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a b s t r a c t

Complex networks have, in recent years, brought many innovative impacts to large-scale systems. How-
ever, great challenges also come forth due to distinct complex situations and imperative requirements in
human life nowadays. This paper attempts to present an overview of recent progress of synchronization
of complex dynamical networks and its applications. We focus on robustness of synchronization, control-
lability and observability of complex networks and synchronization of multiplex networks. Then, we review
several applications of synchronization in complex networks, especially in neuroscience and power grids.
The present limitations are summarized and future trends are explored and tentatively highlighted.
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1. Introduction

Synchronization of a number of coupled systems has been
widely observed in numerous distinct scenarios such as neurosci-
ence, systems biology, electrochemistry, earth science, social soci-
eties and engineering (Arenas, Guilera, Kurths, Moreno, & Zhou,
2008; Dahlem et al., 2013; Gao, Chen, & Lam, 2008; Gu,
Pasqualetti, Cieslak, Grafton, & Bassett, 2014; Huang, Ho, & Lu,
2012; Jadbabaie, Lin, & Morse, 2003; Li, Ho, & Lu, 2013; Lu,
Kurths, Cao, Mahdavi, & Huang, 2012; Maraun & Kurths, 2005;
Pikovsky, Rosenblum, & Kurths, 2001; Ren & Beard, 2008; Saber
& Murray, 2004; Wielanda, Sepulchre, & Allgöwer, 2011; Zamora-
López, Zhou, & Kurths, 2010). The analysis of synchronization is
strengthened due to the fact that natural systems, which we intend
to understand and exploit, are often interacted closely from differ-
ent perspectives, determining the complex dynamics of system’s
properties. For instance, in Uhlhaas and Singer (2006), it is exper-
imentally verified that synchronization plays an important role in
the pathogenesis of several neurological diseases, such as Parkin-
son’s disease, Alzheimer’s disease and essential tremor (Arenas
et al., 2008). In Machowski, Bialek, and Bumby (2008), Rohden,
Sorge, Timme, and Witthaut (2012), power grid networks need to
attain synchronization to make the entire smart grid operate in a
steady state.

Synchronization is a widely studied topic in physics, while the
consensus problem of multi-agent systems is an important
research problem in engineering (Bakule, 2014; Lovisari &
Zampieri, 2012; Sepulchre, 2012). Mathematically, the definitions
for synchronization and consensus are quite similar (Cao, Yu,
Ren, & Chen, 2013; Wielanda et al., 2011). The main difference is
that synchronization focuses on networks with self-dynamics (lin-
ear or nonlinear dynamics) and therefore the final agreement state
could be time-varying. Nevertheless, in multi-agent systems, the
self-dynamics of each agent is usually neglected and thus the
asymptotic consensus state is in general a constant (Cao et al.,
2013; Wielanda et al., 2011). Recently, more and more researchers
borrow ideas from interdisciplinary areas to study issues they care
about of complex networks.

Reviews on the advances made in synchronization of complex
networks or coordination of multi-agent systems never cease.
Some summaries have been presented with various foci in differ-
ent phases such as synchronization in complex networks (Arenas
et al., 2008), synchronization in complex oscillator networks
(Döfler & Bullo, 2014), coordination of multi-agent systems (Cao
et al., 2013; Saber, Fax, & Murray, 2007), collective motions
(Vicsek & Zafeiris, 2012), regulatory networks (Fiedler,
Mochizuki, Kurosawa, & Saito, 2013; Mochizuki, Fiedler,
Kurosawa, & Saito, 2013) and oscillation death versus amplitude
death (Koseska, Volkov, & Kurths, 2013; Saxena, Prasad, &
Ramaswamy, 2012; Zou, Senthilkumar, Zhan, & Kurths, 2013).

During the past decades, extensive studies on synchronization
in complex networks have been carried out by both physical and
control communities assuming different contexts, and various
approaches have been proposed on how to deal with synchroniza-
tion in complex networks. Many systematic results in this regard
have unfolded with respect to the models, the methods and the dif-
ferent approaches for handling synchronization of complex net-
works. Here, we list some recent important topics in the area of
synchronization or related ones:

(1) robustness of synchronization in complex networks;
(2) controllability of complex networks;
(3) observability of complex networks;
(4) synchronization of multiplex networks;
(5) explosive synchronization of complex networks;
(6) chimera states of complex networks;
(7) oscillation death and/or amplitude death of complex

networks.

Since explosive synchronization and chimera states do not gen-
erally fall into the scope of control-oriented investigations (actu-
ally within the scope of statistical physics and nonlinear physics)
and some reviews on oscillation death or amplitude death of com-
plex networks have been reported (Koseska et al., 2013; Saxena
et al., 2012), the state of art on them will not be pursued here. In
this survey, our main focus is on synchronization in complex net-
works related to both control theory and physics, and review
related advances by paying special attention to those which previ-
ous surveys did not refer to. Our purpose is to establish a connec-
tion between physics and engineering by drawing the attention
from both areas to circumvent the above mentioned problems by
developing appropriate control theories and approaches.

We try to present a survey on recent important results in syn-
chronization of complex networks here. While covering all the con-
tributions seems to be impossible, we devote ourselves to
discussing explicit research lines and helping to categorize prob-
lems and methodologies. The survey is organized as follows. In Sec-
tions 2.1–2.4, we overview the robustness of synchronization in
complex networks, controllability and observability of complex
networks and synchronization of multiplex networks, respectively.
In particular, the topics of controllability of complex networks are
categorized into three classes. In Section 3 we focus on the applica-
tions of synchronization in complex networks, ranging from cancer
therapy and power grids to neuroscience. Finally, a brief summary
and outlook are presented in Section 4.

Basic Notations: In this paper, the concept of ‘‘controllability’’ is
based on typical works in complex networks (Liu, Slotine, &
Barabási, 2011) and control theory (Kalman, 1963; Rugh, 1996).
l 2 ½1;N� represents the number of driver nodes of a network,
where N is the network size. dDð�Þ denotes the characteristic func-
tion of the setD, i.e., dDðiÞ ¼ 1 if i 2 D; otherwise, dDðiÞ ¼ 0. Define a
graph by G ¼ ½V; E�, where V ¼ f1; � � � ;Ng and E ¼ feði; jÞg are the
vertex set and the edge set, respectively. The graph G is assumed
to be directed, weighted and simple. Let the weighted and directed
matrix L ¼ ½lij�Ni;j¼1 be the Laplacian matrix of graph G, which is
defined as follows: for any pair i–j; lij < 0 if eði; jÞ 2 E; otherwise,
lij ¼ 0. lii ¼ �

PN
j¼1;j–ilij ði ¼ 1;2; � � � ;NÞ.

2. Main survey

This part is divided into four such parts including robustness in
synchronization, controllability of complex networks, observability
of complex networks and synchronization of multiplex networks.
In discussions for each topic, we shall first make a review on the
main achievements and present some limitations of current
research.

2.1. Robustness in synchronization

Consider a network of N identical systems governed by the fol-
lowing equation:

_xiðtÞ ¼ f ðxi; tÞ � c
XN

j¼1

lijhðxjðtÞÞ;

i ¼ 1; � � � ;N;
ð1Þ

xiðtÞ ¼ ½xi1ðtÞ; xi2ðtÞ; � � � ; xinðtÞ�T 2 Rn ði ¼ 1;2 � � � ;NÞ is the state vec-
tor of the ith node; c is the global coupling strength of the network;
and f ðxi; tÞ ¼ ½f 1ðxi; tÞ; � � � ; f nðxi; tÞ�T is a vector function describing
the evolution of each individual oscillator in the case of no coupling



Fig. 1. Synchronizability and basin stability in Watts–Strogatz networks of chaotic
Rössler oscillators. (a) Expected synchronizability hRi versus the Watts–Strogatz
model’s parameter p. The scale of the y axis was reversed to indicate improvement
on increase in p. (b) Expected basin stability hSBi versus p. The grey shading
indicates ± one standard deviation. The dashed line shows an exponential curve
fitted to the ensemble results for p P 0:15. Solid lines are guides to the eye. The
plots shown were obtained for N ¼ 100 oscillators of Rössler type, each having on
average k ¼ 8 neighbors. Choices of larger N and different k produce results that are
qualitatively the same. The figure is taken from Menck et al. (2013).
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c ¼ 0. n denotes the dimensional size of each node. In the coupling
term, the node is connected through a generic output function
hðxiðtÞÞ. There always exists a synchronous state M¼ fx1ðtÞ ¼
x2ðtÞ ¼ . . . ¼ xNðtÞ ¼ aðtÞg in the Nn-dimensional state space in
which all individual oscillators follow the same trajectory aðtÞ.
Here, the Laplacian matrix L is assumed to be connected, undirected
and unweighted.M being stable means that the network (1) is sta-
ble. According to linear stability adopted in Pecora and Carroll
(1998), the synchronization analysis of (1) can be separated into
two steps. f ð�; �Þ and hð�; �Þ define a master stability function MSFf ;h

that is independent of the network. Then, c and the network define
a set of numbers at which MSFf ;h is computed to find out whether
M is stable or not. It is worth mentioning that the zero-row-sum
property of the Laplacian matrix can ensure the block diagonaliza-
tion of the Jacobian, which makes the master stability approach in
Pecora and Carroll (1998) be powerful to determine the stability
of a synchronized solution by reducing the dimensionality of the
synchronization problem. From the framework presented in
Pecora and Carroll (1998), M is table if c and the eigenvalues
0 ¼ k1 6 k2 6 . . . 6 kN of the Laplacian matrix L satisfy
MSFf ;hðckiÞ < 0;8i ¼ 2; . . . ;N. This condition is equivalent to
demanding that all transverse eigenmodes of M have a negative
Lyapunov exponent (Pecora & Carroll, 1998). Note that many
choices of f and h yield a function MSFf ;h that is negative only in
an interval ða1;a2Þ so that M is stable if a1 < cki < a2;

