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In this paper, we develop a mathematical model to assess the strength of the effects of catas-
trophic anemia level on the dynamical transmission of malaria parasite within the body of a
host. We first consider a temporal model. The important mathematical features of the model are
thoroughly investigated. We found that the model exhibits forward bifurcation. We also consider
a spatiotemporal model using reaction–diffusion equations. The model is numerically analyzed
to assess the impact of anemia on the dynamical transmission of malaria parasite within the
body of a host. Through numerical simulation, we found that malaria can lead to a catastrophic
anemia level even if the parasite is nonpersistent within the body of a host. Numerical results also
suggest that to reduce or control the anemia level, the strategy should be to accelerate innate
cell reproduction rate or should have the ability to clean parasitized red blood cells (PRBCs)
with a high mortality rate.
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1. Introduction

Malaria has long been a scourge to humans. The
total burden of this disease has been estimated to be
450 million episodes annually and is responsible for
18% of all childhood deaths in sub-Saharan Africa,
equivalent to 800 000 deaths each year. According
to the World malaria report 2012, there were about
216 million cases of malaria (with an uncertainty
range of 149 million to 274 million) and an esti-
mated 655 000 deaths in 2010 (with an uncertainty
range from 537 000 to 907 000). Malaria mortality
rates have fallen by more than 25% globally since
2000, and by 33% in the WHO African Region. Most
deaths occur among children living in Africa where
a child dies every minute from malaria [WHO,
2012]. Malaria is caused by a parasite that is passed
from one human to another by the bite of infected
Anopheles mosquitoes. After infection, the parasites
(called sporozoites) travel through the bloodstream
to the liver, where they mature and release another
form, the merozoites. The parasites enter the blood-
stream and infect red blood cells (RBCs). The par-
asites multiply inside the RBCs, which then break
open within 48 h to 72 h, infecting more RBCs. The
first symptoms usually occur 10 days to 4 weeks
after infection, though they can appear as early as
8 days or as long as one year after infection. The
symptoms occur in cycles from 48 h to 72 h. On the
other hand, the increasing burden of malaria mor-
bidity and mortality over the past years, the poten-
tial consequences of blood transfusion in the context
of the AIDS epidemic, and the magnitude of the
problem, which is imposing an enormous economic
load on health services in many areas are some of
the reasons behind focusing the attention on one
of the major clinical consequences of malaria infec-
tion, malarial anaemia [WHO, 2013; Price et al.,
2001].

Infection with malaria invariably leads to anae-
mia [Korenromp et al., 2004; Abdalla et al., 1984;
Casals-Pascual & Roberts, 2006]. The groups at
risk of developing malarial anaemia include children
below the age of five years and pregnant women,
especially primigravidae. Prevalence figures of
anaemia in the community in malaria-endemic areas
of Africa vary between 31% and 90% in children and
between 60% and 80% in pregnant women [Crawley,
2004; Brabin et al., 2001]. However, until recently,
the molecular mechanisms involved have remained
elusive. Severe malarial anaemia is a major

complication of malaria infection and is multifacto-
rial resulting from loss of circulating RBCs from
parasite replication, as well as immune-mediated
mechanisms. Several factors have been suggested to
be responsible for its aetiology, including increased
destruction of infected and normal red blood cells
together with bone marrow suppression. Also, the
substantial risk from blood transfusion in areas of
high HIV prevalence has led to a review of the crite-
ria for transfusion, and some indicators have been
proposed to guide the need for blood transfusion
other than just the Hemoglobin (Hb) level [Jake-
man et al., 1999; Gravenor & Lloyd, 1998]. There is,
however, an urgent need for more high-quality clin-
ical research on the management of severe anaemia
(especially in children), which could include setting
up clinical and analytical criteria for blood transfu-
sion that are both sensitive and easy to determine.

