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We present an algebraic approach to reveal attractor transitions in Boolean networks under single control
based on the recently developed matrix semitensor product theory. In this setting, the reachability of attractors
is estimated by the state transition matrices. We then propose procedures that compute the shortest control
sequence and the result of each step of input (control) exactly. The general derivation is exemplified by numerical
simulations for two kinds of gene regulation networks, the protein-nucleic acid interactions network and the

cAMP receptor of Dictyostelium discoideum network.
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I. INTRODUCTION

Genetic regulatory networks (GRN5s) that describe animal
development have significant implications for studying the
relationships and behaviors of all of the DNAs, RNAs,
proteins, and cells in a biological system [1]. The GRNs
require computational and formal methods to process massive
amounts of data, and then to infer useful predictions about the
states and behaviors of the system under known conditions [2].
For GRNs, the states that are revisited infinitely often in
the long-time limit starting from a random initial condition
constitute an attractor, which is a (or some) stable state of
GRNSs [3]. These attractors are treated as various cell fates,
which are differentiation, proliferation, and apoptosis. The
existence of GRNs show that the vast state of gene activities
can be described by a small number of trajectories and attractor
states. All those states that converge to the same attractor are
called the basin of attraction of that attractor [4]. A particular
property of an attractor is stationary and intrinsical robustness.
Small perturbations of individual elements of the GRN will
lead to transient states that will mostly return to the same
attractor, for the convergence of the trajectories within a basin
of attraction onto the attractor [5].

In several studies on GRNs such as genetic diseases and
organogenesis, researchers realized that the state of GRN tran-
sits from one attractor to another one by control methods [6,7].
A method was adopted to present the comparative evaluation
and concrete application of GRN inference to ovarian cancer
for revealing potential drug targets [8]. Another approach
was proposed to characterize the attractor transitions in the
Arabidopsis thaliana floral organ [9]. It has been found that
the repression of a single gene binding poly-pyrimidine-tract-
binding protein was sufficient to induce transdifferentiation of
fibroblasts into functional neurons [10]. The previous studies
were mainly interested in intervening the GRNs system (with
optimal cost) to help it transit to desirable attractors, and the
goal of those studies was to make the system transit to the
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desirable attractors by single-control methods. However, most
of the existing achievements in related fields were obtained by
experiments. Due to the lack of necessary theoretical supports,
it is hard to explain thoroughly diverse experimental findings
in regulating different genes. Moreover, the actual impact on
the control of some gene is uncertain [11]. In short, to prove
the validity of the transformation of GRNs from one attractor
to another by single control still remains an open crucial
theoretical problem [12].

Here, we propose a promising method for attractor transi-
tions with a single control in GRNS in this paper. In order to
transform the whole network from one attractor to another,
we present an algebraic approach, which is based on the
model of Boolean network, to estimate the reachability of an
attractor and to determine the appropriate control sequence.
Additionally, unlike other existing multicontrol methods, our
approach, on the basis of clear and strict evidences, mainly
focuses on the shortest control sequence and the minimum
controlled nodes.

II. MODEL

The Boolean network (BN) has become a proper model
in describing and analyzing the attractor transitions in GRNs
in recent years. It represents a modeling tool which not only
has been necessarily given our ignorance of many quantitative
details, but also has been sufficient in providing a conceptual
understanding of how a number of genes interact [13]. Since it
can reflect basic dynamic characteristics of biological systems,
BN has been widely used in mammalian cell [14], Drosophila
melanogaster [15], and Arabidopsis thaliana [16].

A BN is composed of n nodes, and each node has some
inputs from adjacent nodes, and it can be described by

x1(t+ 1) = gi(x1(2), ..., x,(1)),

(t+1) = gax1(t), ..., x: (1)),
X2 82X X )

xn(t + l) = gn(-xl(t)9 “e ,)Cn(l)),
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where g;(i = 1,2, ...,n) is an n-ary logical function. x;(#) is
the state of node i at time .

The logical dynamics described in Eq. (1) can be converted
into an equivalent algebraic form of conventional linear
iterative dynamics. Therefore, the algebraic approach with
a semitensor product (STP) of matrices was proposed in
Ref. [17] for analyzing the states of BN. In this paper, STP
is denoted by “x.” Assume there are two matrices A € R"*”
and B € R?*9, where n is k times as p. The STP of A and B
isdefined as A x B = A(B ® E}), where “®” is the Kronecker
product and Ej is the identity matrix. The STP of matrices
remains all the fundamental properties of the conventional
matrix product [18].