8i ¼ 2; . . . ;N. Therefore, a very useful condition to ensure stability
is proposed:

R ¼ kN

k2
<

a2

a1
: ð2Þ

By means of (2), the synchronization stateM is stable if c belongs to

the stability interval Is ¼ a1
k2
; a2

kN

� �
. The smaller the ratio R is, the more

the network is synchronizable. This useful condition has been
widely adopted in Sorrentino, Bernardo, Garofalo, and Chen
(2007), Arenas et al. (2008), Menck, Heitzig, Marwan, and Kurths
(2013) and references therein. Although the condition (2) is easy
to check, the level of R does not characterize how stable the syn-
chronous state M is against even larger perturbations, which is
an important topic in both physics (Arenas et al., 2008) and control
theory (Khalil, 2002; Rugh, 1996). In order to answer this funda-
mental question, Menck et al. (2013) employs the concept of region
of attraction to measure synchronizability versus robustness. It is
worth mentioning that the estimation of region of attraction is a
basic issue in nonlinear system theory, which is usually provided
by using the Lyapunov function method (Khalil, 2002).

The concept of basin stability as proposed in Menck et al.
(2013), is a measure related to the volume of the basin of attrac-
tion. Basin stability is nonlocal, nonlinear and easily applicable,
even to high-dimensional systems, which circumvents the prob-
lem of traditional linearization-based approach to stability being
too local.

The approach is used for Watts–Strogatz (WS) networks for par-
adigmatic Rössler systems, whose dynamics can be described as
follows:

_xi1 ¼ �xi2 � xi3 � c
XN

j¼1

lijxj1

_xi2 ¼ xi1 þ axi2

_xi3 ¼ bþ xi3ðxi1 � dÞ

ð3Þ

where a ¼ b ¼ 0:2 and d ¼ 7. Every such network has a synchronous
state in which all nodes follow the same trajectory. A network’s
synchronous state is stable if its synchronizability ratio
R < a2

a1
¼ 37:85 and c 2 Is ¼ a1

k2
; a2

kN

� �
, where a1 ¼ 0:1232 and

a2 ¼ 4:663. Since the value of R does not quantify how stable the
synchronous state M is against perturbations, the synchronous
state’s basin stability SB for several c 2 Is is computed and the mean
SB ¼meanhSBðcÞic2Is

is then obtained. Finally, SB is averaged as hSBi
for different ensembles of Watts–Strogatz model. The volume of
region of attraction B in a relative sense can be measured by

SB ¼
VolðB \ QÞ

VolðQÞ 2 ½0;1�;

where Q is a subset of state space that has finite volume. Specially,
for the simplicity of calculation, the system equations for H initial
conditions are drawn uniformly at random fromQ. SB can be simply
estimated as J

H, where J is the number of initial conditions that reach
the synchronous state M (the other possible attractor being
infinity).

Fig. 1(a) shows that for ensemble networks with too small WS
rewiring probability p, the expected synchronizability R has not
attained the threshold a2

a1
so that the synchronous state is not
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stable. The expected synchronizability improves rapidly, soon
crossed the stability line and then improves even further, leading
to the puzzle that the network becomes more synchronizable for
more random topology. Fig. 1(b) displays that the expected mean
basin stability hSBi unveils a behavior quite different from that of
the expected synchronizability shown in Fig. 1(a). After increasing
very fast initially, the expected mean basin stability hSBi decreases
exponentially as the rewiring probability p increases. The behavior
in Fig. 1(b) a network’s mean basin stability hSBi is determined pri-
marily by the location of its stability interval Is (Menck et al., 2013).

Actually, the concept of region of attraction has been used in
controllability of complex networks (Cornelius, Kath, & Motter,
2013; Sun & Motter, 2013), in which the perturbations are consid-
ered as a tool to drive the states of a system to the region of attrac-
tion of a desired state in contrast to Menck et al. (2013). This way,
the control objective of complex networks can be achieved. The
robustness of complex power grids networks will be discussed in
Section 3.1.

Although the method proposed in Menck et al. (2013) is easy
to carry out and exactly characterizes the basin stability very
well, the computational complexity can be expensive, which lim-
its the results applied to large-scale networks. Therefore, how to
exactly characterize basin stability by using tools from the non-
linear system theory (Khalil, 2002) poses a challenging and
important topic.

2.2. Controllability of complex networks

This subsection is split into three parts, i. e., local controllability,
global controllability-structural controllability and global control-
lability-Lyapunov function method.
2.2.1. Local controllability
The dynamics of natural and technical networks are intrinsi-

cally strongly nonlinear, making them complicated with respect
to their topology and self-dynamics. Hence, nonlinearity is the
main obstacle to control such systems, which has been well dem-
onstrated in Khalil (2002).

Let a reference evolution/state (desired state) be as follows:

_sðtÞ ¼ f ðsðtÞÞ:

It is worth mentioning that the above differential equation is gen-
eral to represent extensive real-world complex systems such as
social networks, economic systems, biological systems and other
natural complex systems (Wang & Su, 2014).

The complex network (1) considered here is a directed one and
is composed of identical systems with several feedback controllers,
which can be formulated as follows:

_xiðtÞ ¼ f ðxi; tÞ � c
XN

j¼1

lijhðxjðtÞÞ � cdMðiÞjiðhðsðtÞÞ � hðxiðtÞÞÞ;

i ¼ 1; � � � ;N; ð4Þ

where xiðtÞ; c; f and h are given in (1). Let lp ¼ lr
p þ jli

p

j ¼
ffiffiffiffiffiffiffi
�1
p� �

; ðp ¼ 1;2; � � � ;NÞ, be the set of eigenvalues of L and

assume that they are ordered by lr
1 6 lr

2 6 � � � 6 lr
N . ji are the feed-

back control gains between the vertex and the desired state. It is

clear that 1 6
PN

i¼1dMðiÞ 6 N. The purpose of local controllability
is to guide the network (4) towards the desired state sðtÞ, i. e.,
x1ðtÞ ¼ x2ðtÞ ¼ � � � ¼ xNðtÞ ¼ sðtÞ.

In order to examine the controllability of network (4), we con-
sider an extended network of N þ 1 dynamical systems yiðtÞ, where
yiðtÞ ¼ xiðtÞ for i ¼ 1;2; . . . ;N and yNþ1ðtÞ ¼ sðtÞ. Then, (4) can be
rewritten as follows Sorrentino et al. (2007):
dyiðtÞ
dt
¼ f ðyi; tÞ � c

XNþ1

j¼1

W ijhðyjðtÞÞ;

i ¼ 1; � � � ;N þ 1;

where W ¼ ½W ij� 2 RðNþ1Þ�ðNþ1Þ in the form of

W ¼

A1 l12 . . . l1N �dMð1Þj1

l21 A2 . . . l2N �dMð2Þj2

..

. . .
. ..

. ..
. ..

.

lN1 lN2 . . . AN �dMðNÞjN

0 0 . . . 0 0

0
BBBBBBB@

1
CCCCCCCA
;

in which Ai ¼ lii þ dMðiÞji. Let kp ¼ kr
p þ jki

p be the pth eigenvalue of
W and assume that kp is sorted as kr

1 6 kr
2 6 � � � 6 kr

Nþ1, where kr
1 ¼ 0.

It has been well recognized that for a large class of systems (in
terms of the dynamic function f and the output function h), there
exists a bounded area of the complex plane centered on the real
axis, for which the MSF is negative (Pecora & Carroll, 1998).

Similar to the analysis method of checking synchronizability of
networks (Sorrentino et al., 2007), the controllability can be
assessed in terms of

P ¼ kr
Nþ1

kr
2
; ð5Þ

and

r ¼max
p

ki
p

n o
: ð6Þ

The smaller P and r are, the easier the network is controllable
(Sorrentino et al., 2007). By means of this method, the dynamical
properties of the network have been decoupled from the factors
encoded in the matrix W. The local controllability of the network
is related to the following three factors: (i) the original structure
of the network topology; (ii) the choice of nodes injected with feed-
back controllers; and (iii) the values of control gains ji, where
dMðiÞ ¼ 1.

It should mentioned that sðtÞ can be viewed as a leader in multi-
agent systems. All the states xiðtÞ of the agent systems follow the
trajectory of sðtÞ. Similar techniques of extension of the Laplacian
matrix have been adopted in leader-following problems in the con-
trol area (Hong, Hu, & Gao, 2006), even in distributed containment
control of multi-agent systems (Ji, Ferrari-Trecate, Egerstedt, &
Buffa, 2008).

