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Abstract—Control gains play an important role in the control
of a natural or a technical system since they reflect how much
resource is required to optimize a certain control objective. This
paper is concerned with the controllability of neuronal networks
with constraints on the average value of the control gains injected
in driver nodes, which are in accordance with engineering and
biological backgrounds. In order to deal with the constraints on
control gains, the controllability problem is transformed into a
constrained optimization problem (COP). The introduction of the
constraints on the control gains unavoidably leads to substantial
difficulty in finding feasible as well as refining solutions. As such,
a modified dynamic hybrid framework (MDyHF) is developed
to solve this COP, based on an adaptive differential evolution
and the concept of Pareto dominance. By comparing with
statistical methods and several recently reported constrained
optimization evolutionary algorithms (COEAs), we show that our
proposed MDyHF is competitive and promising in studying the
controllability of neuronal networks. Based on the MDyHF, we
proceed to show the controlling regions under different levels of
constraints. It is revealed that we should allocate the control gains
economically when strong constraints are considered. In addition,
it is found that as the constraints become more restrictive, the
driver nodes are more likely to be selected from the nodes with
a large degree. The results and methods presented in this paper
will provide useful insights into developing new techniques to
control a realistic complex network efficiently.
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I. INTRODUCTION

HE PAST one decade has witnessed a tremendous up-
T surge in the research interest toward theoretical modeling,
analysis, and application of complex networks from a variety
of research communities [1]. The main reason lies in the fact
that complex networks can describe many practical systems
such as genetic networks, social networks, sensor networks,
neuronal networks, electronic networks, or transportation net-
works. Among them, the modeling of neuronal networks of
a brain can be viewed as a typical application of complex
networks [2], [3]. In [4]-[6], the theoretical modeling, the
tackling learning of neuronal networks, and the applications
of neuronal networks to image processing have been investi-
gated, respectively. Modern brain-mapping approaches, such
as diffusion magnetic resonance imaging (MRI), functional
MRI, electroencephalography, and magnetoencephalography,
have constantly produced large datasets of anatomical and
functional connection patterns. Complex network theory has
been used to describe important properties of large connection
datasets by quantifying structures of their respective network
representations. It has been widely recognized that network
characterization of structural and functional connectivity data
of brain has attracted increasing attention due to its reliability
and effectiveness [2]. Recently, the existence has been revealed
with respect to the communities, hierarchy, centrality, and
distribution of cortical hubs in anatomical connectivity of the
mammalian brain [3], [7]-[10].

Complex networks, especially neuronal networks, have been
investigated in the context of dynamical systems and have
already become an interdisciplinary research area for math-
ematicians, computer scientists, and biologists to interpret
functional information and explore network robustness and
vulnerability, which are likely to become increasingly relevant
in relation to neuroscience, physics, and engineering. Recently,
as an emerging phenomenon of neuroscience and multiagent
systems, synchronization has gained particular research at-
tention for complex networks (neuronal networks) in various
fields [11]-[15]. Synchronization of distributed brain activity
has been revealed to serve a central role in high-level neural in-
formation processing [16]. Experimentally observed evidence
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has asserted that certain brain disorders, such as schizophrenia,
epilepsy, autism, Alzheimer’s disease, and Parkinson’s disease,
are highly relevant to abnormal neural synchronization [17]. In
[7] and [18], synchronization in the cortical brain network of
the cat is investigated by modeling each node (cortical area)
with a subnetwork of interacting excitable neurons. In [15],
the distributed synchronization problem is investigated for
networks of agent systems with nonlinearities and controller
failure subject to Bernoulli switchings and conditions that are
given in terms of a semidefinite programming problem.

On another research frontier, controllability of complex
networks has received considerable attention in the past 10
years. Controllability of complex networks can be referred to
a set of nodes that are regarded as driver nodes/references
and are used to control the dynamics of entire networks to a
desired state, which is required for an engineering, medical,
or biological purpose [19]-[24]. In particular, as illustrated in
[24], the importance of investigating controllability of neuronal
networks will not only help us to elucidate how to control an
intricate system efficiently but also be beneficial to understand
the processing of high-level information in brains [7] and
dynamical properties of neuronal networks [10]. Recently, a
variety of works have been proposed to realize pinning control
or detection of controlling regions in complex networks. In
addition to the mathematical methods for studying the con-
trollability of complex networks, some efforts on choosing key
nodes by utilizing evolutionary methods have been made [13],
[22]-[24]. The problem of pinning control of complex net-
works has been converted into an unconstrained problem [11],
a multiobjective problem [23], and a constrained problem [24],
respectively. In particular, two measures of controllability of
neuronal networks have been incorporated into one unified
framework [24], where the more important measure is regarded
as an objective and the other one is viewed as a constraint.

It should be noted that, up to now, almost all research efforts
on controllability (pinning control) of complex networks have
been devoted to the case of choosing effective nodes to control
the entire network. However, in reality, constraints on control
gains should be taken into account. The importance of such
considerations resides in twofold. 1) The first one is from the
constraint on implementation of engineering equipment and
biological background. Saturation in actuator exists widely
in practical control systems since a physical actuator can
only generate bounded signals, and the control of plants with
actuator saturations is also challenging [25]. 2) The second
one is that only a suitable control input could result in
an ideal control performance. For example, in therapy, the
patient’s recovery is closely related to the dosage of antibiotics,
where the input of dosage can be viewed as control gains.
The excessive injection of dosage of drugs will result in the
creation of multidrug-resistant bacteria and finally no efficient
antibiotics are available in some severe cases [26], [27].
Misuse of antibiotics can also destroy the beneficial bacteria
and can cause immune system disorders in the human body.
On the other hand, a small injection of dosage will not be
conducive to patients’ recovery and will prolong the recovery
time of patients. Therefore, a dosage should be injected at an
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appropriate level that would work on the infected cells and
would not upset the normal mechanism.