Over the last five years, malaria parasite lig-
ands have been investigated for their remodeling of
erythrocytes and possible roles in the destruction
of mature erythrocytes. Because of the complexities
involved, the study of severe malarial anemia may
need a “systems approach” to yield comprehensive
understanding of defects in both erythropoiesis and
immunity associated with disease. New and emerg-
ing tools such as: (i) mathematical modeling of
the dynamics of host control of malarial infection,
(ii) ex vivo perfusion of human spleen to measure
both infected and uninfected erythrocyte reten-
tion, and (iii) in vitro development of erythroid
progenitors to dissect responsiveness to cytokine
imbalance or malaria toxins, may be especially use-
ful to develop integrated mechanistic insights and
therapies to control this major and fatal disease
pathology. Thus, an understanding of the causes
of severe malarial anaemia is necessary to develop
and implement new therapeutic strategies to tackle
this syndrome of malaria. On the other hand,
the pathophysiology of malarial anaemia is even
more complex than had been proposed, and many
questions remain unanswered, e.g. What is the
dominant underlying mechanism? Are these mech-
anisms different in mild/moderate anaemia than
in severe anaemia? Is acute malarial anaemia in
the nonimmune a different process than that dur-
ing recurrent, frequent infections in semi-immune
individuals? To find effective management and
preventive tools, these questions will need to be
answered.
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Many studies have been conducted using math-
ematical models for the within-host dynamics of
malaria parasites focusing on a number of differ-
ent issues [Anderson et al., 1989; Hellriegel, 1992;
Hetzel & Anderson, 1996; Anderson & May, 1990;
Hoshen et al., 2001; Molineaux et al., 2001; Molin-
eaux & Dietz, 2000; Mason et al., 1999]. Most of
these studies concentrate on the temporal develop-
ment of intra-host models of malaria. The key ques-
tion, as well as difficulty, is how to include spatial
effects and quantify the dispersal of RBCs, PRBCs,
merozoite and gametocytes. Since spatiotemporal
models of the spread of malaria parasites are lack-
ing, it is against this background that we carry
out this study. There is seemingly no study mod-
eling the effects of anemia on the transmission
dynamics of malaria at least from the mathemat-
ical standpoint.

This study aims to assess the strength of the
effects of catastrophic anemia level on the dynami-
cal transmission of malaria parasite within the body
of a host. We use a mathematical intra-host model
of malaria to study the effects of parasite virulence
and fitness variation on anemia level. The main
interest is to understand the long and short term
behaviors of the effects of anemia on the dynamical
transmission of malaria parasites within the body
of a host and to predict the anemia level.

The rest of the paper is organized as follows. In
Sec. 2, we first present a temporal model with some
theoretical results (existence and uniqueness of a
solution, existence of equilibria, local stability and
bifurcation). Later, we extend the temporal model
to a spatiotemporal model, which leads to a sys-
tem of coupled nonlinear reaction–diffusion equa-
tions. The model analysis consists of the study of
the positivity and boundedness of solutions by using
a comparison principle. The proposed model allows
us to study the effects of parasite virulence and fit-
ness variation on anemia level. Through numerical
simulations, we found that the increase of the dif-
fusion of cells increases the destruction of RBCs
which can lead to a catastrophic anemia level of
the patient, although the immune response or treat-
ment can sometimes eliminate the infection. We also
found that the risk of severe anemia depends on
the initial size of the population of RBCs within
the body of a host and can occur even if the
parasite is not virulent enough to persist. Finally,
Sec. 4 is devoted to the discussions and concluding
remarks.

2. Temporal Model

In this section, we present a temporal model of the
dynamical transmission model of malaria within a
host. The interaction of malaria parasites, RBCs,
PRBCs, immune response and gametocytes is pre-
sented in the model. It is described by a system of
five equations in the five variables that represent
the density of RBCs x, PRBCs y, free merozoites
m, immune response I, and gametocytes g. Red
blood cells are recruited from the red bone mar-
row at a constant rate Λ and die at the natural
rate µx or are reduced at the rate βxm by con-
tact with free merozoites. The PRBCs may burst
at a rate µy to release γ merozoites per PRBC.
The free merozoites either die at a natural rate
µm or are absorbed by RBCs at a rate βmx. The
release of merozoites and their attack on RBCs trig-
ger an immune response to these (circulating) stages
of the parasite. We incorporate specific immune
response whose magnitude is proportional to the
density of immune cells. The immune cells augment
the clearance of merozoites and infected red blood
cells from the body. The anti-blood stage immu-
nity is T lymphocyte dependent that is constantly
supplied from the thymus. Let a be the rate at
which immune cells expand. This rate of expan-
sion encapsulates the positive feedback upon the
immune system. We further assume that a regu-
latory negative feedback force operates to suppress
immune population growths at a rate proportional
to the square of its density bI2 [Hetzel & Anderson,
1996]. Also, they are recruited from their resting
precursors by contact with PRBCs. Thus, we have
a clearance rate of free merozoites, kmmI due to
B-cells and macrophages, clearance rate of PRBCs
due to T-cells, kyyI. The rate of change of density

Fig. 1. Structure of the model.
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of immune effector cells is described by their
proliferation and death rates. They proliferate
in response to contact with free merozoites and
PRBCs at rates ρmmI and ρyyI, respectively. The
gametocytes are produced by PRBCs at a constant
rate δ and die at a constant rate µg.