With STP, a Boolean operation can be converted into a
matrix product. Logical values “true” and “false” with two
vectors are denoted as 821 and 8%, where 4], denotes the rth
column of the identity matrix E,. Some fundamental logical
functions are identified as M = [§/1,8%, ... 8], which is
also briefly expressed as M = §,[iy,i2, ...,is]. In principle,
we get the logic relationships: (1) negation: M, = §,[2,1];
(2) disjunction: My = §8,[1,1,1,2]; (3) conjunction: M, =
8,[1,2,2,2]; (4) XOR: M, = §5[2,1,1,2]. The above matrices
are called structure matrices.

According to STP, Eq. (1) can be converted into

x(t + 1) = Mxi()Maxa(t) . .. Mux,(1), 2
where M;,(i = 1,2,...,n) is a structure matrix. Multiplying
the right part of Eq. (2), we yield

x(t+1) = Lx(1), 3)

where L € Ajniyon is called the transition matrix, and x(t) =
x7_,x;(t). Equation (1) is uniquely determined by the transi-
tion matrix L. It is important to emphasize that with Eq. (3),
each column of L represents a state of BN. Based on L, the
state space is described as a directed graph. It is obviously that
all of the state is moving toward the attractor. The set of state,
which is all toward the same attractor, compose the basin of
the attractor. Since every state must belong to a basin, the state
space of Boolean network consists of all basins. In the rest of
this paper, the number of columns in L is given a symbol for
this number called the state number.

A BN is a globally convergent system. An attractor, called
a stable state of the system, includes two types: a fixed point
or a cycle. The number of the fixed point is N; and the number
of cycles with length k is Ni. They are inductively determined
by

Ny =Tr(L), @
Tr(L*) — Y icom I Ni
Ny =

k 9
where (k) is the set of proper factors of k [18]. The attractor

of system (1) can be obtained by Eq. (4). We denote an attractor
as

{x1 > x0 > -+ xy = x1},

where x; € D,i = 1,2, ...,sis the length of the attractor. D =
{e1,e2, ... ,ex} is the state space of the system (1), where ¢; is
a state number. According to L and the attractor of system (1),
the entirety of the basin of an attractor can be pictured in a map.
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III. ATTRACTOR TRANSITION

In this paper, we consider the case of a BN with a free
control sequence, which is called the open-loop control [19].
This open-loop control could destroy the cycle structure of a
GRN, and it is widely used in systems biology [20].

Here, we have an open-loop control model by adding the
control u(t) to node x;:

x4+ 1) = g1(x1(0), ..., xu(1),u(1)),

(t+1) = gaxi1(t), ..., xa: (1)),
X2 82X X )

xn(t + l) - gn(xl(t)s “e ,xn(t)),

where u is the control (or input). According to Eq. (5), we get
the following equation via Eq. (3):

x(t + 1) = Lx@®u(®),

where x € Agn,u € Ay, L € Agiypnri. The matrix L is the
linear representation of L under the control u(t). L is called
the state transition matrix.

Consider the system under control u at the kth step. Then
Eq. (5) is solved as

x(k) = L*u() ... utk — 1), (6)

where L¥ € Ay, pni is the linear representation of system (5).
By solving L¥, we get the results of an open-loop control.
The following result holds for Eq. (5).
Theorem 1. x4 is reachable from x at the kth step by the
control u, if and only if

xq € Col{L*x}, 7

where Col{A} is a set of columns of matrix A.

We assume that there are two attractors in system (1),
i.e., A] = {)C], S NI ,xs} and A2 = {y], e Yy ,yl},
where (x;,y;) € L is a stable state, s is the number of states in
Ay, and ¢ is that in A,.

Corollary 1. Ry, is the reachable state set from A, at the
kth step under control u, if and only if

Ry, = Col{L*A}. 8)

Definition 1. Assume R}, is the largest reachable set of Ay,
if and only if

Ry =Col{ Uz L'A}. ©)
Theorem 2. Assume that k* is the smallest k > 0 such that
Col{L**'A\} c Col{fL" Ay|r = 1,2, ... ,k}.
Then the largest reachable set is
R}, = Col{U_ LAy} (10)
Proof. Part one. By calculation, we obtain L¥A| € L, onx.