Based on this strategy, (Sorrentino et al., 2007) examined the
controllability of undirected networks by assuming ji ¼ j where
two types of pinning control strategies are adopted: (i) Random
pinning: The pinned nodes are randomly selected with uniform
probability from all the network vertices; (ii) Selective pinning:
The l pinned nodes are first sorted according to a certain property
(e. g., the closeness, the importance, the degree or betweenness
centrality), then the pinned nodes are chosen in that particular
order. Obviously, the method is computationally simple, which will
result in conservativeness due to the dissatisfactions of factors (ii)
and (iii). In addition, only undirected networks are taken into
account in Sorrentino et al. (2007).

In order to shorten such a gap, the controllability problem of
networks is treated as a combinatorial and continuous optimiza-
tion problem in the optimization field, which can also be viewed
as a multimodal optimization problem (Tang, Gao, Kurths, &
Fang, 2012a). Namely, the choice of pinned nodes is a combinato-
rial problem and the design of control gains is a continuous optimi-
zation problem. For example, for a network with N nodes and l
pinned nodes allowed to input controllers. Therefore, there exist

N
l

� �
different combinations for choosing pinned nodes. However,
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the traditional easy enumeration method (Sorrentino et al., 2007)
cannot be applied to tackle this problem well. Therefore, an evolu-
tionary algorithm has been developed to enhance the controllabil-
ity of networks. Simulations illustrate that the method in Tang
et al. (2012a) substantially outperforms the approach in
Sorrentino et al. (2007). Although (Tang et al., 2012a) investigated
the controllability problem of complex networks, unfortunately,
the network considered is undirected. Therefore, Tang, Gao, Zou,
and Kurths (2012b) concentrates on the identification of control-
ling regions in neuronal networks of cats’ brain, based on single-
objective evolutionary computation methods, in which the net-
work is directed. Then, one simple way to treat the controllability
of directed networks is to consider the two measures of controlla-
bility P and r, separately. Based on this treatment, the impact of
the number of driver nodes on controllability is revealed and the
properties of pinned nodes are shown in a statistical way. The pin-
ned nodes are illustrated in microscopic, mesoscopic and macro-
scopic scales. It is revealed that the statistical properties of
pinned nodes display a concave or convex shape with an increase
of the allowed number of controlling nodes, indicating a clear tran-
sition in choosing driver nodes from the areas with a large degree
to the areas with a low degree.

Evidently, the way regarding the objectives P and r separately
is unavoidable to induce conservativeness (Tang et al., 2012b).
Additionally, r is usually neglected due to the minor value of r
in most of coupling graphs and thus has trivial or minor impacts
on synchronizability and controllability (Sorrentino et al., 2007).
However, this assumption cannot reflect the actual synchronizabil-
ity and controllability of networks. For instance, in some special
networks, as normalized Laplacian matrix, the value of r is compa-
rable to that of P. Also, as shown in Tang et al. (2012b), r is also
comparable to P when the allowed number of pinned nodes is
large. Based on these motivations, Tang, Wang, Gao, Swift, and
Kurths (2012c) transformed the controllability of networks into a
constrained optimization problem, in which optimizing P is
regarded as an objective and minimizing r is considered as a con-
straint, since P plays a more important role in controllability of net-
works than r in most of scenarios. Based on an evolutionary
constraint optimization method, i. e., an improved dynamic hybrid
framework (IDyHF), the pinned nodes are detected in a micro-
scopic and macroscopic way. The obtained results unveil the rela-
tionships among the locations of pinned nodes, the number of
driver nodes l and the constraint r, which are closely related to
in-degree and out-degree. When r ¼ þ1, the nodes with a large
degree are important to control networks when l is small but the
nodes with a small degree are useful to control networks when l
increases. Similar observations are also presented in Liu et al.
(2011), Yu, Chen, and Lü (2009). When r ¼ 0, the mean degrees
of the driver nodes increase as a function of l (Tang et al., 2012c).

Although the pinned nodes were identified under different lev-
els of constraints in Tang et al. (2012c), it is inevitably to tune the
constraint carefully. Therefore, it is necessary to take into account
two measures of controllability of networks equally, i. e., P and r,
and identify the pinned regions under different levels of con-
straints at the same time. A natural approach is to formulate con-
trollability of networks in a unified framework-a multiobjective
optimization problem. Based on this consideration, by employing
a differential evolution algorithm, a reference-point-based non-
dominated sorting composite differential evolution (RP-NSCDE)
has been developed to handle the multiobjective identification of
pinned nodes in complex networks (Tang, Gao, & Kurths, 2013a).
The proposed RP-NSCDE shows its competitive performance in
terms of accuracy and convergence speed. The proposed evolution-
ary pinning technique has been also compared with other repre-
sentative statistical methods in the complex network theory,
single objective, and constraint optimization methods to validate
its effectiveness and reliability. The results show that there exists
a tradeoff between minimizing two objectives, and thus pareto
fronts (PFs) have been presented (Tang et al., 2013a).

By modifying this model (4), the concept of spatial pinning con-
trol is introduced for a network of mobile chaotic agents (Frasca,
Buscarino, Rizzo, & Fortuna, 2012). In a planar space, N agents
move as random walkers and are connected according to a time-
varying r-disk proximity graph. The controller is only activated
when the agents fall into a given area, called control region. It
has been shown that the control is effective in driving all the
agents to a reference evolution and has better performance than
pinning control on a fixed set of agents. Similar observations have
been reported in stochastic resonance of complex networks, when
partial noise and switching noise were considered (Tang, Gao, Zou,
& Kurths, 2013c). The authors revealed analytically effects of the
relative size of the control region, the agent density and the veloc-
ity on the global convergence of the system to the reference
evolution.

Although extensive results have been reported in local control-
lability of networks by means of the enumeration method (Frasca
et al., 2012; Sorrentino et al., 2007) or heuristic search methods
Tang et al. (2012a, 2012b, 2012c, 2013a, 2014c), there are several
important unsolved topics: (i) it is important to reduce the com-
plexities of the enumeration method and heuristic search methods
by utilizing some analytic methods, although they can be per-
formed by parallel computing; and (ii) it also remains interesting
to include some networked induced constraints such as time-
delays, quantizations, actuator saturations, packet dropouts and
sampling data (Gao et al., 2008; Hespanha, Naghshtabrizi, & Xu,
2007; Zhang, Gao, & Kaynak, 2013;), when studying local control-
lability of complex networks. The first step to address this problem
is to develop intuitive new objectives when including such kind of
factors.

2.2.2. Global controllability-structural controllability
Firstly, consider the following canonical linear, time-invariant

system:

_xðtÞ ¼ AxðtÞ þ BuðtÞ; ð7Þ

where xðtÞ ¼ ðx1ðtÞ; . . . ; xNðtÞÞT is the state vector of a system of N
nodes. xiðtÞ can represent different scenarios such as the position
of robots, the amount of traffic that passes through a node i in a
communication network or transcription factor concentration in a
gene regulatory network (Liu et al., 2011; Ren & Beard, 2008). The
matrix A 2 RN�N denotes the coupling matrix of the system.
B 2 RN�MðM 6 NÞ is the input matrix needed to detect the nodes
controlled by a controller uðtÞ ¼ ðu1ðtÞ; . . . ;uMðtÞÞT . Usually, if one
aims to control a system, the set of nodes needs to be identified,
which can help to control the entire network. In this survey, we call
the nodes with controllers as either ‘‘pinned nodes’’ or ‘‘driver
nodes’’, like Section 2.2.1. The minimum number of driver nodes
ND should be identified such that the entire network can be
controlled.

According to Kalman’s controllability rank condition (Kalman,
1963), system (7) is said to be controllable if it can be driven from
any initial state to any desired final state in finite time, which is
possible if and only if the N � NM controllability matrix

C ¼ ðB;AB;A2B; . . . ;AN�1BÞ; ð8Þ

has full rank, that is

rankðCÞ ¼ N: ð9Þ

Due to the fact that even if all weights are known, there exist 2N dis-
tinct combinations for placing controllers by using a brute-force
search. Hence, the so-called ‘‘structurally controllable’’ (Liu et al.,
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2011) is utilized to control the network to overcome inherently
incomplete knowledge of the link weights in A (Liu et al., 2011).
The authors proved that the minimum number of driver nodes
needed to maintain the full control of the network is determined
by the ‘maximum matching’ in the network. Based on this method,
the structural controllability problem can be converted into an
equivalent geometrical problem on a network: full control over a
directed network can be realized if and only if each unmatched
node is directly controlled and there are directed paths from the
input signals to all matched nodes (Liu et al., 2011). The maximum
matching algorithm in directed networks can be identified numer-
ically in at most OðN0:5SÞ steps, where S is the number of links/edges
(Liu et al., 2011). Hence, it is efficient to detect driver nodes for an
arbitrary directed network and ND can be easily found.

