it is explained by 1) an
increase in the probability that two neighbors of a node
are also neighbors and 2) an increase in the weights of the
edges involved in the triangles. This effect disappears after
taking into account the surface covered by grid cells in dif-
ferent latitudes using the n.s.i. correction, as well as after
sampling the nodes homogeneously on the globe. We note
that for both measures, the first effect has been observed
in the binary versions of the measures (degree and clus-
tering coefficient) in a previous study [11]. However, the
second factor is specific to edge-weighted networks as it is
due to increasing weights of the edges due to a decreasing
geodesic distance between nodes with increasing latitude.
Thus, edge-weighted network measures experience system-
atic biases at latitudes higher than about 50◦ N or lower
than 50◦ S due to increased node density which can be cor-
rected using the n.s.i. versions of the measures. Sampling
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Fig. 4: (Colour on-line) n.s.i. edge-weighted and direct clustering coefficients C̃∗ associated with the different network motifs.

networks homogeneously would also enable to fix these bi-
ases, but generally introduces an additional uncertainty.
The n.s.i. correction has the advantage of directly avoid-
ing such undesired operations.

Application 2: moisture recycling network. –
Next, we consider the output of the water accounting

model-2 layers (WAM-2layers) [20] as a directed and edge-
weighted complex network with self-interactions (WDN).
WAM-2layers is forced by satellite data of hydrological
cycle components and wind speed and diagnose the spa-
tial distribution of atmospheric moisture from a certain
location. The nodes in the network represent grid cells
and the edges the direction and amount of water traveling
from its source (evapotranspiration) to its final destina-
tion (precipitation). Grid cells are regularly distributed
over the South American continent with a spatial resolu-
tion of 1.5 degree longitude and latitude, which leads to
a total number of N = 681 nodes. The weight mij of
an edge pointing from node i to node j is the amount of
moisture recycled from i to j (i.e., evapotranspiration in
i which precipitates in j) and mii is the amount of lo-
cally recycled moisture. All the weights are normalized by
the maximum amount of moisture recycled in the network
such that 0 < mij < 1 ∀i, j = 1, . . . , N . We note that
the weights of the edges follow a similar relationship to
the geodesic distances between nodes as modeled in the
benchmark network. Again, to account for the irregular
sampling, we assign to each node i a weight as in the
benchmark network: wi = cos(latitudei).

The in- and out-strength have been rescaled to quan-
tify, respectively, the fraction of precipitation that has
been last evaporated from continental grid cells (fig. 2(A))
and the fraction of the evapotranspiration which precip-
itates in continental grid cells (fig. 3(A)). These mea-
sures highlight sources and sinks of continental moisture
and are in agreement with a previous study on conti-
nental moisture recycling on the global scale [21]. Due
to the increasing node density towards the South pole,
there is an overestimation of up to 30% of these quantities
(figs. 2(B) and 3(B)) in the southern part of South Amer-
ica which is corrected by the n.s.i. versions of these mea-
sures. Note that for out-strength the bias due to increasing

Fig. 5: (Colour on-line) Relative decrease in the edge-weighted
clustering coefficient after n.s.i. correction (C̃ − C̃∗)/C̃ as ob-
served in (A) a map for the motif Middleman and (B) zonal
averages for all motifs.

node density towards the south pole extends significantly
further northwards than for in-strength.

The n.s.i. edge-weighted clustering coefficient (C̃∗)
associated to the different motifs enables us a direct in-
terpretation in terms of moisture flux. i) C̃∗ associated
with the motif “in” and “out” show regions which have the
tendency to integrate and distribute moisture (figs. 4(A)
and (B)). ii) C̃∗ associated with the motif “Middleman”
highlights intermediary regions involved in alternative
pathways to the direct transport of moisture (fig. 4(C)).
iii) If C̃∗ is associated with the motif “Cycle”, high val-
ues indicate regions where moisture transport forms a
closed loop, i.e., where evapotranspiration returns as pre-
cipitation in the same grid cell after one precipitation-
evaporation event (fig. 4(D)). Considered together, these
results highlight the architecture of moisture recycling in
South America. The eastern side of the Amazon basin
is a source of moisture for the south-western part of the
basin and the subtropical South America and moisture
precipitates and evaporates on the way in the central-
western part of the Amazon basin. However, the standard
versions of the measure are overestimated in the southern
part of South America where the node density increases.
The n.s.i. versions are slightly decreasing compared to the
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standard versions of the measures when approaching the
Pole, indicating that the n.s.i. correction allows to get
rid of this overestimation (fig. 5). We note that the use
of the n.s.i. version has shifted the scale of the clustering
coefficient.

In South America, the n.s.i. corrections do not lead to
strong qualitative changes in the results of the presented
measures because the southern part is dry and therefore
there is little moisture transport south of 35◦ S. However
on a global scale, moisture is transported from and into re-
gions located close to the North pole [21]. Therefore, the
use of n.s.i. versions of network measures provides sig-
nificant qualitative and quantitative improvement of the
representation of moisture recycling.

Conclusion. – In this work, we have developed new
versions of some measures for directed and/or edge-
weighted networks in order to take into account the
weights of nodes. These measures respect the well-
established criterion of node-splitting invariance (n.s.i.),
which means that they are invariant with respect to local
splitting or aggregation of nodes. These measures include
the usual edge-weighted and/or directed degree but also
clustering coefficient associated to different network mo-
tifs. In a first part we have given the standard and the
n.s.i. versions of these measures and in a second part we
have applied them to two different spatially embedded net-
works: 1) a benchmark network model which is undirected
and edge-weighted on a global scale and 2) a real-world di-
rected and edge-weighted moisture recycling network con-
structed using an atmospheric water tracking model over
South America. In both networks we have assigned to
each node a weight representing the surface area repre-
sented by it. We have shown that the use of our measures
avoids systematic biases created by a higher node density
and larger weights of the edges towards the poles. In the
moisture recycling network there is little moisture trans-
port from and to the southern part of South America. We
argue that on global scale it should lead to a more accu-
rate estimation of the contribution of export and import
of continental moisture and to a better identification of
key regions for the indirect transport of moisture. These
improvements are possible because the heterogeneity of
the size or the importance of nodes can be taken into ac-
count in the network analysis, which is not the case in
most complex network studies. Therefore, we expect that
the proposed measures might lead to important improve-
ments in the analysis of many real-world complex systems
such as chemical, neuronal, social, trade, climate, traffic
or ecological networks.
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