Since L € Lonyoni1, by the property of the semitensor product
we yield

LA = Lx L¥A, = L x [LFA, ® E,],

[TRAL]

where “x” is the conventional matrix product. Based on
computation, we know that there are no new columns in this
matrix L¥ ¢ € [1,00).
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Part two. We use the notation
Col{L*} ® E, := {X ® E»|X € Col{L*}}.

If we assume Col{L*+tDA\} c Col{L"A\|r = 1,2, ...k},
then

Col{L* P A}
={L6]0 € CollL"'A,} ® E,)
C{LO|0 € Col{L" A} ® Easr = 1,2,... ,k}
=Col{L"Ailr =2,3,....k+1}
CCol{L"A; @ Es|r =1,2,... k).

This inequality shows that after k£ there are no more new
columns. From part one, we know that there exists such
ak*.

Next, we will discuss the reachability from one attractor to
another one in system (5).

Definition 2. The transition from A; to A, is reachable at
the kth step, if and only if

LA N A, # ¢, (11)

where ¢ is the null set. To derive the reachability is to find the
smallest k.

Definition 3. k is the smallest step from A; to A,, if and
only if

LEDANA,=¢, LFAINA, #¢. (12)

In the following, we will discuss the case of unreachability.
Definition 4. A, is unreachable from A, if and only if

Ry 0 A=, (13)

where R, is the largest reachable set of A;.

Next, we will construct the shortest control sequence. From
Eq. (12), we can obtain k, which is the smallest step from A
to As,.

Theorem 3. Let {L*A;}=[B,...,Bi,...,Bs], where
B; = L*x;. If there exists i € {1, ...,s} such that

AN B; # ¢, (14)

then x; is called source state, and there must exist j €
{1,...,t}, satisfying A, N B; =y;, here y; is called the
destination state of x;.

If y; is equal to the dth column of B;, then the control
sequence is

85 = u(Ou(l)--

where u(i) i = 0,1, ...,k — 1) is the control sequence.

Proof. Since Ay = {x1,...,X;,...,xs}, we have {L¥A,} =
{L¥xy, ..., L*x;, ..., L*x,}; B; = {L*x;} is the reachable set
of x; at kth step. y; = A, N B; means that the transition from
X; to A, is reachable based on the input at the kth step. Then
y; is the destination state and x; is the source state.

Let B;={1,...,d,...,2"}, where d is the dth col-

umn of B;. Slnce d represents a control sequence, 62k =
u@u(l)...utk —1).

This derivation proves the validity of our method. First we
determine the largest reachable set of an attractor, second the
smallest step between two attractors is calculated, third the
destination state and the source state are obtained, and finally

culk — 1), (15)
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FIG. 1. (Color online) Model of gene regulation by protein-DNA
interaction.

the control sequence can be achieved. Based on the control
sequence and Eq. (7), we can solve the state of system in each
step, and the path from the source state to the target state is
also obtained.

IV. EXAMPLES

In order to illustrate our approach, two examples are
given. The first example is an idealized protein-nucleic
acid interaction involved in a gene regulation model, which
describes the dynamic properties of a certain class of control
mechanisms for a macromolecular synthesis in cells [21,22].
It is shown in Fig. 1.

The logic functions of this system are as follows:

A+ =COHFO)+CH)+ F@) + 1,
B(t +1) = A1),
Ct+1) = B(@), (16)
Dt+1)=CH)F@)+C@)+ F(r)+1,
E@+1)= D(),
F(t+1) = E(1),

where A - B represents A conjunction B, and A + B represents

the XOR operation between A and B.

Different attractors of this system represent different levels

of a metabolic species. Using Egs. (2), (3), and (4), we yield
that there are two attractors in the state space:

A; = 101101 — 010010 — 101101,
A, = 111111 — 011011 — 001001 — 000000
— 100100 — 111000 — 111111

Next, the control u(¢) will be added on node A. The
controlled system is expressed as

A+ D) =CHOFt)+CH+ F@)+ 14 u(@),
B(t+1) = A@),

Ct+ 1) = B(),

Di+1)=COF®)+C@)+ F(@)+1,

E(+ 1) = D(t),

F(i+1)=E@).