Liu et al. (2011) found that for several real networks, the num-
ber of driver nodes is determined mainly according to the net-
work’s degree distribution. Sparse heterogeneous networks, are
hard to control, while dense and homogeneous networks can be
controlled using a rather small fraction of nodes. An interesting
result is that in both model and practical systems the driver nodes
have a tendency to avoid the high-degree nodes, which coincides
with the findings in Yu et al. (2009), Tang et al. (2012c, 2014c).
For example, denote nD ¼ ND=N, for a directed Erd}os-Rényi net-
work, nD decays as

nD � exp�
hki
2 ;

where hki is the mean degree of the network and hki is large. For
scale-free networks with the degree exponent cin ¼ cout ¼ c in the
large-hki limit, nD decays as

nD � exp �1
2
ð1� 1

c� 1
Þhki

� �
;

A difference of Liu et al. (2011) from the results in Tang et al.
(2012c, 2014c) is that (Liu et al., 2011) aims to find the minimum
number of nodes to guarantee the stability of networks. In Tang
et al. (2012c, 2014c), the allowable number of driver nodes is
gradually changed and, therefore, different sets of driver nodes
are identified, which rely on the number l of driver nodes. Hence,
a transition of driver nodes from areas with a large degree to
areas with a low degree can be observed in Tang et al. (2012c,
2014c). In addition, Tang et al. (2012c, 2014c) examine the con-
trollability of a specific neuronal network and discuss the driver
nodes from the perspective of neuroscience. The results in Tang
et al. (2012c, 2014c) do not show their generality in other net-
works, which is a little bit different from the statistical results
in Liu et al. (2011).

Based on this seminal work Liu et al. (2011), there are inten-
sive and extensive works focusing on controllability of complex
networks (Jia & Barabási, 2013; Jia et al., 2013; Menichetti,
Asta, & Bianconi, 2014; Nepusz & Vicsek, 2012; Pósfai, Liu,
Slotine, & Barabási, 2013; Ruths & Ruths, 2014; Sun & Motter,
2013; Suweis, Simini, Banavar, & Maritan, 2013; Yan, Ren, Lai,
Lai, & Li, 2012; Yuan, Zhao, Di, Wang, & Lai, 2013) and their
applications (Csermely, Korcsmáros, Kiss, London, & Nussinov,
2013; Notarstefano & Parlangeli, 2013). For instance, a dynami-
cal process of controllability defined on the edges of a network
is discussed, and it is shown that the controllability properties
of this process is significantly different from simple nodal
dynamics (Nepusz & Vicsek, 2012), as shown in Liu et al.
(2011). The experiments performed on real-world networks
demonstrate that most of them are easier to control than their
randomized counterparts. The analytic computations reveal that
networks with scale-free degree distributions have better con-
trollability properties than uncorrelated networks, and positively
correlated in and out-degrees are helpful to increase the control-
lability of the edge dynamics. In Pósfai et al. (2013), the effect of
three topological characteristics is investigated for controllability
of complex networks including clustering, modularity and degree
correlations. It is verified by simulations and analytic analysis
that the clustering coefficient and the community structure
(modularity) have no significant impact on the minimum num-
ber of driver nodes ND. Interestingly, degree correlations demon-
strate a robust effect on controllability, which manifest the
findings in Nepusz and Vicsek (2012). In Menichetti et al.
(2014), it is revealed that the number of driver nodes in the net-
work depends on the density of nodes with in degree and out
degree equal to one and two. In Ruths and Ruths (2014), it is
unveiled that standard random network models do not replicate
the types of control profiles found in real-world networks. The
profiles of real networks form three well-defined clusters, which
sheds light on the high-level organization and function of com-
plex systems.

As shown in Liu et al. (2011), Jia and Barabási (2013), there
may exist multiple minimum driver node sets (MDSs) to control
the whole network. Therefore, it is eminently important to quan-
tify the roles of nodes participating in control of a network. A
control capacity is then introduced to measure the possibility
that a node serves as a driver node. A random sampling algo-
rithm is presented to supply a statistical estimate of the control
capacity and shorten the gap between multiple microscopic con-
trol circumstances and macroscopic characteristics of the net-
work under control. The likelihood of acting as a driver node
decreases with a node’s in-degree and is independent of its
out-degree (Jia & Barabási, 2013; Liu et al., 2011; Tang et al.,
2012a, 2012b, 2014c, 2012c; Yu et al., 2009). Moreover, Jia
et al. (2013), Liu et al. (2011) classified each node in a network
based on their role in control as three categories: critical, mean-
ing that a node must always be as a system (it is part of all
MDSs); redundant, indicating that it is never required for control
(does not take part in any MDSs) and intermittent, meaning that
it serves as driver node in some particular control situations. An
analytical and efficient algorithm is proposed to identify the cat-
egory of each node. It is shown that two control types in complex
networks emerge when hki exceeds a critical value kc: centralized
versus distributed control. That is, PðnrÞ (nr is the fraction of
redundant nodes for an arbitrary network) shows a bimodal
behavior, indicating that networks with the same degree distri-
bution PðkÞ can exist in two modes: some have small nr and
for others nr is large. For centralized control, one can realize con-
trol through a small fraction of all nodes (nc þ ni, where nc is the
fraction of critical nodes for an arbitrary network). For distrib-
uted control, most nodes should serve as driver nodes in some
MDSs. Therefore, this phenomenon can also be viewed as a bifur-
cation diagram.

Although it has been widely recognized that the structural con-
trollability theory (Lin, 1974; Liu et al., 2011) delivers a useful and
efficient framework to control any arbitrary directed network, it is
still paramountly important to consider a universal framework for
exploring the controllability of complex networks if exact link
weights are given (Liu et al., 2011; Yuan et al., 2013). Yuan et al.
(2013) presents an exact controllability paradigm on the basis of
the maximum multiplicity to identify the minimum set of driver
nodes for complex networks, even when the link weights are
explicitly given. Based on the Popov–Belevitch–Hautus (PBH) rank
condition (Hautus, 1969), (7) is controllable if and only if

rankðwIN � A;BÞ ¼ N; ð10Þ

is satisfied for any complex number w. Full control can be ensured
for (7), if and only if any eigenvalue k of matrix A satisfies (10).
ND is determined by B as ND ¼minðrankðBÞÞ. Equivalently, ND can
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also be obtained by the maximum geometric multiplicity dðkiÞ of
the eigenvalue ki of A:

ND ¼ max
i
ðdðkiÞÞ; ð11Þ

where dðkiÞ ¼ N � rankðkiIN � AÞ and kiði ¼ 1; . . . ; iÞ represents the
nonidentical eigenvalues of A. The eigenvalue of maximizing (11)
is denoted by kM ¼ arg maxiðdðkiÞÞ. In particular, for undirected net-
works, ND can be computed by the maximum algebraic multiplicity
qðkiÞ of ki:

ND ¼ max
i
ðqðkiÞÞ; ð12Þ

where qðkiÞ is the eigenvalue degeneracy of matrix A. For a large
sparse network, with a small fraction of self-loops, ND can be
obtained by the following equation in terms of the rank of A
(Yuan et al., 2013):

ND ¼ maxð1;N � rankðAÞÞ: ð13Þ

By means of these calculations, a general strategy is presented to
find the driver nodes by the PBH condition (10), in which w is
replaced by kM . The results in Yuan et al. (2013) are general and
can be applied to directed or undirected networks, with or without
link weights and self-loops. The method can be simplified for dense
or sparse networks, which makes it universal due to the wide exis-
tence of sparse networks in real world. In summary, the ‘‘exact con-
trollability’’ serves as a compensation for ‘‘structure controllability’’
when the link weights are explicitly known, while ‘‘structure con-
trollability’’ is to evaluate the controllability of directed networks
when the link weights are not exactly given (Liu et al., 2011;
Yuan et al., 2013).

Another interesting topic to establishing a connection between
complex networks and control theory is to investigate how much
energy is required to control complex networks (Rugh, 1996; Yan
et al., 2012). For the control system (7) from an arbitrary initial
state x0 2 Rn to an arbitrary desired state xTr for t 2 ½0; Tr �, assum-
ing that system (7) is controllable and define the energy cost as fol-
lows Rugh (1996):

UðTrÞ ¼
Z Tr

0
kuðtÞk2dt; ð14Þ

and the optimal control input is

uopt ¼ BT eAT ðTr�tÞW�1
Tr

vTr ; ð15Þ

where WTr ¼
R Tr

0 eAtBBT eAT tdt and vTr ¼ xTr � eATr x0 represents the
difference vector between the desired state under control and the
final state during free evolution. For the sake of simplicity, the
desired state xTr ¼ 0 and the energy cost is rewritten as

UðTrÞ ¼ xT
0H�1x0; ð16Þ

where HðTrÞ ¼ e�ATr WTr e�AT Tr is the symmetric Gramian matrix
(Rugh, 1996). The normalized energy cost is

UðTrÞ ¼
UðTrÞ
kx0k2 ¼

xT
0H�1x0

xT
0x0

: ð17Þ

According to Yan et al. (2012), the normalized energy cost is

1
rmax

¼ Umin 6 UðTrÞ 6 Umax ¼
1

rmin
; ð18Þ

where rmax and rmin are the maximal and minimal eigenvalues of
the positive definite (PD) matrix H, respectively (H is PD, if the sys-
tem is controllable).

Hence, for weighted undirected networks and B 2 RN�1, Yan
et al. (2012) presents the lower bound of Umin:
Umin

� T�1
r ; small Tr ;

� 1

½ðAþAT Þ�1 �cc

; large Tr ;A is PD;

� T�1
r ! 0; large Tr ;A is semi PD;

� eð2kN TrÞ ! 0; large Tr ;A is not PD;

8>>>>><
>>>>>:

ð19Þ

where c is the only node under direct control; A ¼ VZVT , where V is
the orthonormal eigenvector matrix that satisfies
VVT ¼ VT V ¼ I; Z ¼ diagfk1; . . . ; kNg with descending order
k1 P k2 P . . . P kN .