The structure of the model is shown in Fig. 1.
All the parameters of the model are assumed to

be positive real numbers. With these definitions and
assumptions, the interaction involving the densities
of parasites, RBCs, PRBCs, immune effector cells
and gametocytes is given by the following temporal
system:



ẋ = Λ − µxx − βmx,

ẏ = βmx − µyy − kyIy,

ṁ = γµyy − µmm − kmIm − βmx,

İ = aI − bI2 + ρmIm + ρyIy,

ġ = δy − µgg.

(1)

The parameter values of model system (1) used
for numerical simulations are given in Table 1.

In Table 1, a∗ and b∗ stand for the references
[Anderson et al., 1989] and [Robert & Boudin,
2002], respectively.

2.1. Existence and positivity
of solutions

For every nonzero, non-negative initial value, solu-
tions of model system (1) exist for all time t ≥ 0.
Indeed, the local existence of solutions follows from
standard arguments since the right-hand side of
model system (1) is locally Lipschitz continuous.
Global existence follows from a priori bounds.

The solutions of model system (1) with pos-
itive initial conditions are positive for all t > 0.
Indeed, the vector field given by the right-hand side
of model system (1) points inward on the bound-
ary of R

5
+\{0}. Thus, for example, if x = 0, then,

ẋ = Λ ≥ 0. The same reasoning can be used to
show that the other model components (variables)
are non-negative.

2.2. Disease-free equilibrium
and its stability

Model system (1) has a homogeneous disease-free
equilibrium, obtained by setting the right-hand
sides of equations in model system (1) to zero,
given by Q0 =

(
Λ
µx

, 0, 0, a
b , 0

)
. Linearizing all equa-

tions in model system (1) around the disease-free
equilibrium Q0, the Jacobian matrix is

J =




−µx 0 −βx0 0 0

0 −µy − kyI0 βx0 0 0

0 γµy −µm − kmI0 − βx0 0 0

0 ρyI0 ρmI0 −a 0

0 δ 0 0 −µg



,

Table 1. Description and estimation of parameters.

Parameter Description Estimated Value Source

Λ Production rate of RBCs 1RBC ml−1 day−1 a∗

β Contact rate between merozoites and RBCs 0.02 RBC/ml−1 day−1 a∗

µx Natural death rate of RBCs 0.00833 day−1 a∗

µy Death rate of PRBCs 0.2 day−1 a∗

µm Death rate of merozoites 72 day−1 a∗

µI Death rate of immune effectors 0.05 day−1 a∗

µg Death rate of gametocytes 0.25 day−1 b∗
γ Merozoites means rate produce by PRBCs 16 a∗

ρy Immunosensitivity of PRBCs 0.05 PRBC/ml−1 day−1 a∗

ρm Immunosensitivity of free merozoites 0.1 RBC/ml−1 day−1 a∗

ky Immune effectors reaction against PRBCs 0.05 RBC/ml−1 day−1 a∗

km Immune effectors reaction against free merozoites 0.1 RBC/ml−1 day−1 a∗

a Increasing rate of immune effectors 0.05 day−1 a∗

b Regulation rate of immune effectors 0.01 RBC/ml−1 day−1 a∗

δ Production rate of gametocytes 0.03 ml−1 day−1 b∗
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where x0 = Λ
µx

and I0 = a
b . Since −µx < 0, −a < 0

and −µg < 0, the triangular structure of the Jaco-
bian matrix J implies that its stability is associated
with the stability of the following submatrix:

J0 =

[
−µy − kyI0 βx0

γµy −µm − kmI0 − βx0

]
.

The submatrix J0 is stable if its trace is negative
and its determinant is non-negative. Therefore, a
sufficient condition for this equilibrium to be stable
is given by

βx0γµy

(µy + kyI0)(µm + kmI0 + βx0)
< 1.

Model of this type demonstrates clearly an infec-
tion threshold. In the presence of a threshold,
disease eradication requires the reduction of the
infection rate below a critical level where a stable
infection-free equilibrium is guaranteed. In epidemi-
ological terminology, the infection threshold may be
expressed in terms of the basic reproductive number
R0, the average number of infections produced by
a single merozoites in a population of RBCs. From
this definition, it is clear that malaria infection can-
not spread within a host only if R0 < 1 [Diekmann
et al., 1990; van den Driessche & Watmough, 2002].
It then follows that the basic reproduction number
R0 < 1 is given by

R0 =
βx0γµy

(µy + kyI0)(µm + kmI0 + βx0)
. (2)

In conclusion, crossing the threshold reduces the
basic reproductive number R0 below unity and the
infection is prevented from propagating.