For the sake of simplicity, in [21] and [24], the controlla-
bility of complex networks and neuronal networks has been
investigated, respectively, where the intrinsic constraint on
the control gains on the dynamics of networks has been
overlooked and only the boundary of the control gains is
discussed. Despite the fact that many phenomena in nature
are closely related to the constraints on control gains on
controllability of complex networks, the gain constraint issue
has, unfortunately, been largely neglected in the area primarily
due to the complexity in optimizing and tackling the existence
of gain constraints. It is, therefore, the main purpose of this
paper to investigate how much the controllability of weighted
and directed neuronal networks is affected in the presence of
the constraints on control gains, which aims to improve our
recent work [24] and does not consider the importance of gain
constraints.

In this paper, we aim to make the first attempt to address the
controllability of neuronal networks with several constraints on
control gains. Such a controllability issue is later converted
into a constrained optimization problem (COP). Due to the
nature of combinatorial optimization problems in selecting
controlling nodes, constrained optimization evolutionary al-
gorithms (COEAs) [28]-[30] are promising candidates to
solve this COP. COEAs are composed of two major parts:
a search technique and a constraint-handling scheme. Their
performance rests largely on these two components. The
constraint-handling scheme can be categorized into several
classes [29]. In addition, it is important to develop an effective
search algorithm to refine solutions that can find global optimal
solutions for COPs. Recently, multiobjective optimization-
based constraint-handling schemes are used to tackle COPs,
together with differential evolution (DE) due to its prospect
and potential [31], [32]. Nonetheless, the search performance
of these methods can still be further improved by introducing
adaptive mechanisms in DEs.

In this paper, the controllability of neuronal networks
with constraints on control gains is investigated. By adding
an adaptive differential evolution (JaDE) [33] into a search
scheme of a dynamic hybrid framework (DyHF), a modified
dynamic hybrid framework (MDyHF) is proposed here to
study controllability of neuronal networks. Compared with
[24], the main contributions of this paper are threefold:
1) the average value of the control gains is considered as a
constraint and the controllability of neuronal networks with
the constraints on the control gains is then transformed into
a COP; 2) based on an adaptive DE and Pareto dominance,
a MDyHF is proposed to show its competitive performance
by several experiments; and 3) the controlling regions of the
neuronal network are identified by the proposed MDyHF and
the relationship between controllability and control gains is
presented, which will interpret the mechanism of controlling
natural systems.

The organization of this paper is arranged as follows.
Section II presents some preliminaries and problem formu-
lation briefly. The MDyHF is presented in Section III. In
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Section IV, comparisons and results are provided. Conclusions
are given in Section V.

II. PROBLEM FORMULATION

In this section, some notations, preliminaries, and problem
formulation are provided.

A. Notations

Throughout this paper, let a graph be G = [V, £], where
YV ={1,---,N} denotes the vertex set and £ = {e(i, j)} stands
for the edge set. The graph G is directed, weighted, and simple
(without self-loops and multiple edges). Let G = [g,-j]f\h’j=1 be
the adjacency matrix of neuronal network of cat’s brain G,
which is defined as follows: for any pair i # j, g; < 0 if
e(i,j) € &; otherwise, g; = 0. [ € [1,N] is the number
of driver nodes of a network. ¢p(-) represents the charac-
teristic function of the set P, that is, ¢p(i) = 1 if i € P;
otherwise, ¢p(i) = 0. Here, P denotes the set of nodes
injected with controllers. g;; = — Zj]\iu#i gj(i=1,2,---,N).
The adjacency matrix G can be converted into the Laplacian
matrix L by neglecting the weights over the network. For
any pair i # j,ly = —1 if e(i,j) € &; otherwise, [; = 0.
li=—Y " il (=12, | N).

B. Controllability of the Neuronal Network

Hereafter, a desired state can be described as follows:
ds(t) F
yral (s(1)).

This differential equation is widely used to represent exten-
sive real-world natural and technological systems.

In order to control the states of the neuronal network to the
reference evolution s(t), the dynamics of the neuronal network
with output feedback controllers can be written as

dxi(1)
dt

N
= F(xi, 1) — C ) gyH(x(1)
Jj=1
—Cpp (D)ci(H(s(1)) — H(xi(1))
i=1,---,N €))

where xi(t) = [xy(t), xp(t), -, xu@®]” € R (i =
1,2---,N) is the state vector of the ith node/brain re-
gion/cortical area, F(x;,t) = [Fi(xi, 1), -+, Fq(x;,)]" is a
continuous vector function, and H(x;(¢)) is the coupling con-
tinuous function. C is the global coupling gain of the neuronal
network. Let p, = p' +ju(G = /=D.,(p = 1,2,--- . N),
be the set of eigenvalues of G that are sorted in such a
way that ) < p) < -+ < uy. k;,i € P is the control
gain injected in driver nodes, where P denotes the set of
nodes injected with controllers, that is, P contains the set of
driver nodes. Apparently, 1 < ZZI ¢p (i) < N. The objective
of controllability is to regulate the states of the neuronal
network (1) toward the desired reference state s(t), that is,
xi(1) = x2(0) = - - - = xn(t) = 5(1).

For a demonstration purpose, we use cortical network as
an example. Here, G = [gij]%zl is the adjacency matrix of
neuronal network of cat’s brain, where nodes usually represent
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Fig. 1. Gain allocation of networks. Red rectangle and red line mean that
the node is selected and gains should be allocated in P; dark rectangle and
blue line mean that the node is not selected and gains will not be allocated.

brain regions with coherent patterns of extrinsic anatomical
or functional connections, while links stand for anatomical,
functional, or effective connections [34], [35] and are differ-
entiated on the basis of their weight and directionality. Here,
the version of a dataset presented in [35] and [36] is used.
The construction of connection matrix and its analysis was
provided in [35], which is extracted from several subtle steps
including cortical parcellation, thalamic parcellation, collation
of connection data, and translation from database to connec-
tion matrix. For further details regarding the construction of
connection matrix, please refer to [35] and references therein.