The upper bound of Umax can be derived as follows Yan et al.
(2012):

Umax

� T�/
r ð/� 1Þ; small Tr;

� eðA; cÞ; large Tr;A is ND;

� T�1
r ! 0; large Tr;A is semi ND;

� eð2k1TrÞ ! 0; large Tr;A is not ND;

8>>>><
>>>>:

ð20Þ

where ‘ND’ represents negative definite; eðA; cÞ is a positive value
that depends on the matrix A and the controlled node c. The results
can be generalized for weighted and directed networks.

Then (Pasqualetti, Zampieri, & Bullo, 2014) proposed a metric to
quantify the control problem as a function of the required control
energy. Upper bounds of energy cost are provided to characterize
the tradeoff between the control energy and the number of control
nodes. Sun and Motter (2013) shows that numerical success rate
increases abruptly from zero to nearly one as the number of con-
trol inputs is increased, in which the control trajectories are usu-
ally nonlocal in the phase space, and their lengths are anti-
correlated with the numerical success rate and number of control
inputs.

In addition, Cornelius et al. (2013) proposes compensatory per-
turbations to directly drive a nonlinear network to a desirable state
even when the system stays at an undesirable state. The method is
based on the idea of region of attraction, which is an important
concept in nonlinear systems (Khalil, 2002). An optimization algo-
rithm based on sequential quadratic programming is employed to
realize the compensatory perturbation. It is worth mentioning that
the method can be applied to nonlinear systems, while the compu-
tational complexity needs to be reduced.

Although enormous efforts have been made to study controlla-
bility of complex networks, system (7) is a linear time-invariant
system only. As mentioned in Liu et al. (2011), the controllability
of linear systems can give some insights to that of nonlinear sys-
tems. However, most real systems are driven by nonlinear pro-
cesses (Gao et al., 2008; Hespanha et al., 2007; Zhang et al.,
2013), which can exhibit more rich dynamics (Khalil, 2002). There-
fore, one future topic is to develop control objectives for nonlinear
systems. In addition, for most real networks are time dependent
(for example Internet traffic and flocking of animals (Vicsek &
Zafeiris, 2012)), it is promising to investigate controllability of net-
works with time-dependent connections. Additionally, optimal
control theory can also be applied to characterize the relationship
between convergence speed, energy cost and features of complex
networks (Rugh, 1996), which has been neglected in Yan et al.
(2012), Yuan et al. (2013), Pasqualetti et al. (2014). Finally, combin-
ing the complex network theory into linear system theory (Rugh,
1996), nonlinear system theory (Khalil, 2002) or even stochastic
system theory (Mao, 2007) will result in richer results.

2.2.3. Global controllability-Lyapunov function method
In the last two subsection, we have summarized the recent

advances in controllability by means of linearization (Sorrentino
et al., 2007; Tang et al., 2012c; Wang & Su, 2014 or classical con-
trollability theory Liu et al., 2011; Yuan et al., 2013). Although
both of them can characterize the controllability in a clear way,



Y. Tang et al. / Annual Reviews in Control 38 (2014) 184–198 191
linearization methods (local controllability) suffer from the con-
trollability defined on a neighborhood of a point. Structural con-
trollability (Liu et al., 2011) or exact controllability (Yuan et al.,
2013) mainly focuses on linear time-invariant systems. However,
it is of great importance to investigate controllability of networks
under more complicated environments such as nonlinearities and
stochastic disturbances. Therefore, the Lyapunov-based analysis
technique emerges as a competent one to carry out controllability
analysis for such kind of complex networks, although most of the
results are only sufficient but not necessary.

In Yu et al. (2009), synchronization via pinning control (control-
lability) of complex dynamical networks is investigated for
strongly connected networks, networks with a directed spanning
tree, weakly connected networks, and directed forests. A synchro-
nization criterion is provided for strongly connected networks. It is
revealed that the vertices with very small in-degrees should be
controlled first. Moreover, it is uncovered that the nodes with very
large out-degrees may be controlled. The synchronization condi-
tion is extended for achieving synchronization for networks with
a directed spanning tree. The results show that the strongly con-
nected nodes with very few connections from other nodes should
be controlled and the nodes with many connections from other
nodes can achieve synchronization even without external
controllers.

Tang, Gao, Lu, and Kurths (2014b, 2014a) investigates the prob-
lem of pinning distributed synchronization of nonlinear dynamical
networks with multiple stochastic disturbances and nonlinearities.
Two types of pinning strategies are considered: (i) driver nodes are
fixed along the time evolution; and (ii) driver nodes are switched
from time to time according to a set of binary switching stochastic
variables. For the case of fixed pinned nodes, a novel mixed optimi-
zation method is proposed to select the driver nodes and find fea-
sible solutions, which is made up of a semi-definite programming
method (Tang, Gao, Zou, & Kurths, 2013b) and a constraint optimi-
zation evolutionary algorithm (Tang et al., 2012c). For the case of
switching pinning scheme, upper bounds of the synchronization
error and the mean control gain are derived theoretically, which
indicates that the synchronization performance is closely related
to systems’ parameters, the second smallest eigenvalue of the
Laplacian matrix and the expectations of Bernoulli stochastic vari-
ables. Actually, the idea of switching pinning is similar to spatial
pinning control (Frasca et al., 2012) and switching noise (Tang
et al., 2013c). Note that a general random switching subject to
Markov chain for dynamic systems is proposed in Zhang and
Boukas (2009) where the more practical switching phenomenon,
i.e., only partial information on the transition probabilities is avail-
able a priori, is taken into account; the difference and relation
between nondeterministic and random switching is also revealed.
Such switching underscored in Zhang and Boukas (2009) can effi-
ciently balance the conservatism of worst-case switching scenar-
ios, like arbitrary switching and the necessity of priori knowledge
on the statistics of switching probabilities. The above mentioned
switching among driver nodes can be therefore further modeled
as the pattern proposed in Zhang and Boukas (2009) as well, with
different degrees of known information on modes transitions
depending on different concrete applications. Besides, Wu, Feng,
and Lam (2013) investigates the synchronization problem for dis-
crete-time neural networks with switching parameters and time-
varying delays. As a result of the novel ideas of average dwell time
and piecewise Lyapunov function, the proposed stability and syn-
chronization conditions in Wu et al. (2013) are much less conser-
vative than most of the existing results like Wu, Feng, and Zheng
(2010), thus are very important and significant. By proposing a
novel method named ‘‘average impulsive interval’’, in Lu, Ho, and
Cao (2010), the authors derived a unified framework for synchroni-
zation of impulsive dynamical networks, and the obtained results
were theoretically proved to be less conservative than previous
results.

Although the results in Tang et al. (2012b, 2012c), Yu et al.
(2009), Liu et al. (2011), Porfiri and Bernardo (2008) are obtained
under distinct frameworks or different approaches, they share a
common feature: nodes with small degree play an important role
in controlling the entire network.

2.3. Observability of complex networks

Observability has been verified its importance in biology and
engineering. For example, in systems biology, experimental access
is limited to only a subset of variables of metabolite concentrations
in a cell, which will limit the observations of a complete descrip-
tion of a system’s state (Liu et al., 2011; Liu, Slotine, & Barabási,
2013). Another example is the observability of power-grid net-
works, which is a well-recognized significant problem nowadays.
In power-grid networks, the state of the (complex) voltage at all
nodes can be obtained by phasor measurement units. Real-time
monitoring of measurement from phasor measurement units could
have prevented major recent blackouts (Yang, Wang, & Motter,
2012). Although it seems that a rather comprehensive review of
observability of complex networks is out of the scope of this sur-
vey, we still introduce some advances in this field, since observ-
ability is a dual problem of controllability of complex networks
in control theory (Khalil, 2002; Rugh, 1996).

For system (7) with output yðtÞ ¼ CxðtÞ, (7) is observable if and
only if the observability matrix D

D ¼ ½CT ; ðCAÞT ; . . . ; ðCAN�1Þ
T
�
T

ð21Þ

satisfies rankðDÞ ¼ N. Similar to the controllability problem, a
brute-force search for a minimum sensor set requires to check the
rankðDÞ for about 2N sensor combinations, which is a computation-
ally prohibitive task for large-scale complex systems (Liu et al.,
2013). Hence, a fundamental problem is posed here: identify the
minimum set of sensors such that one can reconstruct all other
state variables from whose measurements. In Liu et al. (2013), a
graphical approach is presented to determine the sensors that are
necessary to estimate the full internal state of a complex system.
The theoretical framework can be used to find the necessary sensors
for an arbitrary nonlinear dynamical system, aiming at providing
the lower bound of the number of system variables required to
observe. In Yang et al. (2012), a new type of percolation transition,
named as a network observability transition, is proposed to
describe the size of the network’s largest observable component.
The results have been validated by both simulations and analytical
analysis. In Fiedler et al. (2013), Mochizuki et al. (2013), the authors
reveal that the long-time dynamics of the entire network is deter-
mined by observations only from a feedback vertex set (FVS). The
results offer a useful criterion to select key molecules to control a
network. It is also unveiled that controlling the dynamics of the
FVS is sufficient to change the dynamics of the whole network from
one state to others, different from the original one.