We now perform a sensitivity analysis of the
basic reproduction number, R0. A sensitivity analy-
sis is commonly used to determine the robustness of
model predictions to parameter values, since there
are usually errors in data collection and estimated
values [Chitnis et al., 2008]. We are thus interested
in parameters that significantly affect the basic
reproduction number, since they are parameters
that should be taken into consideration when con-
sidering intervention strategies. If the basic repro-
duction number is very sensitive to a particular
parameter, then a perturbation of the conditions
that connect the dynamics to such a parameter may
prove to be useful in identifying policies or inter-
vention strategies that reduce epidemic prevalence.
Herein, the partial rank correlation coefficients
(PRCC) were calculated to estimate the correlation
between values of the basic reproduction number
and the four model parameters across 1000 random
draws from the empirical distribution of R0 and its
associated parameters.

Figure 2 illustrates the PRCCs using R0 as an
output variable. Parameters with positive PRCCs
will increase R0 when they are increased, whereas
parameters with negative PRCCs will decrease R0

when they are increased. The results here suggest
that the death rate of PRBCs, the regulation rate of
immune effectors, merozoites means rate produced
by PRBCs, the production rate of RBCs and the con-
tact rate between merozoites and RBCs may increase
the magnitude of R0 when they are increased, while
the immune effectors reaction against PRBCs, the
immune effectors reaction against free merozoites,
the death rate of merozoites, the natural death

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

Contact rate between merozoites and  RBCs

Production rate of RBCs

Merozoites means rate produce by PRBCs

Increasing rate of immune effectors

Regulation rate of immune effectors

Natural death rate of RBCs

Death rate of PRBCs

Death rate of merozoites

Immune effectors reaction against PRBCs

Immune effectors reaction against free merozoites

Fig. 2. Partial rank correlation coefficients (PRCC) showing the effects of parameter variation on the basic reproduction
number, R0 using the parameters in Table 1.

1450105-5



July 21, 2014 13:39 WSPC/S0218-1274 1450105

E. Takoutsing et al.

0 0.5 1 1.5 2
95

100

105

110

115

120

R
0

x*

unstable DFE

stable EE

stable DFE

R
0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 16. 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y*

 stable DFE

 stable EE

 unstable DFE

(a) (b)

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9
x 10

−3

R
0

m
*

stable DFE unstable DFE

stable EE

0 0.5 1 1.5 2
5

5.5

6

6.5

7

7.5

8

R
0

I*

stable DFE unstable DFE

stable EE

(c) (d)

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03

R
0

g*

stable DFE

stable EE

unstable DFE

(e)

Fig. 3. Bifurcation diagram of model system (1). (a) x∗, (b) y∗, (c) m∗, (d) I∗ and (e) g∗. The notations DFE and EE stand
for disease-free equilibrium and endemic equilibrium, respectively.
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rate of RBCs and the increasing rate of immune
effectors have a negative influence on the magni-
tude of R0. Thus, we can practically control malaria
within a host through increasing the immune effec-
tors reaction against PRBCs, the immune effectors
reaction against free merozoites, the death rate of
merozoites, the natural death rate of RBCs and the
increasing rate of immune effectors.

2.3. Endemic equilibria and
bifurcation

Let Q∗ = (x∗, y∗, m∗, I∗, g∗) be a homogeneous
endemic equilibrium of model system (1) with

x∗, y∗, m∗, I∗ and g∗ satisfying the following
equations:



Λ − µxx∗ − βm∗x∗ = 0,

βm∗x∗ − µyy
∗ − kyI

∗y∗ = 0,

γµyy
∗ − µmm∗ − kmI∗m∗ − βm∗x∗ = 0,

ρmI∗m∗ + ρyI
∗y∗ + aI∗ − bI∗2

= 0,

δy∗ − µgg
∗ = 0.

(3)

Using the first, second, third and fifth equations
in (3), one yields

x∗ =
Λ

µx + βm∗ , y∗ =
βm∗Λ

(µx + βm∗)(kyI∗ + µy)
, g∗ =

δy∗

µg
and

m∗ =
−kmµxky(I∗)2 − (µmµxky + kmµxµy + βΛky)I∗ + γµyβΛ − µmµxµy − βΛµy

β(µy + kyI∗)(µm + kmI∗)
.