Following the way in [21], the extended network of N + 1
dynamical systems z; is considered, where z; = x; for i =
1,2,...,N and zy4 = s(¢). Hence, (1) is

dz»([) N+1
ajt =F(zi.1) = C Y WyH((t)
j=1
i=1,--- ,N+1 )

where H = [W;] € RV*D*™V+D in the form of

Di g2 ... giv —¢p(ky
g1 Dy ... gon —dpp(Q)ks

H=| ¢ . @ : €)
gnt &n2 --- Dy —pp(N)kn

0 0 ... 0 0

in which D; = g;; + ¢p(ik;. Let A, = A}, +jA}} be the pth
eigenvalue of H and suppose that A, is sorted as A} < A} <
- < Ajyyp» Where 2] =0.
The controllability can be measured in terms of
)\‘r
2

and

§ = max{A"}.
ax (1)

In order to enhance controllability of neuronal networks, we
should minimize R and § as much as possible [21], [37].
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C. Incorporation of the Constraints on the Control Gains in
Controllability of Neuronal Networks

As stated in [25] and [38], the generation of signals is
saturated in realistic networked control systems and artificial
neural networks. Usually, in neural networks, the original
network utilizes multiple layers of weight-sum units of the
type A = h(w’x + b), where h(.) is a sigmoid function
or logistic function to be bounded [38]. Also, in biological
meaning [26], [27], although antibiotics are required to treat
severe bacterial infections, misuse will give rise to bacterial
resistance, and thereby inhibiting the treatment. Inadequate
antibiotics will prolong the recovery of the patients. Therefore,
the consideration of constraints on control gains is very
important from the view of engineering and biology, as seen
from Fig. 1. The control systems under saturation have been
investigated in model predictive control [39] and networked
control systems [25], [40], [41]. It should be noted that,
in all the references mentioned earlier, control gains under
consideration are assumed to be bounded, which would largely
neglect the typical restrictions in applications. In this paper,
we investigate the controllability with the constraints on the
control gains in detail. Not only the case of control gains being
bounded is studied but also the average of the control gains
under a constraint is investigated.

In this paper, K is used to denote the average of the control
gains, which is formulated as follows:

K = mean(x;), (i € P) “4)

where mean(.) is the mean value operator. We convert the
problem of controllability of a neuronal network into a COP,
where R is the objective to be minimized and both § and K
are the constraints.

Remark 1: In previous works, the value of § was usually
ignored in measuring synchronizability and controllability of
networks [42], since § is small compared with R in most of
coupling graphs. However, § cannot be overlooked in some
special cases, such as normalized Laplacian matrix or the
number of driver nodes / is large, where the value of § is
comparable to that of R. Hence, the assumption of neglecting §
will inevitably cause conservativeness and cannot reflect actual
controllability of networks. In [24], we combine these two
measures into a unified framework to investigate controllability
of networks, in which R is viewed as an objective and §
is regarded as a constraint. Although [24] presents a unified
framework to include R and §, it is worth mentioning that
the role of the control gain k; has not been addressed despite
its great importance in therapy, system biology, engineering,
and nonlinear science, as mentioned in Sections I and II-C.
Therefore, compared with [24], one main purpose of this
paper is to investigate effects of the average of the control
gains C on controllability. In addition, we also compare the
newly proposed method with the improved dynamic hybrid
framework (IDyHF) in [24] to show the advantage of the
proposed method.

Remark 2: The problem of resource allocation widely ex-
ists in medicine and engineering. For example, in [43], the
authors investigate the resource allocation in sensor networks,
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that is, how to allocate limited energy, radio bandwidth,
and other resources to optimize the value of each node’s
contribution to the entire network. In [44], scarcity of re-
sources, such as drugs, equipment, or time, make it difficult
to supply the full measure of service and devotion. When
circumstances of scarcity occur, it is necessary to face up to
the tradeoffs in a fair and compassionate manner. In this paper,
controllability of neuronal networks is investigated by taking
both the boundary and entire costs of the control gains into
account simultaneously.

D. Problem Transformation Into a COP

In the following, some preliminaries of the COP are given.
The COP is formulated as follows: find the decision variables
y =1, ,yp) € RP to minimize the objective function

iy, yeQcS

where Q is the feasible region and S is the decision space
defined by the parametric constraints ¥; < y; < Z,i =
1,2,---,D. The decision variables y should satisfy s con-
straints including u inequality constraints

min

qi(») =0,j=1,2,---,u
and ¢ = § — u equality constraints
hi(y)=0,j=u+1,2,---,5.

The degree of constraint violation of a vector y on the jth
constraint is defined as

_ Jmax{0,¢;(»}, 1<j=<u
M) = {maX{O, Ifjlj(y)l}, u+l <j<s. ®)
Then
W) =) M) ©)

J=1
reflects the degree of constraint violation of the vector y.

In the following, we consider R as an objective and § as a

constraint. This formulation is based on three aspects.

1) Generality: R exists in both directed and undirected
networks while § is only observed in directed networks.
Hence, our formulation can also easily be extended to
undirected networks by removing the constraint on §.

2) Importance: R plays a more important role than § in
most real-world networks [21], since R is larger than §
in most cases.

3) Suppressibility: As mentioned in [11], it is easy to
control § to O while it is hard to suppress R to a very
small value.

Furthermore, we can also treat § as an objective and R as a
constraint by the MDyHF, which will not influence the results
of this paper.

We consider the following two cases in this paper.

1) The first case is formulated as follows:

,
)‘N+1

A
subject to: g1(y) <0
subject to: g»(y) <0 (7

minR =
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where ¢1(y) =8 — o, q2(y) = K — B, @ € [0, +00), and
B € [0, +00). If o = 400, the problem considered here
only focuses on the constraint on I and minimizes R.
If o # +00, the problem considered here focuses on the
constraint on XC and § simultaneously and minimizes the
objective R.

2) The second case can be written as follows:

)\‘r
minR = L
Ay
subject to: A;(y) =0
subject to: g;(y) <0 (8)

where h1(y)=8—a, «=0 and ¢;(y)=/—p. The second
case is to minimize R as well as make the inequality and
equality constraints feasible. As mentioned in [21] and
[37], the controllability of a directed network depends
on both R and §. In order to enhance controllability,
both R and § should be minimized as much as possible.
Therefore, the constraint § = o = 0 means that the
controllability of networks purely relies on R. In this
case, one can show the impact of the average of the
control gains /C on controllability more clearly.