Like for controllability of complex networks, networked
induced constraints like measurement noise, measurement uncer-
tainties, packet dropouts, time-delays, time-varying sampling
intervals and quantization (Gao et al., 2008; Hespanha et al.,
2007; Zhang et al., 2013) will possibly increase the number of sen-
sors to guarantee its robustness and feasibility. In addition, various
performance indices can also be included to investigate observabil-
ity of complex systems like H1 and/or H2 performance.
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2.4. Synchronization of multiplex networks

The real-world is linked by a complex mixture of networks
through which communication, people and goods flow. The differ-
ent levels of networks are interdependent on each other, and pres-
ent structural or/and dynamical properties different from those
observed in isolated networks (Gao, Buldyrev, Stanley, & Havlin,
2012; Gómez et al., 2013; Radicchi & Arenas, 2013). Such kind of
networks are called interacting, interdependent, multiplex net-
works or networks of networks (Radicchi & Arenas, 2013). Typical
examples for multiplex networks are as follows: social networks
(for example, Facebook, Youtube, Twitter, etc.) are coupled because
they share the same users; transportation networks are made up of
different layers (for example, bus, subway, etc.) that have the same
places; the functioning of communication and power grid systems
relies one on the other (Radicchi & Arenas, 2013). Therefore, it is
important to analyze the statistical behavior of multiplex net-
works, especially the dynamics of multiplex networks (Gómez
et al., 2013; Radicchi & Arenas, 2013).

Consider the following multiplex network composed of M layers
(Gómez et al., 2013; Radicchi & Arenas, 2013):

_xm
i ¼ Dm

XN

j¼1

wm
ij xm

j � xm
i

� �
þ
XM

h¼1

Dmh xh
i � xm

i

	 

; ð22Þ

where wm
ij denotes the weight matrix at layer m (wm

ij ¼ 0 meaning
that there is no link between nodes i and j in layer m); Dm is the dif-
fusion constant; and among nodes in different layers m and h, in
this case with a diffusion constant Dmh. Let M ¼ 2 for the sake of
simplicity, i. e., we consider a multiplex network composed of
two-layer networks. The network at each layer is assumed to be
connected, undirected and weighted. Therefore, a supra-Laplacian
matrix L can be constructed (Gómez et al., 2013; Radicchi &
Arenas, 2013):

L ¼
D1L1 þ pI �pI

�pI D2L2 þ pI

� �
; ð23Þ

where L1 and L2 are the Laplacian matrices of each layer; I is the
identity matrix; p ¼ D12 ¼ D21. The Laplacian matrix of each layer
m is just Lm ¼ Sm �Wm, where Wm is the weight matrix of layer
m and Sm is a diagonal matrix containing the strength of each node
i at layer m, ðSmÞii ¼ sm

i ¼
PN

j¼1wm
ij .

The second smallest eigenvalue of the supra-Laplacian matrix L
is that given by

k2ðLÞ ¼
2p; if p 6 p	;

6
1
2 k2ðL1 þ L2Þ; if p P p	;

(
ð24Þ

where p	 is the critical value at which the transition of the crossing
between two distinct behaviors of k2 occurs (Radicchi & Arenas,
2013). This indicates that

p	 6
1
4

k2ðL1 þ L2Þ: ð25Þ

The importance of discussing the second smallest eigenvalue of the
supra-Laplacian matrix L is that it refers to the algebraic connectiv-
ity and is one of the most significant eigenvalues of the Laplacian to
measure epidemics and synchronizationability. It is strictly larger
than zero only if the graph is connected. Similar results can be
extended to M P 2 by following the analytic analysis in Radicchi
and Arenas (2013), Gómez et al. (2013).

3. Applications

Synchronization or controllability of complex networks has
been widely observed in natural systems such as transportation
systems, chemical reactions and communications (Arenas et al.,
2008; Pikovsky et al., 2001; Vicsek & Zafeiris, 2012). In this section,
we mainly focus on two typical applications of synchronization in
engineering (e.g. power grids) and neuroscience domains.
Although synchronization or controllability has been applied in
other fields such as serving as a novel paradigm of drug discovery
in molecular networks (Csermely et al., 2013), understanding can-
cer progression and to develop effective anti-cancer therapies
(Cornelius et al., 2013), associate memory (Cornelius et al., 2013)
and biochemical reaction systems (Liu et al., 2013), they are not
discussed here since they are out of the scope of this survey.

3.1. Synchronization of power grid networks

3.1.1. Stability of power grid networks
The modern power grid faces various challenges due to increas-

ingly complex interconnections at the continent size and environ-
mental incentives (Giannakis et al., 2014). The ideal power grid is
conceived to have unprecedented awareness and controllability
over its services and infrastructure to offer rapid and accurate diag-
nosis/prognosis, operation resiliency upon contingencies and
deliberate attacks (Pasqualetti, Döfler, & Bullo, 2013), as well as
continuous integration of distributed renewable energy resources
(Giannakis et al., 2014). In Giannakis et al. (2014), a comprehensive
review is provided for grid monitoring and optimization, which is
out of the scope of this survey. In this survey, we focus on the sta-
bility of power grids.

In fact, stability problems of power grids can be treated into
synchronization ones (Chiang, Chu, & Cauley, 1995; Ribbens-
Pavella & Evans, 1985). Synchronization of power grids has been
a classic topic in engineering since more than three decades ago
(Ribbens-Pavella & Evans, 1985) and is long-standing and still
on-going research efforts nowadays (Chiang et al., 1995;
Machowski et al., 2008), which is an imperative factor for the func-
tioning of a power-grid network. Typically, the stability of power
grids can be classified into two categories: transient stability and
steady-state (small signal) stability. Transient stability is concerned
with a power network’s capability of attaining an acceptable
steady-state (operating point) following an event disturbance,
which may arise from event disturbances and load disturbances.
Steady-state (small signal) stability is carried out for linearization
of power grids at operating point.

A review is presented in 1985 for large-scale electric power sys-
tems for transient stability analysis with two distinct methodolo-
gies (Ribbens-Pavella & Evans, 1985). The first approach
investigates application of the direct Lyapunov method to the con-
ventional transient stability analysis. The second methodology
concentrates on the derivation of stability indices, aiming for on-
line monitoring, contingency evaluation and security control. Fol-
lowing this survey, a subsequent comprehensive review for tran-
sient stability analysis is provided in Chiang et al. (1995). In
Ribbens-Pavella and Evans (1985), Chiang et al. (1995), the authors
analyze the advantage and disadvantages of two classical methods:
time-domain method (or numerical integration method in
Ribbens-Pavella & Evans (1985)) and direct method. Due to the
deficiencies of time-consuming and no measure of degree of the
time-domain method, control scientists concentrate on the direct
method in terms of energy function. The progress of direct meth-
ods in network-reduction models and network-preserving models
is detailed reviewed (Chiang et al., 1995). For the latter one, net-
work-preserving models can also be analyzed in terms of the sin-
gular perturbation theory (Khalil, 2002).

However, due to the maturity of complex network theory and
urgency of renewable energy nowadays, it is important to prompt
further synchronization analysis or stability of networks of power
grids under the frameworks of complex network theory and
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nonlinear system theory (Khalil, 2002). The understanding of how
synchronization relies on the topology of power grids and to derive
feasible strategies is of great scientific, ecological and economic
interest to establish new transmission lines. A recent survey on
synchronization of complex oscillator networks is given in Döfler
and Bullo (2014). Some advances for studying synchronization of
power grids are presented in Döfler and Bullo (2013), Döfler,
Chertkov, and Bullo (2013) by using non-uniform Kuramoto oscil-
lators. We do not focus on Kuramoto models based results of syn-
chronization of power grids, since they have been in detail
discussed and reviewed in Döfler and Bullo (2014). The concentra-
tion is on some important results of synchronization of power grids
in complex networks, which are missed in Döfler and Bullo (2014).
Nevertheless, it is worth pointing out that the results of Döfler and
Bullo (2013), Döfler et al. (2013) not only establish a strong con-
nection between the control theory and the nonlinear physics,
but also present more accurate results and relax several assump-
tions in previous results of transient stability of power grids
(Chiang et al., 1995). Döfler and Bullo (2013), Döfler et al. (2013)
do not suppose relative angular coordinate formulations accompa-
nied by a uniform damping, and they do not assume the transfer
conductances to be ‘‘sufficiently small’’. In addition, based on non-
linear consensus protocols (Saber et al., 2007; Sepulchre, 2012) and
synchronization theory, the conditions are presented, which can be
interpreted as ‘‘the network connectivity has to dominate the net-
work’s nonuniformity and the network’s losses’’ (Döfler & Bullo,
2013; Döfler et al., 2013).
3.1.2. Transient stability analysis
In power grids, the networks operate in a steady state when the

consumption in customer side matches the generation from gener-
ator side. In Rohden et al. (2012), a bifurcation simulation firstly
shows that normal operation (a fixed point) and power outage
(the limit cycle) coexist in elementary model grids. The results
on British power grid illustrates decentralization, by its more dis-
tributed nature, which promotes synchrony. When cascade failure
happens in power grid networks, the distributed structure
increases the robustness of the power grid while decentralizing
power sources may moderately be deleterious to the grids’
dynamic stability.