7)

We change the state of the system from attractor A
to attractor A,. By Eq. (12), the smallest step k =4 is
obtained. By Eq. (14), y; = {001001} is the destination state
and x; = {101101} is the source state. The control sequence
u = (1,0,0,0) is obtained by Eq. (7). The path from the
source state to the destination state is 101101 4 110010 o
111101 = 011010 = 001001. Similarly, we get the control
sequence from A, to Ay, ie., u = (1,0,0,0). The path is

011011 - 101011 > 010000 % 101100 > 010010.
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TABLE 1. Results of control of system (16).

Node S-D attractor Input Control path
A A — A, 1000 101101 2 110010 > 111101 > 011010 > 001001
Ay — A 1000 011011 = 101001 > 010000 = 101100 - 010010
B A — A 100 010010 - 111101 % 011010 > 001001
A = A 100 001001 - 010000 > 101100 > 010010
C A = A, 10 101101 - 011010 > 001001
A — A 10 000000 - 101100 % 010010
D A = A, 1000 101101 5 010110 > 101111 > 010011 > 011011
Ay — A 1000 011011 = 001101 > 000010 = 100101 — 010010
E A — A 100 010010 - 101111 % 010011 > 001001
Ay — A, 100 001001 = 000010 > 100101 > 010010
F A — A, 10 101101 - 010011 > 001001
A — A 10 000000 - 100101 % 010010
Next, we will control node B, and then nodes C, ... ,F. Based on Egs. (2)—(4), we infer that the attractors of the system

Table I shows the results of the control sequences.

In Table I, “Node” stands for the node which is controlled
by u(t). “S-D attractor” represents the source attractor and the
destination attractor. “Input” represents the control sequences
that we need. “Control Path” is the result of the input of each
step, which includes the serial number of the source state, the
input of each step, the serial number of the output state for
each step, and the serial number of the destination state.

In Table 1, it is obvious that the shortest control sequence
from A to A, is u(t) = (1,0), and from A, to A; is u(t) =
(1,0). Therefore, nodes C and F are the optimal control nodes.
Based on Table I, we find which genetic locus can affect
fundamentally the representational value of a biochemical
analysis, and the level of metabolism in this system will be
changed in a specific way.

The second example is the cAMP receptor of Dictyostelium
discoideum, which is a powerful system for genetic and
functional analyses of a gene function. D. discoideum grows as
separate, independent cells but interacts to form multicellular
structures when challenged by adverse conditions. During
aggregation, oscillatory waves of cAMP are generated from
the center of the aggregating territory and are propagated
toward neighboring cells. The responsiveness of cAMP is
involved in the coordination of cell sorting and morphogenetic
shape changes. The attractors of this model represent different
types of cells [23,24]. The signaling pathways controlling
aggregation are presented in Fig. 2.

The BN is areasonable representation of the cAMP receptor
of the D. discoideum system. Its logic functions are

At+1)=C@)+1,

B(t+1)=A@®)+1,

C(t+1)= B(t)H(t) + H(1),

D@ +1)=C(), (18)
E(@+1)= D),

F@+1)=E@+1,

G(t+1)=DE)E@)+ D)+ E(1),
H+1)=F®G@)+ GQ@).

are

A; = 10000100 — 10000100,

A, = 11001110 — 10000010 — 10000101 — 10100100
— 00010100 — 11001110,

A3 = 11001010 — 10000011 — 10100101 — 00110100
— 01011110 — 11001010.

Next, we will take turns to control each node of this system
to change the state of the system from one attractor to another
one. The results of control are shown in Table II.

Table II shows that the shortest control sequence from A
to Ay is u(t) = (1), Ay to Az is u(t) = (1,1), A, to Ay is
u(t)y = (1), Ay to Az is u(t) = (1), Az to Ay is u(t) = (1),
and Az to Aj is u(¢) = (0). It has the best effciency based
on the control of node C. The cAMP (inside the cell) and
cAMP (outside the cell) play essential roles in controlling D.
discoideum development according to Table II. Our simulation
result in Table II verifies previous research results [23]. At the
same time, we find the genetic locus selection criteria for
attractor transit in theoretical basis.