Remark 3: Actually, there are two types of constraints on
control gains considered here. The first one is to consider
control gains to be bounded like actuator saturations [25], that
is, ki(i € P) € [Kimin> Kimax]. In addition to the boundary
of the control gains, the constraint on entire costs is also
included and the total costs injected in networks have to be
allocated in an appropriate way to maximize the controllability
of networks.

Remark 4: Note that the problem of choosing key nodes
to control the dynamics of the entire network is a natural
combinatorial problem and the design of control gains is a
continuous optimization problem [11], [24], which can be
solved by evolutionary algorithms. Different from the works
in [11] and [24], limited costs will affect the selection of key
nodes, which will increase the difficulty and the complexity
of the problem, as its importance stated in Remark 2. To the
best of the authors’ knowledge, this is the first attempt to
use COEAs to study controllability/pinning control of complex
networks/neuronal networks with the constraint on the average
of the control gains.

Remark 5: It is worth mentioning that the problem here
can also be treated as a multiobjective optimization problem
(MOP) [23], which can be solved by a multiobjective op-
timization evolutionary algorithm (MOEA). The reasons for
considering the problem here as a COP are twofold. 1) The
research problem in (7) and (8) has an objective R and two
constraints § and the average of the control gains /C. If we
treat the problem here as a MOP, the problem will have three
objectives, that is, R, §, and /C, which would lead to an unclear
visualization in objective space and the impact of C on con-
trollability is not easy to show. By considering the problem as
a COP, one can fix § and then show the impact of the average
of the control gains C on controllability in a clear way (please
refer to the details in Figs. 3 and 4 and Table II), which is one
main purpose of this paper. 2) Actually, in most cases, § is
less important than R, especially when [ is small, as shown in
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Fig. 2. In addition, as shown in [11], § is easy to be stabilized
to 0, while it is difficult to control R to a small value. There-
fore, the formulation as a COP allows us to pay more attention
to minimization of R as well as illustrating the effect of /C.

III. MDYHF AND ITS ENCODING SCHEME
A. Dynamic Hybrid Framework

COEAs usually include a search algorithm for refining
solutions and a constraint-handling technique to make
solutions feasible. In [31], a DyHF was proposed, which
includes global and local search schemes. The global search
model is used to refine the solutions, while the local search
model is to motivate the population to approach or enter the
feasible region from different directions promptly. In order to
fit the search environments adaptively, the global and the local
search methods are switched according to the probabilities of
proportion of feasible solutions in the population. In addition,
traditional DE works as a search algorithm in global and
local search schemes.

Different from other kinds of COEAs, the DyHF is inspired
by multiobjective optimization [31] and therefore the COP is
IE)ndled on the basis of a biobjective optimization problem
F(y) = (f(y), ¥(y)). All the constraints are included in the
degree of constraint violation W(y) in (6), which is regarded
as an additional objective. For example, the constraints on K
and o are included into W(y) together. This way, the original
objective function f(y) and the degree of constraint violation
W(y) can be considered simultaneously when comparing the
solutions of individuals in the population. This approach
can well balance the original objective and the degree of
constraint violation W(y), which can make the algorithms
find feasible solutions easily and maintain a satisfactory
convergence speed. The performance of DyHF has been
verified on 22 benchmark test functions and it is shown
that DyHF has the capability to solve all the test functions
successfully [31]. For more details regarding the usage of
biobjective optimization for dealing with COPs by the DyHF,
one can refer to [31] and [24] and references therein.

Although DyHF is an effective attempt to solve a COP,
the search engine in DyHF is not adaptive to fit complicated
search circumstances. In particular, the main purpose of a
global search scheme in DyHF is exploited to detect more
promising regions, where a simple mutation and a crossover
scheme from the conventional DE is utilized. Unfortunately,
the traditional DE suffers from a slow convergence speed,
lack of ability to find the global optimum, and cannot tune
itself to confront with complex optimization problems. Mo-
tivated by these points, we preserve the constraint-handling
approach of the DyHF due to its efficiency from Pareto
dominance and aim to improve the part of the global search
algorithm by an adaptive DE. Note that the efficiency of
JaDE was demonstrated in [33] and here JaDE is utilized
to generate offspring to enhance the search ability of the
global search scheme and exploit more promising areas, which
can efficiently adjust the control parameters in DE and thus
make DE adapt to various search situations. In the following,
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the numerical experiments will validate its performance on
different dimensional controllability problem.

B. Modified Dynamic Hybrid Framework

1) Adaptive Differential Evolution: JaDE initializes a
population of SP individuals/particles in a D-dimensional
search space, which can be used to deal with our optimization
problem. Each individual can be viewed as a chromosome,
representing a potential solution. After initialization, mutation,
crossover, and selection operators are carried out at each
generation to guide its population toward the global opti-
mum. The population with its individuals can be written as
P = (Y Y2 oos Yin)h i = 1,2,..,8P,n = 0, 1,2, ..., nimax,
and yin = (s Yips o YO).J = 1,2, ..., D, where n is the
generation counter.

JaDE is used to serve as the search engine in the global
search of DyHF. In JaDE, a mutation strategy and an external
archive are used to provide information of the progress di-
rection. The DE/current-to-ebest strategy adopts multiple best
solutions to balance the convergence speed and the diversity of
the population, which is updated according to the following:

Vin = Yint Fi- (y;est,n - yi,n) + Fi (yrl,n - yrz,n)

where yg. ., is randomly selected as one of the top 100e%
individuals of the current swarm with € = 0.05. y; ., ygest’n,
and y,, , are chosen from the current population P. y.,, is
randomly selected from the union P U A, where A is an
archive and is used to store the recently explored inferior
solutions. F; and C; are the scaling factors associated with
the ith individual and crossover probability, respectively. F;
and C; are updated dynamically at each generation according
to a normal distribution and a Cauchy distribution, respectively

F; =randc;(¢r, 0.1)C; = randn;(¢p¢, 0.1)

where ¢~ is the mean value of a normal distribution and ¢¢ is
the mean value of a Cauchy distribution. The two parameters
are initialized to be 0.5 and then adjusted at each generation
according to

pr=(1—-w) ¢r+w- mean,(Sr)
e =(1—w)-@c+w-means(Sc)

where w = 0.1 is a constant. Sz and S¢ stand for the set of
all successful mutation/crossover rates; meany(-) indicates the
usual arithmetic mean and meany(-) the Lehmer mean

ISF|
>
1

i=
mean; (Sr) = S

DT
i=1

2) Details of MDyHF: It is worth mentioning that the
major algorithmic structure of the DyHF, that is, the local
search strategy and the constraint-handling technique, are
retained in the MDyHF, the details can be referred to [31].