(4)

Substituting (4) in the fourth equation of (3), it can be shown that the nonzero equilibria of model
system (1) satisfy the following four order equation in terms of I∗:

a4(I∗)4 + a3(I∗)3 + a2(I∗)2 + a1I
∗ + a0 = 0, (5)

where 


a4 = bβkmk2
y,

a3 = 2bβkmµyky − aβkmk2
y + ρmkmµxk2

y + bβµmk2
y − bβkmkyγµy − ρyk

2
mµxky,

a2 = k2
yρmµmµx + k2

yρmβΛ − k2
yaβµm − 2kyρyµmµxkm + 2kyρmkmµxµy

− kyρmkmµxγµy − kyρyβΛkm + kyaβγµykm + 2kybβµyµm − 2kyaβµykm

− kybβγµyµm − ρyk
2
mµxµy + bβµ2

ykm − bβγµ2
ykm,

a1 = −2kyaβµyµm − kyρyβΛµm − 2kyρmγµyβΛ − kyρmµmµxγµy + 2kyρmβΛµy

− kyρyµ
2
mµx + kyaβγµyµm + 2kyρmµmµxµy + ρyγµyβΛkm + aβγµ2

ykm − aβµ2
ykm

− bβγµ2
yµm + ρmkmµxµ

2
y − 2ρyµmµxµykm − ρyβΛµykm + bβµ2

yµm − ρmkmµxµ2
yγ,

a0 = µy(µyρmβΛ − µyaβµm + µyρmµmµx + µyρmγ2βΛ − µyρmµmµxγ + µyaβγµm

− 2µyρmγβΛ − ρyµ
2
mµx + ρyγβΛµm − ρyβΛµm).

Finding the analytical solutions of Eq. (5) is
a difficult task. To solve this equation, we proceed
with numerical simulations.

The associated bifurcation diagram using the
parameters of Table 1 is depicted in Fig. 3. From
this figure, it clearly appears that the disease-free
equilibrium is stable if R0 < 1, while if R0 > 1, the
disease-free equilibrium is unstable and there exists
a unique endemic equilibrium which is stable. Thus,
model system (1) exhibits a forward bifurcation.

3. Spatiotemporal Model

We now extend model system (1) taking into
account the spatial component in the modeling.
Indeed, after the infection, the parasites travel
through the bloodstream to the liver, where they
mature and release other merozoites. The release
of merozoites and their attack on RBCs triggers
an immune response and immune effectors move
to parasites in order to neutralize them. Also,

1450105-7
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instead of replicating, the merozoites in these cells
develop into gametocytes, that circulate in the
bloodstream. In this section, we consider the move-
ment of RBCs, PRBCs, free merozoites, immune
response and gametocytes within the body of a
host. We assume that all red blood cells and par-
asites diffuse randomly in two finite-dimensional
domains.

According to the above explanations, we derive
the following spatiotemporal model:


∂x

∂t
(t, w) = Λ − µxx − βmx + εx∆x,

∂y

∂t
(t, w) = βmx − µyy − kyIy + εy∆y,

∂m

∂t
(t, w) = γµyy − µmm − kmIm

− βmx + εm∆m,

∂I

∂t
(t, w) = aI − bI2 + ρmIm + ρyIy + εI∆I,

∂g

∂t
(t, w) = δy − µgg + εg∆g,

(6)

where εx, εy, εm, εI and εg are respectively, the
diffusion parameters of RBCs, PRBCs, free mero-
zoites, immune response and gametocytes, w =
(u, v) ∈ R

2 is the space and ∆ = ∂2

∂u2 + ∂2

∂v2 the
Laplacian operator.

3.1. Model basic properties

To avoid a migration of populations, we consider
the following Neumann boundary conditions:

∂x

∂ν
(t, w) =

∂y

∂ν
(t, w) =

∂m

∂ν
(t, w)

=
∂I

∂ν
(t, w) =

∂g

∂ν
(t, w)

= 0, (t, w) ∈ R × ∂Ω,

x(0, w) = x0(w), y(0, w) = y0(w),

m(0, w) = m0(w), I(0, w) = I0(w) and

g(0, w) = g0(w), w ∈ Ω ⊂ R
2,

(7)

where Ω is a bounded domain and the initial con-
ditions x0, y0, m0, I0 and g0 are non-negative and

bounded functions defined in Ω. In the sequel, we
will denote by Ω the closure of Ω.

For model system (6), all solutions with non-
negative initial functions are ultimately bounded.
Indeed, let (x(t, w), y(t, w),m(t, w), I(t, w), g(t, w))
be the solution of model system (6) such that
x(0, w) = x0(w), y(0, w) = y0(w), m(0, w) =
m0(w), I(0, w) = I0(w), and g(0, w) = g0(w) are
non-negative and bounded functions defined in Ω.
Now, let

z(t, w) = x(t, w) + y(t, w),

x0 = max
Ω

x0(w), x0 = min
Ω

x0(w),

y0 = max
Ω

y0(w), y
0

= min
Ω

y0(w),

m0 = max
Ω

m0(w), m0 = min
Ω

m0(w),

I0 = max
Ω

I0(w), I0 = min
Ω

I0(w),

g0 = max
Ω

g0(w) and g
0

= min
Ω

g0(w).