A=PDI

B=PDE

C=cAMP(outside the cell)
RN D=cARI/3

E=Erk-2

F=RegA

G=ACA

H=cAMP(inside the cell)

—— Positive interaction

— — * Negative interaction

FIG. 2. (Color online) cAMP receptor of D. discoideum network.
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TABLE II. Results of control of system (18).

Node S-D attractor Input Control path
A A — A, Unreachable
A — Az Unreachable
A — A 100 11001110 - 00000010 % 11000101 > 10000100
Ay > Az Unreachable
Ay — A 1100 01011110 - 010011010 - 01000011
2 11000101 > 10000100
As — A, 100 11001010 - 00000011 > 11100101 = 00010100
100 01011110 = 01000000 = 11000011 - 10000101
B A — A, Unreachable
Al —> As Unreachable
Ay — A, 10 10000010 - 11000101 = 10000100
Ay — Az Unreachable
As — A 110 11001010 - 11000011 - 11000101 = 10000100
As — A, 10 11001010 = 11000011 = 10000101
10 10000011 - 11100101 > 00010100
C A — A, 1 10000100 - 10100100
Al — A; 11 10000100 - 10100100 = 00110100
A — A 1 10000101 - 10000100
Ay — As 1 10100100 - 00110100
Ay — A 1 10000011 - 10000101
Ay — A 0 10100101 % 10000101
D A — A, 100 10000100 - 10010100 > 10001110 = 10000010
Al — As 1100 10000100 - 10010100 = 10011110
2 10001010 > 10000011
A — A, 100 10100100 - 00000100 = 11000100 > 100000100
Ay — A; 100 00010100 = 11011110 > 10001010 - 10000011
Ay — A 1100 10100101 - 00100100 - 01000100
2 11000100 > 10000100
As — A, 100 10100101 - 00100100 > 01010100 > 11001110
100 00110100 - 01001100 % 11000010 > 10000101
E A — A, 100 10000100 - 10001100 = 10000010 — 10000101
Al — A; 110 10000100 = 10001100 - 10001010 > 10000011
A — A 10 000101000 - 11000110 — 10000100
Ay — As 10 11001110 - 10001010 = 10000011
10 10100100 - 00011100 - 11001010
Ay — A 110 00110100 - 01010110 - 11000110 > 10000100
Ay — A, 100 00110100 - 01010110 > 11001110
10 01011110 = 11000010 > 10000101
F Al — A, Unreachable
Al —> Az Unreachable
Ay — A 10 11001110 - 10000110 = 10000100
Ay — Ay 1 11001110 2 11001010
As — A 110 01011110 - 11001110 - 10000110 = 10000100
Ay — A 1 01011110 = 11001110
G A — A, Unreachable
Al — Aj Unreachable
A — A 10 11001110 - 10000000 > 10000100
Ay — Az Unreachable
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TABLE II. (Continued.)

Node S-D attractor Input Control path
Ay — A, 110 01011110 = 11001000 = 10000000 > 10000100
As — A, 10 11001010 - 10000001 > 10100100
10 01011110 - 11001000 > 10000010
H A= A 1 10000100 - 10000101
A — A; 11 10000100 - 10000101 - 10100101
A — A 1 10000010 > 10000100
Ay — As 1 10000101 - 10100101
As — A, 11 11001010 - 10000010 > 10000100
As — A, 1 10000011 - 10101000

V. CONCLUSION

In conclusion, we have considered the problem of attractor
transformation in a BN, and have provided a general result
which can realize the transformation among different attractors
of a BN by single control. Here, we have demonstrated that
the attractors of the protein-nucleic acid gene network and the
D. discoideum gene network are robust. The robustness for
different attractors are quite different. These robust dynamical
properties are also seen in the common features of GRNs. Fur-
thermore, some people suggested that not only the attractors
of the biological system are robust, but also the pathways are
robust [25]. In some case, biological systems have to be robust
to function with external input. The more robust it is, the more
evolvable, and more likely to be survived; robustness may
provide us with a handle to understand the profound driving
force of evolution.

Although the methods presented in this paper are limited
by computational complexity such that they are only feasible
for small BNs, they do provide complete solutions for some
open problems and they are also relevant and interesting
for the application of a new mathematical tool. Develop-
ing effective algorithms or approximate techniques for the
present approach will be a challenging problem in future
work.
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