Remark 6: Note that DE/current—ebest strategy is adopted
in JaDE, which means that y{. , is randomly selected as
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one of the top 100€% individuals of the current swarm with
€ = 0.05. Different from the single-objective optimization
problem, the 100€% best individuals cannot be measured by
only considering objective values. In this paper, we adopt the
method in [45] and sort the solutions according to dominance,
which is shown in the following way.

A solution i is said to constrained dominate a solution j, if
any of the following conditions is true.

1) Solution i is feasible but solution j is not.

2) Solutions i and j are both infeasible, but solution i has
a smaller overall constraint violation.

3) Solutions i and j are feasible and solution i dominates
solution j.

Based on JaDE and the above dominance mechanisms, the
adaptive global search model is proposed that concentrates
on exploring more promising regions and refining the overall
objective values of the population. Based on multiobjective
optimization, if #; dominates y;, the trial vector u; will replace
the target vector y; according to C;, else no replacement take
places.

By employing the trial vector u; to remove the inferior
target vector y;, the population P is updated through Pareto
dominance. Apparently, our modification of the DyHF is
technically simple and can be easily implemented. Even so, the
following experimental results will illustrate the encouraging
and promising performance of MDyHF. Therefore, MDyHF
follows these steps.

1) Set the generation counter n = 0, f, = 0 and obtain an
initial population P by uniformly and randomly generat-
ing from the search space, calculate the objective value
f and the constraint violation W for each individual i,
and evaluate the number of feasible solutions (NOFS)
in P.

2) Let x = =525 and if rand(0, 1) > x (where rand(0, 1)
is a uniformly distributed random number between 0 and
1), then the global search with JaDE is implemented to
refine feasible solutions, which is equipped with adaptive
mechanism; otherwise, the local search is used to detect
potential areas of feasible solutions.

3) Compute NOFS in P and set n = n + 1. If the stopping
criterion is met, stop and output the best solution in P,
else go to Step 2.

Remark 7: BEvolutionary algorithms with an elitism method
(the best individual survives with probability one) such as
MDyHF can be ensured to find the global optimum with
probability 1 if the number of generations tends to infinity,
by using the concept of nonhomogeneous Markov chains, as
proved in [46]-[48].

C. Encoding Scheme of COEAs

In this section, an appropriate encoding scheme is used and
can be referred to [24]. The encoding scheme consists of two
parts with an equal dimension size /: the first one is an integer
search space to denote the locations of the driver nodes and
the second one is a continuous search space to represent their
corresponding control gains. The encoding scheme follows
[24].
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Fig. 2.

Minimizing R using different schemes, & = 0.2 and B = 10, as a function of /. (a) Comparison of R with different schemes as a function of /.

(b) Comparison of § with different schemes as a function of /. (c) Average of the control gains X using MDyHF.
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Fig. 3.

Degree and closeness information of driver nodes with different schemes as a function of /. (a) Mean values of degree information of driver nodes

with @ =0.2, B = 10 as a function of /. (b) Mean values of closeness information of driver nodes with « = 0.2, 8 = 10 as a function of /. (c) Mean values of
degree of driver nodes under different 8 as a function of /, when « = +00. (d) Mean values of closeness of driver nodes under different B as a function of [,

when o = +00.

TABLE I
SEARCH RESULT COMPARISONS AMONG FOUR ALGORITHMS FOR
DIFFERENT / OF DRIVER NODES IN THE NEURONAL NETWORK WITH
N =53 (THE CALCULATION OF Q IS GIVEN IN (9); ALL THE ALGORITHMS
ARE RUN 20 TIMES, 1 = 12500 AND o =0, 8 = 30; THE BEST RESULTS
AMONG THE FOUR ALGORITHMS ARE SHOWN IN BOLD FONTS

CMODE DyHF IDyHF MDyHF
R v R U R v R T

Mean 36,4711 0 39.0959 0 36.6305 0 35.0913 0

1=6 Best 38.6713 0 31.0939 0 29.3161 0 30.0323 0
Q 42.3922 0 34.8661 0 32.7699 0 324634 0

Mean 27.7295 0 213476 0 18.3069 0 16.7967 0

1=12 Best 24.0568 0 16.0881 0 15.8778 0 15.461 0
Q 25.8279 0 18.5322 0 17.0491 0 16.115 0

Mean 19.9953 0 16.1677 0 12.1994 0 115577 0

=18 Best 17.9219 0 12,5422 0 10.899 0 10.8525 0
Q 18.9302 0 14.2401 0 11.5309 0 11.1995 0

Mean 18.1467 0 12,5788 0 8.5804 0 8.4081 0

1=24 Best 15.4222 0 9.491 0 7.6536 0 7.7428 0
Q 16.7291 0 10.9264 0 8.1038 0 8.0686 0

Mean 14.0262 0 10.9395 0 6.8758 0 6.577 0

1 =30 Best 12.7251 0 73187 0 6.1767 0 6.1259 0
Q 13.3598 0 8.9478 0 6.5168 0 6.3474 0

Mean 12,9602 0 93311 0 5.6825 0 5.5889 0

1 =36 Best 11.0792 0 63573 0 5.0031 0 4.9809 0
Q 11.9828 0 7.702 0 5332 0 5.2761 0

Mean 125129 0 9.7678 0 7613 0 45777 0

=42 Best 8.7404 0 7.4653 0 42419 0 4.1078 0
Q 10.4579 0 8.5393 0 4.4236 0 4.3364 0