It is obvious that (0, 0, 0, 0, 0) is a lower solution of
model system (6). Moreover, we have

x0 ≥ 0, y0 ≥ 0, m0 ≥ 0,

I0 ≥ 0 and g0 ≥ 0.

Thus, by the maximum principle, one can conclude
that

x(t, w) ≥ 0, y(t, w) ≥ 0, m(t, w) ≥ 0,

I(t, w) ≥ 0 and g(t, w) ≥ 0.

This implies that any solution of model system (6)
with positive initial condition will remain positive.

Now, we will prove that the solutions of model
system (1) admit also upper limits. Without loss
of generality, we assume that εx = εy = ε1. Then,
from model system (6), one has

∂z

∂t
≤ Λ − µz + ε1∆z,

where µ = min(µx, µy).
Consider the following equation:

∂z

∂t
= Λ − µz + ε1∆z.

Solving the above equation gives

z(t) =
Λ
µ

+
(

z(0) − Λ
µ

)
e−µt,
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where z(0) = x0 + y0. Now, using the maximum
principle, one gets

z(t, w) ≤ z(t)

=
Λ
µ

+
(

x0 + y0 − Λ
µ

)
e−µt

≤ x0 + y0, ∀(t, w) ∈ R
+ × Ω.

(8)

Using the same reasoning, one can establish that

m(t, w) ≤ γµm(x0 + y0)
µm

+
(

m0 − γµm(x0 + y0)
µm

)
e−µmt. (9)

We can use the same reasoning to prove that I(t, w)
and g(t, w) are ultimately bounded.

Note that the inequality (9) suggests that the
density of merozoites cannot blow up but remains
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Fig. 4. Spatiotemporal evolution of model system (6) after 20 days when β = 0.02 (so that R0 = 0.2 < 1) and εx = εy =
εm = εI = εg = 0.1.
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finite for any merozoites virulence and fitness. How-
ever, the most important issue is to determine at
what level of merozoites virulence and fitness, the
patient will achieve a catastrophic threshold of ane-
mia that the immune system could withstand.

3.2. General dynamics

Herein, we numerically investigate the general
dynamics of model system (6).

The spatiotemporal evolution of model sys-
tem (6) for different values of the diffusion param-
eters and the contact rate between merozoites
and RBCs after 20 days is depicted in Figs. 4–6.
Without loss of generality, we assume that the
diffusion parameters of RBCs, PRBCs, malaria
parasites, immune response and gametocytes are
the same, that is εx = εy = εm = εg = εI .
The boundary conditions are of Neumann type,
i.e. the flow at the edge is zero. We assume that
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Fig. 5. Spatiotemporal evolution of model system (6) after 20 days when β = 0.2 (so that R0 = 1.7 > 1) and εx = εy =
εm = εI = εg = 0.1.
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Fig. 6. Spatiotemporal evolution of model system (6) after 20 days when β = 0.2 (so that R0 = 1.7 > 1) and εx = εy =
εm = εI = εg = 0.5.

initially, the densities of RBCs, PRBCs, free mero-
zoites, immune response, and gametocytes are ran-
domly distributed between 0 and 4000 in cylinders
and outside the cylinders, their densities are zero.
All these cylinders are contained in Ω = [0, 50] ×
[0, 50] × [0, 50] × [0, 50] × [0, 50] field in which the
problem is studied.

Figure 4 shows the spatial repartition of RBCs,
PRBCs, malaria parasites, immune response and
gametocytes after 20 days when β = 0.02 (so that

R0 = 0.2 < 1) and εx = εy = εm = εI = εg = 0.1.
This corresponds to the case where the host does
not suffer from malaria. It illustrates that the num-
ber of parasites within the body of the host is not
sufficient to provoke an infection.

Figure 5 gives the results of numerical simula-
tions of RBCs, PRBCs, malaria parasites, immune
response and gametocytes after 20 days when β =
0.2 (so that R0 = 1.7 > 1) and εx = εy = εm =
εI = εg = 0.1. This corresponds to the case where
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the host suffers from malaria. As expected, there
are more PRBCs, less RBCs, parasites and more
immune effectors and gametocytes within the body
of the host than in Fig. 4. Indeed, when a host suf-
fers from malaria, the number of RBCs decreases
and the number of PRBCs increases due to the
infection. As a consequence, the number of free
merozoites will decrease because more free mero-
zoites will enter PRBCs. Also, since the body is
attacked, this will stimulate the immune response
that will increase when the number of PRBCs
increases.