Since increasing energy demands and more strongly distribut-
ing power sources, the question of how to add new connection
lines to the already existing grid arises naturally (Rohden et al.,
2012; Witthaut & Timme, 2012). The effect of additional individual
links on the emergence of synchrony is investigated in oscillator
networks that model power grids on coarse scales (Witthaut &
Timme, 2012). Direct simulations show that adding new links have
two aspects at the same time: not only enhance but also be detri-
mental to synchrony, which can be treated as counter-intuitive
phenomenon to Braess’s paradox known for traffic networks. The
underlying mechanism is mathematically analyzed in an elemen-
tary grid model and illustrates that it indeed happens across a wide
range of systems. Therefore, upgrading the grid or adding new con-
nections needs particular care owing to the potentially desynchro-
nization of the grid and thus inducing power outages (Rohden
et al., 2012; Witthaut & Timme, 2012).

In Menck, Heitzig, Kurths, and Schellnhuber (2014), based on
basin stability proposed in Menck et al. (2013), synchronization
of power grids networks has also been analyzed for maintaining
robustness. In fact, basin stability falls into the scope of transient
stability, which aims to characterize the region of attraction. Actu-
ally, the method used for basin stability in Menck et al. (2013),
Menck et al. (2014) is the time-domain method in Chiang et al.
(1995) or the numerical integration method in Ribbens-Pavella
and Evans (1985). Based on the graph theory, it is found that dead
ends and dead trees heavily diminish stability of power grids. The
basin stability theory is applied to the Northern European power
system, which confirms this result and verifies that the inverse also
holds: repairing dead ends by adding a few transmission lines is
conducive to stability of power grids. In Cornelius et al. (2013), a
compensatory perturbation method is proposed for synchronizing
power grid networks when a link in real power grid networks suf-
fers from disconnection, which also utilizes the concept of the
region of attraction. Therefore, it is very promising to revisit the
transient stability (synchronization) of power grids by integrating
the graph theory, the complex network theory and the nonlinear
control systems theory. It is worth mentioning that the time-con-
suming issue of the time-domain method seems not to be as
important as 30 years ago due to the rapid development of parallel
computing. Consequently, the time-domain method can serve as a
good complement for the direct method, as manifested in Menck
et al. (2013), Menck et al. (2014).

3.1.3. Small signal stability (local synchronization)
In Motter, Myers, Anghel, and Nishikawa (2013), easily-to-veri-

fied conditions are derived for spontaneous synchrony in power-
grid networks by a linearization method, which is actually small
signal stability of power grids (Machowski et al., 2008). However,
due to the introduction of the graph theory and the master stability
function, new synchronization conditions are developed and the
optimization of synchronization performance is also investigated
(Motter et al., 2013). Consider the following swing equation to
describe the dynamics of generator i:

2Q i

wR

d2di

dt2 ¼ Pmi � Pei ð26Þ

where di is the rotational phase of the ith generator, Qi is the inertia
constant of the generator, wR is the reference frequency of the sys-
tem, Pmi is the mechanical power provided by the generator i and Pei

is the power demanded of the generator by the network. In the
equilibrium, Pmi ¼ Pei and frequency wi ¼ _di remains equal to a com-
mon constant for all i.

By linearizing (26) around an equilibrium (synchronous) state,
associated with the electrical power P	ei and mechanical power
P	mi and represented by d	i and w	i , and assuming that
di ¼ d	i þ d0i; Pei ¼ P	ei þ P0ei and Pmi ¼ P	mi þ P0mi, we get

2Q i

wR

d2d0i
dt2 ¼

@Pmi

@wi
w0i �

@Pei

@wi
w0i �

XN

j¼1

@Pei

@dj
d0j; ð27Þ

where the dependence of the mechanical power on changes in the
phase di, is denoted by w0i ¼ _d0i. For the first term in the right hand
side (RHS) of (27), the droop equation is @Pmi

@wi
¼ � 1

wRRi
, where Ri > 0

is a regulation parameter. For the second term of (27), suppose that
there is a constant damping coefficient Di > 0 such that @Pei

@wi
¼ Di

wR
. The

third term of RHS of (27) can be obtained from

P0ei ¼
Diw0i
wR
þ
XN

j¼1

EiEj Bij cos d	ij � Cij sin d	ij

� �
d0ij;

where d	ij ¼ d	i � d	j and d0ij ¼ d0i � d0j;Cij and Bij are the real and imag-
inary components of Yij constituting the admittance Y; Ei is the
internal-voltage magnitude of the ith generator. By reformulating
the n-dimensional vectors of d0i and _d0i by X1 and X2, respectively,
yields the following 2n first-order equations (Motter et al., 2013):

_X1 ¼ X2;

_X2 ¼ �P _X1 �H _X2 ð28Þ
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where P ¼ ðPijÞ is the zero row sum matrix:

Pij ¼
wREiEj

2Qi
ðCij sin d	ij � Bij cos d	ijÞ; i–j;

�
P

k–iPik; i ¼ j;

(
ð29Þ

and H is the diagonal matrix of elements bi ¼
Diþ 1

Ri

� �
2Q i

. Assuming
bi ¼ b, (28) can be diagonalized using Z1 ¼ Q�1X1 and
Z2 ¼ Q�1X2, where J ¼ Q�1PQ. The transformation leads to
_Z1 ¼ Z2 and _Z2 ¼ �JZ1 � bZ2.

Then, system (28) can be decoupled into 2N-dimensional sys-
tems of the form:

_ni ¼
0 1
�ai �b

� �
ni; ð30Þ

where ni ¼ ðZ1j;Z2jÞT ;ai is the ith eigenvalue of the coupling matrix
P.

The stability of the synchronous state is determined by the
Lyapunov exponents of (30):

ki
ðai;bÞ ¼ �
b
2

 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ai

q
: ð31Þ

The synchronization state is stable if and only if the following
conditions is satisfied:

max
f
g

Reki
 6 0;8i ¼ 2; . . . ;N:

Equivalently, the synchronization stability is solely determined by
the master stability function MSFbðaÞ ¼ maxf
gRek
ða;bÞ, in which
a is tunable.

The synchronization stability relies on the second smallest
eigenvalue a2 of P. The optimum of MSFbða2Þ can be achieved at

b ¼ bopt ¼ 2
ffiffiffiffiffi
a2
p

: ð32Þ

For engineering adjustment of the optimum, one can change the
droop parameter Ri to

Ri ¼
1

4Q i
ffiffiffiffiffi
a2
p � Di

; i ¼ 1;2; . . . ;N;

or the damping coefficient Di to

Di ¼ 4Q i
ffiffiffiffiffi
a2
p

� 1
Ri
; i ¼ 1;2; . . . ;N:

As suggested in Motter et al. (2013), the tuning of Ri is suitable for
off-line optimization of stability, because the timescales of Ri are
usually larger than those associated with typical instabilities. Di is
adjusted dynamically at very short timescales and hence is suitable
for online adjustment and fine-tuning under varying operating
conditions.

The results in Menck et al. (2013), Cornelius et al. (2013),
Motter et al. (2013), Rohden et al. (2012), Witthaut and Timme
(2012) confirm that synchronization of power grid networks is a
challenge for ongoing research on smart grids, which could estab-
lish a bridge between physics, control theory and engineering. In
addition, the understanding of robustness and optimization of
power grid networks will give insights into design of more robust
power grid networks (Bolognani & Zampieri, 2013; Giannakis et al.,
2014; Motter et al., 2013), even provide rules for useful controllers
when failures occur and further understand optimization and con-
trol of power grid dynamics (Cornelius et al., 2013; Guerrero,
Vasquez, Matas, Vicuña, & Castilla, 2011; Schiffer, Ortega, Astolfi,
Raisch, & Sezi, 2014; Simpson-Porco, Döfler, & Bullo, 2013).
3.2. Synchronization in neuroscience

Recent advances in structural and functional magnetic reso-
nance imaging, diffusion tensor imaging, magnetoencephalogra-
phy and electroencephalography and recent methods of complex
network theory, promote the investigation of the brain’s structural
and functional systems. It has been shown that brain network has a
spatial topology and representative properties of complex net-
works, such as the existence of highly connected hubs, small-world
topology, and modularity-both at a whole-brain (a macroscopic
level) and a cellular scale (a microscopic level) (Bullmore &
Sporns, 2009; Bullmore & Sporns, 2012; Gu et al., 2014; Tang
et al., 2013a; Zamora-López et al., 2010). It has been verified that
synchronization of distributed brain activity plays a key role in
neural information processing and coordination (Engel, Fries, &
Singer, 2001; Palva, Monto, Kulashekhar, & Palva, 2010; Uhlhaas
& Singer, 2006). From experiments, abnormal neural synchroniza-
tion is found to be closely related to schizophrenia, epilepsy, aut-
ism, Alzheimer’s disease, and Parkinson’s disease. As illustrated
in Palva et al. (2010), Tang et al. (2012c, 2012b, 2013a), Dahlem
et al. (2013), it remains of great significance to study the synchro-
nization or controllability of a neuronal network, which can not
only offer a deep understanding of intrinsic features of synchroni-
zation or control weighted and directed networks, but also be ben-
eficial to supply some suggestions to avoid abnormal
synchronization to suppress neural diseases such as schizophrenia,
epilepsy, autism, Alzheimer’s disease, and Parkinson’s disease
(Uhlhaas & Singer, 2006).