Mean T1.0912 0 7.6824 0 3.8948 0 3.8361 0

1 =48 Best 8.8865 0 5.9346 0 3.1945 0 32418 0
Q 9.9278 0 67522 0 35273 0 3.5265 0

Remark 8: As stated in [24], the search range of each
dimension is assumed to be the same and therefore can be
written as Ay = (Z — Y;). In order to identify the driver
nodes from N = 53 as a function of [, there are Cf\, distinct
combinations, which is a natural NP-hard problem and it is

difficult to adopt a Brute-force method to select the driver
nodes. In addition, even if the locations of the driver nodes
can be determined a priori, the problem is reduced into an
[-dimensional continuous optimization problem. One effective
method to handle a NP-hard problem is evolutionary compu-
tation algorithms. In this paper, we use MDyHF to study the
controllability of neuronal networks.

IV. MAIN RESULTS

In this section, several examples are presented to verify the
performance of the MDyHF in comparison with two COEAs
and several methods from graph theory. The controlling re-
gions are identified in microscopic and macroscopic ways.

A. Methods for Determining the Locations of Driver Nodes

In this section, the following methods are used for detecting
the locations of driver nodes/controlling regions.

1) Degree-Based Methods: The controlling regions are se-
lected according to out-degree in an ascending or a
descending way, which are named the ascending and
the descending degree-based methods, respectively.

2) Betweenness Centrality (BC)-Based Methods: Descend-

ing and ascending BC-based methods are used here.

Closeness-Based Methods: Two types of closeness-based

methods, that is, descending and ascending closeness-

based strategies are used.

3)
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4) Evolutionary Algorithm-Based Methods: COEAs are
used to select driver nodes and design their control
gains. Two evolutionary computation approaches, the
combining multiobjective optimization with differential
evolution (CMODE) [32] and the DyHF [31], are used
to compare with the MDyHF. The CMODE and the
DyHF have been recently developed and have shown
their advantages over some well-known COEAs [31],
[32].

B. Parameter Settings of COEAs

If not mentioned differently, the parameter setting of CO-
EAs is adopted as follows. The maximum fitness evaluation
Se.max 18 set to f, max = n*D and D = 2x/ is the dimension size.
n = 18750 is a predefined constant. 7 is an adjustable param-
eter to get a balance between complexity and search accuracy.
Usually, a large n is helpful to enhance search performance but
leads to huge computation complexity. A small 1 can save the
computation resources but may result in unsatisfactory search
performance. In fact, similar results can also be obtained if
we do not change 7 a lot, since in most cases the results are
improved only a little after n = 10000. In order to make a
balance between complexity and search accuracy, we choose
n = 18750. Of course, one can choose a small n or a large
n according to the personal requirement. When comparing
the performance among COEAs, COEAs will be repeated
20 times independently for eliminating random discrepancy
and terminated when COEAs algorithms attain f, .. When
showing the advantages of MDyHF over statistical methods,
MDyHF will be repeated 10 times when MDyHF achieves
Sfemax- The parameter settings of the CMODE, the DyHF,
and the IDyHF are given in [24], [31], and [32], respectively.
The parameter setting of the MDyHF is according to [31]
and [33]. Similar to [21], in the degree-based, the BC-based,
and the closeness-based, the control gains in all the vertices
are supposed to be identical and are gradually adjusted by a
stepsize 1.

C. Comparisons of the MDyHF With Evolutionary Algorithms
and Statistical Methods

In this section, the performance of the proposed MDyHF
is compared with other COEAs and statistical methods in
Section IV-A. The COEAs used for comparison are the
CMODE, the DyHF, and the IDyHF [24], [31], [32]. When
compared with COEAs, we compare the objective value R
and the constraint-handling results W. When compared with
statistical methods, the objective value R and the value of §
are compared, since the constraint on the average of the control
gains in all the statistical methods are identical and satisfy the
gain constraint.

As stated in [24], both the mean value and the best value of
the solutions are important for measuring the reliability of the
algorithm, the following measure is considered to incorporate
them together:

QO = +/Best x Mean. ©))

Obviously, O should be made as small as possible.
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TABLE II
CONTROLLING TIMES AND ITS COMMUNITY OF EACH NODE BELONGING
TO WHEN OPTIMIZING R UNDER DIFFERENT S,
WHEN « = 00 [§ CAN BE SEEN FROM (10)]

B =50 B =10
Name I3 Community Name I3 Community
VPc 50 Auditory VPc 53 Auditory
2 50 Somato-motor 36 53 Frontolimbic
AMLS 48 Visual 2la 50 Visual
2la 48 Visual Hipp 49 Frontolimbic
21b 47 Visual AMLS 48 Visual
PS 47 Visual N 48 Somato-motor
Sb 46 Frontolimbic AAF 47 Auditory
ALLS 44 Visual Sb 46 Frontolimbic
AAF 44 Auditory 2 45 Somato-motor
Hipp 44 Frontolimbic PLLS 44 Visual
3a 42 Somato-motor 21b 44 Visual
Tem 41 Auditory ALLS 42 Visual
SIV 41 Somato-motor PS 41 Visual
1 40 Somato-motor P 40 Auditory
DLS 38 Visual 19 39 Visual
PSb 37 Frontolimbic 3a 39 Somato-motor
P 36 Auditory Tem 37 Auditory
SII 35 Somato-motor 1 37 Somato-motor
4 35 Somato-motor PSb 35 Frontolimbic
RS 35 Frontolimbic DLS 34 Visual
PLLS 34 Visual SIV 33 Somato-motor
AIl 34 Auditory PMLS 32 Visual
PMLS 30 Visual 4 31 Somato-motor
PFCMil 30 Frontolimbic AIl 29 Auditory
19 29 Visual 18 27 Visual
VLS 29 Visual 3b 27 Somato-motor
20b 27 Visual 35 27 Frontolimbic
SSAo 27 Somato-motor Enr 27 Frontolimbic
3b 26 Somato-motor RS 25 Frontolimbic
17 25 Visual AES 24 Visual
Enr 25 Frontolimbic 20b 23 Visual
18 23 Visual Al 22 Auditory
Al 21 Auditory 17 21 Visual
36 21 Frontolimbic VLS 20 Visual
4g 20 Somato-motor 4g 20 Somato-motor
61 20 Somato-motor | PFCMil 19 Frontolimbic
7 19 Visual Ig 19 Frontolimbic
PFCI 19 Frontolimbic 7 15 Visual
Ig 16 Frontolimbic SSAo 15 Somato-motor
5Bm 14 Somato-motor EPp 13 Auditory
SSAi 14 Somato-motor 61 13 Somato-motor
6m 12 Somato-motor Ia 12 Frontolimbic
Ia 12 Frontolimbic SSAi 11 Somato-motor
PFCMd 11 Frontolimbic 5Bm 10 Somato-motor
AES 9 Visual PFCI 10 Frontolimbic
EPp 8 Auditory 20a 9 Visual
Cga 7 Frontolimbic 6m 7 Somato-motor
5BI 6 Somato-motor PFCMd 5 Frontolimbic
35 5 Frontolimbic S5Am 4 Somato-motor
S5Am 4 Somato-motor 5BI 4 Somato-motor
20a 3 Visual SAI 3 Somato-motor
CGp 2 Frontolimbic Cga 3 Frontolimbic
SAI 1 Somato-motor CGp 0 Frontolimbic