Now, we investigate the role of the diffu-
sion parameters on the dynamical transmission of
malaria parasites within the body of a host. Figure 6
presents the spatiotemporal evolution of model sys-
tem (1) when β = 0.2 (so that R0 = 1.7 > 1) and
εx = εy = εm = εI = εg = 0.5. In comparison
to Fig. 5, when the diffusion parameters increase,

the number of RBCs, PRBCs, immune effectors
and gametocytes decrease. Indeed, an increase of
the diffusion parameters will increase the contact
rates between RBCs and free merozoites. This will
lead to the destruction of RBCs which result in a
decrease of the number of free merozoites because
they enter RBCs. This result suggests that as the
diffusion parameters increase, more RBCs become
infected and malaria disease can lead to a catas-
trophic anemia level of the patient.

3.3. Effects of anemia

Anemia (hemoglobin level < 11 g/dL) remains one
of the most intractable public health problems in
malaria-endemic countries of Africa. It affects more
than half of all pregnant women and children less
than five years old, and has serious consequences
since severe anemia (hemoglobin level < 5 g/dL) is
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Fig. 7. Spatiotemporal evolution of RBCs when β = 0.08 (so that R0 = 0.8315 < 1) and εx = εy = εm = εI = εg = 1.
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associated with an increased risk of death [Bra-
bin et al., 2001], while iron deficiency and ane-
mia may impair cognitive and motor development,
growth, immune function, and physical work capac-
ity [Crawley, 2004]. The aim of this section is to
evaluate the effects of some model parameters on
the time at which a patient reaches the threshold of
catastrophic anemia. This will be done using numer-
ical simulations.

Mathematically, the anemia level αt can be
defined as

αt =

∫
Ω

x(t, w)dw∫
Ω

x(t0, w)dw

. (10)

A patient has a catastrophic anemia level if
αt < 75% which corresponds to a hemoglobin
level < 11 g/dL. Then, mathematically, the min-
imum anemia time Tanemia at which the patient
reaches the threshold of catastrophic anemia can

be estimated as

Tanemia = min(120 days, inf(t, αt < 75%)), (11)

where 120 days correspond to the RBCs periodic
recycling duration and t the time for which αt < 75.
Obviously, Tanemia depends on the mosquitoes’ char-
acteristics such as efficiency, virulence and fitness.

For the numerical simulation, we assume that
RBCs, PRBCs, free merozoites, immune response,
and gametocytes within the body of a host are ini-
tially at the disease-free equilibrium with 120 RBCs
distributed uniformly at each point. Simulations
have been stopped when the number of RBCs at
time t is equal to or less than 75% of the initial
RBCs.

Figure 7 presents the spatiotemporal evolution
of RBCs within a host when β = 0.08 (so that R0 =
0.8315 < 1) and εx = εy = εm = εI = εg = 1. This
figure shows that with the chosen parameter values
and initial conditions, after 20 days, the patient will
not reach the threshold of catastrophic anemia level.
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Now, we suppose that RBCs, PRBCs, free
merozoites, immune response and gametocytes
within the body of a host are initially at the disease-
free equilibrium with 300 RBCs distributed uni-
formly at each point.

Figure 8 presents the spatiotemporal evolution
of RBCs within the body of a host when β = 0.08
(so that R0 = 0.8315 < 1) and εx = εy = εm =
εI = εg = 1. From this figure, it is evident that in
spite of the fact that the basic reproduction number
is less than unity, the host can suffer from severe
anemia after 38 days. In this case, anemia results

from other factors such as malnutrition, coinfection
with HIV/AIDS, heavy alcohol drinking and so on.
In comparison with Fig. 7, one can also see that
when R0 ≤ 1, the catastrophic anemia level may
also depend on the initial size of RBCs within the
body of the host. Thus, when the basic reproduction
number is less than unity, a huge initial size of RBCs
will lead to a catastrophic anemia level within the
body of a host, although the host does not suffer
from malaria.

Figure 9 presents the spatiotemporal evolution
of RBCs within the body of a host when β = 0.16
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(so that R0 = 1.48 > 1) and εx = εy = εm = εI =
εg = 1. It illustrates that the population of RBCs
reaches the threshold αt = 0.749163 after three days
of the infection and the host will suffer from anemia.