Several recent developments in synchronization or controllabil-
ity of neuronal networks can be referred to Bullmore and Sporns
(2012), Tang et al. (2012c, 2012b, 2013a), Liu et al. (2011), Tang
et al. (2014c) and references therein. Since some of them have been
discussed in previous sections, we elaborate on the results in Tang
et al. (2014c), which focuses on the controllability of neuronal net-
works with constraints on the average value of the control gains
injected in driver nodes. The controllability problem with satura-
tions is considered on a neuronal network of cats’ brain, where
nodes usually stand for brain regions with coherent patterns of
extrinsic anatomical or functional connections, while links repre-
sent anatomical, functional, or effective connections and are differ-
entiated on the basis of their weight and directionality (Tang et al.,
2013a, 2012b, 2014c, 2012c). The connection matrix is academi-
cally extracted from several subtle steps including cortical parcel-
lation, thalamic parcellation, collation of connection data and
translation from database to connection matrix (Tang et al.,
2014c). The cerebral cortex of a cat can be divided into 53 areas
(N ¼ 53), connected by about 830 links with different densities,
as shown in Fig. 2. There are four topological clusters that are in
accordance with four functional cortical communities: visual cor-
tex (16 areas), auditory (7 areas), somato-motor (16 areas) and
fronto-limbic (14 areas).

In Tang et al. (2012c, 2012b, 2013a), the controllability problem
of neuronal networks is investigated without the consideration of
saturations. However, actually, as demonstrated in Tang et al.
(2014c), constraints on control gains should be involved for the
study of controllability of neuronal networks. The significance of
such considerations lies in twofold: (1) The first one is from the
constraint on implementation of engineering equipment and bio-
logical background. Saturations in actuator exist widely in practical
control systems like model predictive control and networked con-
trol systems, since a physical actuator can only produce bounded
signals (Khalil, 2002); and (2) The second one is that only an appro-
priate control input could produce an ideal control performance.
For example, in therapy, the patient’s recovery largely depends
on the dosage of antibiotics, where the input of dosage can be trea-
ted as control gains. On one hand, the excessive injection of dosage
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of drugs will give rise to the creation of multidrug-resistant bacte-
ria and finally no efficient antibiotics are available in various severe
cases. Misuse of antibiotics can also have some damages on the
beneficial bacteria and lead to immune system disorders in human
body. On the other hand, a small injection of dosage will not be
beneficial to patients’ recovery and prolong the recovery time of
patients. Based on these two respects, a suitable dosage should
be injected to help therapy and not to upset the normal mechanism
(Tang et al., 2014c).

In order to consider saturations in controllability of neuronal
networks, K is used to denote the average of the control gains,
which is formulated as follows:
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K ¼meanðjiÞ; ði 2 DÞ; ð33Þ

where meanð�Þ is the mean value operator. We transform the prob-
lem of controllability of a neuronal network into a constraint opti-
mization problem, where P in (5) is the objective to be minimized
and both r in (6) and K in (33) are the constraints.

As in Tang et al. (2014c), two cases are investigated:

(i) The first case is as follows:
min P ¼ kr
Nþ1

kr
2
;

subject to : q1ðyÞ 6 0;
subject to : q2ðyÞ 6 0; ð34Þ

where q1ðyÞ ¼ r� a; q2ðyÞ ¼ K � b;a 2 ½0;þ1Þ and
b 2 ½0;þ1Þ. If a ¼ þ1, the problem considered here only
focuses on the constraint on K and minimizes P. If a–þ1,
the controllability problem concentrates on the constraint
on K and r simultaneously and minimizes the objective P.
(ii) The second case is:
min P ¼ kr
Nþ1

kr
2
;

subject to : h1ðyÞ ¼ 0;
subject to : q1ðyÞ 6 0; ð35Þ

where h1ðyÞ ¼ r� a;a ¼ 0 and q1ðyÞ ¼ K � b. In this case,
the constraint r ¼ a ¼ 0 implies that the controllability of
networks is only lying on P.
In Tang et al. (2014c), a modified dynamic hybrid framework
(MDyHF) is proposed to deal with the controllability problem of
neuronal networks with constraints on the average of control
gains. The main results are shown in Fig. 3. Fig. 3(a) shows that
when b ¼ 50, the allowable control gains are sufficient, i. e.
K < 50. However, different from b ¼ 50, when b ¼ 10 and b ¼ 30,
the control gains should be used completely to enhance the con-
trollability of the neuronal network, i. e. K ¼ 10 or K ¼ 30, respec-
tively. Meanwhile, it is necessary to allocate the dosages to each
node to make the controllability maximal. The observations unveil
that there exists an intermediate control cost to maximize control-
lability of neuronal networks, which demonstrates other similar
phenomena in biological observations and engineering
background.

In addition, in Gu et al. (2014), it is shown that densely con-
nected areas, particularly in the default mode system, are benefi-
cial to the movement of the brain to various easily-reachable
states. Weakly connected regions, particularly in cognitive control
systems, are conductive to the movement of the brain to difficult-
to-reach states. Regions located on the borders between network
communities, particularly in attentional control systems, contrib-
ute to the integration or segregation of diverse cognitive systems.

4. Conclusions

In this paper, investigations on recent several important topics
in synchronization of complex networks are mainly surveyed,
including robustness in synchronization, controllability of com-
plex networks, observability of complex networks, synchroniza-
tion of multiplex networks and two important fields of
applications of synchronization in power grids and neuroscience.
In Section 2.1, we discuss the importance of the region of attrac-
tion in complex networks and show that there may exist a trade-
off between synchronizability and ‘‘basin ability’’. In Section 2.2,
we propose to classify recent works in controllability of complex
networks into three categories: local controllability, global con-
trollability-structural controllability and global controllability-
Lyapunov function method. Extensive works in enhancing con-
trollability or related topics have been reviewed and the connec-
tion between control theory and complex theory has been
discussed. The applicability or the limitations of the developed
approaches have not been commented on to some extent. In Sec-
tion 2.3 and 2.4, observability of complex networks and synchro-
nization of multiplex networks have been surveyed, respectively.
Finally, we are aware that it is hardly possible to cover all contri-
butions in applications of synchronization of complex networks;
therefore, attention is paid to synchronization of power grids
and neuronal networks and related control issues of the vast lit-
erature, as shown in Section 3.

Despite diverse results have been reported, there are several
challenges that should be investigated in future research. We high-
light some of them as follows:

(i) For studies of synchronization of complex networks, it is
interesting to introduce distinct networked-induced con-
straints (Gao et al., 2008; Hespanha et al., 2007; Zhang
et al., 2013) into the frameworks of synchronization such
as time delays, time-varying sampling intervals, packet
dropouts, saturations, communication noises and quanti-
zation errors, where the networked-induced constraints
can be modeled either in a deterministic or a stochastic
way.

(ii) It is promising to apply methods from control theory to syn-
chronization of complex networks such as linear system the-
ory (Rugh, 1996), nonlinear system theory (Khalil, 2002) and
stochastic system theory (Mao, 2007). Further, synchroniza-
tion of complex networks can be considered under various
performance indices such as H1;H2 and Lp, etc. In addition,
statistical information in different scales (microscopic, mes-
oscopic and macroscopic scales) can also be introduced into
the traditional control theory to capture the key points of
complex systems, thus facilitating the in-depth understand-
ing of large-scale networked systems. The usage of these
tools would provide solutions that are not only capable of
dealing with different kinds of complexities in complex net-
works but also provide a more exact way to understand the
synchronization of real world complex networks.

(iii) In contrast to model-based approaches, data-driven control
employs the information obtained from the available mea-
surements to describe various complex behaviors (Yin,
Ding, Xie, & Luo, 2014), thus has provided an efficient strat-
egy for control issues in complex engineering applications.
As for heterogenous complex networks (Zhang, Tang, Wu, &
Fang, 2014), the self-dynamics of some nodes may be
unknown and time-varying under complicated circum-
stances. Hence, it is meaningful to design controllers to real-
ize synchronization based on the analysis of historical data.

(iv) Intelligent methods, such as neural networks and fuzzy sys-
tems, can be adopted for modeling dynamics of complex
networks. Additionally, single objective/multiobjective evo-
lutionary algorithms and constraint evolutionary algorithms
are promising to serve as a candidate to handle complicated
optimization problems in complex networks like controlla-
bility problems.

(v) It should be mentioned that the comprehensive studies inte-
grating some topics above are not sufficient yet, especially
for controllability of interdependent complex networks and
robustness in controllability of complex networks (Bakule,
2014). It would be challenging and promising to simulta-
neously consider controllability, robustness, multiple layers,
especially applying the results in robotic systems, neurosci-
ence and power grids.
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(vi) Power grids are becoming more distributed, intelligent, and
flexible (Bolognani & Zampieri, 2013; Guerrero et al., 2011).
Nowadays, since small distributed power generators and
dispersed energy-storage devices are required to be added
into the power network, smart grids are proposed to deliver
electricity from suppliers to consumers to save energy, thus
lessening cost and improving reliability and transparency.
Owing to the emergence of microgrids in nowaday power
grids, it becomes more important to utilize the droop con-
troller to avoid circulating currents among the converters
without using any critical communication (Guerrero et al.,
2011; Schiffer et al., 2014; Simpson-Porco et al., 2013).
Hence, it is imperative to utilize complex network theory
and control theory to enhance the controllability of power
grids by employing hierarchical control (Guerrero et al.,
2011; Schiffer et al., 2014; Simpson-Porco et al., 2013).
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