First, we show the comparison results of COEAs. Table I
shows the comparison results of the CMODE, the DyHF, the
IDyHF, and the MDyHF under a different dimension size.
Table I reveals that W achieves zero in all the four algorithms
under different /, implying that all the four algorithms find fea-
sible solutions. Hence, we only focus on the objective value R.
Clearly, the MDyHF performs best among the four algorithms.
the IDyHF ranks second among the four algorithms. The
MDyHEF performs better than the IDyHF. The DyHF performs
better than the CMODE but works worse than the MDyHF and
the IDyHF. The improvement of the MDyHF arises from the
introduction of the JaDE into the global search scheme and
retains other parts of efficient strategies in the MDyHF. After
the local model finds possible feasible solutions, the adaptive
global search method can well adjust itself to various search



2678

situations, thereby improving the performance of the DyHF.
From the above observations, the MDyHF is the most powerful
algorithm among the four COEAs. The adaptive global search
method helps the MDyHF to refine solutions and maintain
a good convergence speed, while the local search scheme is
kept to explore feasible solutions. Due to the reliability of the
MDyHEF, it is used to carry out the following simulations.

Next, the MDyHF is compared with the statistical schemes
in Section IV-A. The statistical methods only deal with mini-
mizing R and § is neglected, different from the MDyHF. Also,
since the control gain of each node in neuronal networks is
assumed to be identical in all the statistical methods, the search
boundary of the control gains can be simply assumed to be
[0, B]. In the following, we consider « = 0.2 and 8 = 10. It is
noteworthy that other parameters will yield similar results. The
comparison of different 8 will be presented in Section I'V-F.

Fig. 2(a) shows that the MDyHF performs better than the
other methods in terms of R in most cases. The MDyHF
offers poorer performance than a few methods in terms of
R in several cases, since MDyHF consider the constraint
on 6 while the statistical methods neglect the effect of &.
Fig. 2 shows that the average of the control gains satisfies the
constraint 8 = 10. Fig. 2(a) shows that, at the initial stage, the
descending BC-based method performs best. When [ increases,
the descending degree-based, the descending BC-based, and
the ascending closeness-based strategies become worse. Con-
versely, the ascending degree-based, the ascending BC-based,
and the descending closeness-based strategies perform well in
most cases, as depicted in Fig. 2(a).

In Fig. 2(b), although some statistical methods might work
better than the MDyHF in terms of R, the MDyHF performs
best among all the methods in terms of é and the statistical
methods cannot find feasible solutions in all the cases. In
order to satisfy the constraints on § and B, the MDyHF has
to encounter a tradeoff between losing the performance of
minimizing R to satisfy constraints. Also, when [ crosses a
threshold, the MDyHF always satisfies the constraint §. From
Fig. 2(a) and (b), it can be observed that the values of &
are much smaller than R, especially when [/ is small. This
is consistent with the findings regarding synchronizability of
complex networks [37]. However, when [ increases, § is
turning more important since R is becoming smaller and the
value of R is comparable to the value of §.

D. Microscopic Identification of Controlling Regions Using
the MDyHF Under the Gain Constraint

In Fig. 3(a) and (b), we show the mean values of the degree
and closeness information of the driver nodes by various
methods as a function of /, when « = 0.2, § = 10. We find that
the mean values of the driver nodes selected by the MDyHF
are intermediate, belonging to the range of mean values of the
ascending and the descending degree-based schemes, which
are also less than the mean values of the network degree. This
phenomenon shows that the nodes with neither a large nor a
small degree are optimal to be selected as driver nodes. As
[ increases, the mean values of driver nodes selected by the
MDyHF gradually increase and finally converge to the mean
value of network degree. In summary, one should pick more
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nodes with a large degree as / increases, while the nodes with
a small degree should also be chosen. The findings observed
here, which largely depend on [, are different from the work
in [20].

E. Macroscopic Identification of Controlling Regions Using
the MDyHF Under the Gain Constraint

Due to the efficiency of the MDyHEF, the identification of
controlling regions of the neuronal network with different S
is studied now. Denote

N
E=Y ¢pl)
=1

which calculates the times of each node to serve as driver
nodes as a function of /. The regions with a large &; are more
important to control the network. After control of the neuronal
network with an increase of / (stepsize 1), & are sorted under
B =10, p = 30, and g = 50. The results are illustrated in
Table II. The regions are sorted according to their importance
in the neuronal networks. Table II shows that there exist some
differences for the pinned times of each node in the three
cases of 8. The controlling regions are spread widely in four
communities. It can be found that the regions such as VPc and
21a are important to control the neuronal network to a desired
state, which are different from the usual hubs [9]. Meanwhile,
the regions such as CGp and 5AI are unsuitable to serve as
driver nodes.