Figure 10 shows the time at which a patient’s
anemia level becomes catastrophic Tanemia as a func-
tion of the basic reproduction number R0. It illus-
trates that when the basic reproduction number
R0 increases due to the variation of the trans-
mission rate β, the production of parasites γ and
the parasite mortality µm, the anemia time Tanemia

decreases. Thus, as R0 increases due to the variation
of β, γ and µm, the anemia time becomes small and
the patient will quickly suffer from anemia. Note
that anemia can occur in a patient before 120 days
which corresponds to the RBCs periodic recycling
duration. This figure also shows that the increase
of γ induces the decrease of Tanemia more quickly
than the increase of β and µm. Thus, the increase of
the production of merozoites may quickly result in a
catastrophic anemia level. This suggests that a drug
that can stop the multiplication of parasites inside
the RBCs can be the best strategy to fight against
the disease in areas where malaria is endemic. This
will prevent the occurrence of anemia.

Figure 11 gives a 3D graph showing the evo-
lution of RBCs as a function of αt and Tanemia

when β = 0.16 (so that R0 = 1.48 > 1) for three
different values of the diffusion parameter of free
merozoites εm. This figures clearly shows that the
malaria infection can cause anemia after three days
if it is not quickly treated. This suggests that the
best strategy for the disease control is to reduce
the transmission rate β and the treatment must be
done during a time shorter than the critical anemia
time Tanemia. However, in malaria endemic areas
where the bites of mosquitoes per human range to
150–200 per year, it is difficult to control the trans-
mission rate β. One issue is to reduce the bites of
mosquitoes by using for example bednet as malaria
therapy prophylaxis. This result also suggests that
the treatment of malaria should start as soon as the
disease is declared in a patient in order to avoid the
loss of a huge number of RBCs.

Figure 12 presents the anemia time as a
function of the basic reproduction number when
the transmission rate of the infection varies. Fig-
ure 12(a) gives Tanemia as a function of R(β) for
three different values of the increasing rate of
immune effectors. It shows that as a increases,
Tanemia also increases. This suggests that we can

practically control anemia within a host by increas-
ing the immune effectors. The anemia time Tanemia

as a function of R(β) for three different values of b is
depicted in Fig. 12(b). It shows that as b increases,
Tanemia decreases. Figure 12(c) presents Tanemia as a
function of R(β) for three different values of ky. It
is evident that Tanemia increases with ky. This is an
expected result, since the role of the immune effec-
tors is to fight malaria within the body of a host.
Thus, to reduce or control the anemia level, one
strategy should be to accelerate innate cell repro-
duction rate.

4. Discussions and Concluding
Remarks

A mathematical model for the interactions between
RBCs, PRBCs, malaria parasites, immune response
and gametocytes is presented as a system of partial
differential equations. We use this spatiotemporal
model to study effects of the catastrophic anemia
level on the dynamical transmission of malaria par-
asite within the body of a host. The effect of anemia
on the actual malaria dynamics within a patient is
two-fold: it is a major cause of mortality and mor-
bidity in patients, especially children and pregnant
women, living in malarial endemic areas and it can
improve the understanding of malarial anemia that
may help in the design of appropriate management
strategies.

A qualitative analysis of the model has been
presented. The epidemic threshold parameter which
determines the outcome of the disease is computed
and used to assess the dynamics of the disease
within a host. The disease-free and endemic equilib-
ria are obtained and their stabilities are investigated
depending on the system parameters. Using numer-
ical simulations, we found that the model exhibits a
forward bifurcation, that is the disease-free equilib-
rium is stable when the basic reproduction number
is less than unity and when the basic reproduc-
tion number is greater than unity, the disease-free
equilibrium is unstable and there exists a unique
endemic equilibrium which is stable.

Through numerical simulations, we found that
in the presence of immune response, malaria infec-
tion may impact the anemia. The risk of severe
anemia can occur even if the parasite is not vir-
ulent enough to persist with the basic reproduc-
tion number less than unity. Although the control
strategy of the outbreak is determined by the basic
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reproduction number R0, the infection can have
harmful consequences on the patient. The selected
treatment strategy should be effective over a short
period whose duration is strictly less than Tanemia.
Usually the treatment starts several days after the
infection, while the patient has already lost a huge
amount of RBCs. Thus, for a more effective control
of the anemia level, one needs to stimulate rapidly
the activation of the immune response in order to
produce a sufficient number of innate immune cells
to clear PRBCs and to increase the mortality rate of
merozoites by activating innate immune cells. It will
be important to involve health programs as diverse
as malaria, nutrition, reproductive and child health,
HIV/AIDS, helminth control, and laboratory and
blood transfusion services. There needs to be com-
munication and collaboration with other disciplines,
particularly environmental health and agriculture
[Allen, 2003]. Research institutions, nongovernmen-
tal organizations and the media have important
roles to play. Politically, it is essential that ministers
of health and finance need to understand that ane-
mia control is cost-effective and yields substantial
health benefits.
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