(10)

F. Comparisons of the MDyHF With Different

In this section, enhancing controllability of the neuronal
network is examined using the MDyHF under different con-
straints B. The comparisons of R and K are presented in
Fig. 4(a) and (b). Fig. 4(a) shows that when g = 50, the
MDyHF performs best. However, the differences between the
lines of B = 30 and B = 50 are close to each other. When
[ is large, the line of B = 50 decays faster than g = 30.
Fig. 4(b) shows that when g = 50, there is no need to
use the allowed control gains completely, that is, X < 50.
However, different from the case of § = 50, when 8 = 10
and B = 30, the allocations of the control gains should be
used completely to enhance the controllability of the neuronal
network, that is, L = 10 or K = 30, respectively. Also, one
should carefully allocate the resources to each node to make
the controllability maximal. This phenomenon shows that there
exists an intermediate control cost to maximize controllability
of neuronal networks, which verifies the phenomena in bio-
logical observations and engineering background [27], [44], as
illustrated in Remark 2. In summary, the MDyHF can enhance
the controllability of the neuronal network, while keeping the
solutions in a feasible space.

In Fig. 3(c) and (d), the mean values of degree and closeness
of the driver nodes under different / and 8 are shown. As [
increases, the mean values of the degree of the driver nodes
attain minimum and then increases, which shows a clear
transition of the mean values of the degree of the driver nodes,
that is, from nodes with a large degree to nodes with a small
degree and again nodes with a large degree. As an increase of
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Optimizing R by the MDyHF with different 8 as a function of /, when o = +oo. (a) Comparison of R with different f as a function of /.

(b) Comparison of § with different 8 as a function of /, when o = +00. (c) Comparison of A5 and A}, with different B as a function of /, when & = +o0.

B (the constraint is more restrictive), the driver nodes tend to
be chosen from the nodes with a large degree. The reason for
this is that to enhance controllability of complex networks, the
nodes with a small degree requires a large control input [24].
Therefore, when the constraint on the average of the control
gains is considered, we have to control the nodes with a large
degree and allocate control gains economically.

In the following, the dependence of R, A}, Ay, on/ and B
are investigated in Fig. 4(a) and (c). As plotted in Fig. 4(a), we
get R(I) oc I77. In addition, in order to minimize R whenever
B =10 or B =50, A/, should be increased as much as possible,
while A}, should be suppressed as much as possible. Fig. 4
shows that the shape of R depends largely on A, when 8 =10
and 8 = 50. When [ — N and B = 50, A; =~ Ay,, and 1}
grow faster than A}, ,, which leads to R ~ 1. However, when
B =10, the focus is on keeping A}, stable and enlarge 1’ as
much as possible. A} of f =50 is larger than that of 8 = 10.
This observation means that when more resources are allowed,
it is desirable to enlarge A’ and keep A}, stable to enhance
controllability. Therefore, when more resources are allowed,
it is more efficient to find ways to enlarge A5. The above
observations show that controlling 1/, plays a more important
role in controllability than A}, .

Remark 9: From the above results, the proposed method
can not only solve the controllability of neuronal networks
under the constraint on the average of the control gains but
also deliver a better performance than other methods. The con-
sideration of the constraint on the average of the control gains
makes the controllability more practical, since saturations are
widely observed in therapy, systems biology, and engineering.
In addition, the results here reveal the relationship between /,
R, K (or B), § (or &), A5, and AY*!, which is of great impor-
tance for enhancing controllability. It can be found that some
interesting results are presented for the locations of driver
nodes under different / and K. Although the method can be
run on today’s workstations, to make the algorithm solving the
problem more quickly, it is important to develop more efficient
methods based on our results. For example, it is promising to
initialize the population based on our findings of driver nodes
and control gains, or one can design a weight function to
combine the optimization of R and § into a single optimization
problem based on our results, which can make them equally
important as well as reduce computational costs. In summary,

the research problem is more realistic due to the consideration
of a directed neuronal network with the constraint on the aver-
age of the control gains. The limitations of our techniques will
motivate us to develop simpler and more efficient approaches
to identify driver nodes and design their corresponding control
gains, thereby enhancing controllability of a realistic network,
such as gene regulatory networks, power grids, large-scale
chemical processes, or transportation networks.

V. CONCLUSION

In this paper, we investigate the problem of controllability
of a realistic neuronal network of the cat under constraints
on control gains by utilizing a MDyHF. The problem of
detecting driver nodes under constraints on control gains is
converted into a COP, in which two measures of controlla-
bility R and & are viewed as an objective and a constraint,
respectively, and the average of the control gains is regarded
as a constraint, thereby the objective and the constraints are
incorporated into one unified framework. By adding the JaDE
with Pareto dominance into the DyHF, the MDyHF can fit
the search circumstances adaptively. By comparing with two
recent COEASs and statistical methods, the experimental results
demonstrate the effectiveness of the MDyHF. By using the
MDyHEF, the controlling regions under gain constraints are
identified. Some interesting findings about the constraint on
the average of the control gains, the objective R, the number
of driver nodes [, and the eigenvalues of the extended topology
graph are illustrated by simulations. We show that there
exist intermediate control costs to enhance controllability of
neuronal networks and the control costs should be carefully
allocated to maximize the controllability of neuronal networks.
The effects of constraints on 8 on controllability of neuronal
networks are also investigated and it is shown that the variation
of B does affect the selection of controlling regions and
the controllability of neuronal networks. We find that the
controlling regions vary under different S.

Many extensions and refinements of this paper are pos-
sible. These include the analysis of data on other kinds
of networks [49]-[52], the usage of advanced -control
algorithms [53]-[55], the development of more powerful CO-
EAs or evolutionary-type optimization techniques to handle
the controllability of neuronal networks, and the consideration
of other types of real-world constraints. With the arrival of
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new methods, it will be feasible to apply our methods to more
natural systems or analysis of their global controllability, and
thereby further enhancing our understanding of how to control
a directed and weighted complex network with a suitable
control cost and a small number of driver nodes.
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