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Abstract— This paper is concerned with the problem of pinning
synchronization of nonlinear dynamical networks with multiple
stochastic disturbances. Two kinds of pinning schemes are con-
sidered: 1) pinned nodes are fixed along the time evolution and
2) pinned nodes are switched from time to time according to
a set of Bernoulli stochastic variables. Using Lyapunov function
methods and stochastic analysis techniques, several easily verifi-
able criteria are derived for the problem of pinning distributed
synchronization. For the case of fixed pinned nodes, a novel mixed
optimization method is developed to select the pinned nodes and
find feasible solutions, which is composed of a traditional convex
optimization method and a constraint optimization evolutionary
algorithm. For the case of switching pinning scheme, upper
bounds of the convergence rate and the mean control gain
are obtained theoretically. Simulation examples are provided to
show the advantages of our proposed optimization method over
previous ones and verify the effectiveness of the obtained results.

Index Terms— Complex networks, evolutionary algorithms
(EAs), multiagent systems, neural networks, stochastic
disturbances, synchronization.

I. INTRODUCTION

VER the past few years, synchronization and consensus
problems have been widely investigated in networked
dynamic systems [1]-[8] and diverse applications have been
found in the fields of coupled oscillators, heart beating, neu-
ronal networks, flocking, formation control, gossip algorithms,
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rendezvous in space, artificial intelligence, distributed sensor
fusion in sensor networks, and belief propagation [9]-[14].

In realistic systems, the agent systems or complex
networks often suffer from noisy environment and, therefore,
the stochastic modeling approach has been used to represent
stochastic events in many branches of science, such as
neuroscience, communication networks, and networked
systems. To model the dynamics of networks in a more
realistic way, many efforts have been devoted to problems
of external stochastic disturbances for the synchronization
of stochastic linear/nonlinear dynamical networks [15]-[17].
However, the corresponding research for the impacts of
stochastic disturbances on synchronization performance of
networks/multiagent systems, i.e., mean control gain and
convergence rate, has received much less attention, and this
constitutes the first motivation for this paper.

For many biological, physical, and social networks, there
exists a common requirement to regulate the behavior of
large ensembles of interacting units using a small fraction of
inputs [7], [16]-[18], which can strongly reduce the control
gain compared with a control with more inputs. Recently,
different kinds of effective approaches, including adaptive
controllers [17], [19], impulsive controllers [16] and pinning
state feedback controllers [20]-[22], have been proposed for
the coordination and synchronization of complex dynamical
networks.

In networked circumstances, multiagent systems/complex
dynamical networks are often subjected to a switching envi-
ronment [1], [5]. One important modeling approach is random
switching using Bernoulli stochastic variables, which can be
used to represent random switching in topology [23], non-
linearity [15] and control failure [17], and so on. However,
the concept of switching pinning scheme has been overlooked
widely and the intrinsic connection between the Bernoulli
switching pinning scheme and the usual pinning strategy has
not been studied, which is the second incentive of this paper.

Usually, the statistical properties of networks are used to
set the pinned nodes at the beginning and several criteria
should be satisfied to ensure the synchronization of dynamical
networks [17], [19], [24]. However, such kinds of methods lead
to unavoidable conservativeness, since the selection of driver
nodes is a combinatorial optimization problem and thus is a
natural NP-hard problem. To improve the selection of driver
nodes, several initial attempts have been made to convert the
selection of driver nodes into a single objective optimization

2162-237X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



TANG et al.: PINNING DISTRIBUTED SYNCHRONIZATION OF STOCHASTIC DYNAMICAL NETWORKS

problem [10], [25], a constraint optimization problem [7], and
a multiobjective optimization problem [14]. Nevertheless, the
optimization of control gains is a continuous optimization
problem, which greatly imposes a serious burden on com-
putational resources. Therefore, natural questions arise: is it
possible to narrow such a gap using evolutionary algorithms
(EAs) to select driver nodes without designing control gains
and find feasible solutions for obtained criteria in terms of
convex optimization methods? Is it feasible to take advan-
tage of convex optimization methods for matrix computation
and EAs for combinatorial optimization problems? The third
purpose of this paper is to pave the way for dealing with
the pinning distributed synchronization of stochastic complex
networks using a novel mixed optimization method.
Summarizing the above discussions, the focus of this paper
is on the pinning distributed synchronization problem of
nonlinear networked systems with multiple stochastic distur-
bances using a novel mixed optimization method. The main
contributions of this paper lie in the study on the relationship
of two kinds of pinning schemes and a novel optimization
method, which can be summarized as follows: 1) two kinds
of pinning schemes are investigated and their relationship is
figured out; 2) the effects of multiple stochastic disturbances
on synchronization performance are illustrated; and 3) the
optimization problem of pinning distributed synchronization is
investigated by a newly developed mixed optimization method.
This paper is organized as follows. Section II presents the
model. In Section III, several conditions are presented to
guarantee the pinning distributed synchronization of stochastic
networked systems in mean square sense. Section IV presents
the developed optimization method. Several examples are
given in Section V to verify the effectiveness of the proposed
method. Concluding remarks are given in Section VI.

II. PRELIMINARIES

In this section, the model of nonlinear dynamical networks
with multiple stochastic disturbances as well as some basic
concepts of constraint optimization problems are presented.

Before presenting the results, the following notations are
required.

Notations: In this paper, R” and R"*™ indicate, respectively,
the n-dimensional Euclidean space and the set of all real
n x m-dimensional matrices. The superscript T represents
matrix transposition and the notation X > Y (respectively,
X > Y) where X and Y are symmetric matrices, means that
X —Y is positive semidefinite (respectively, positive definite).
I, is the identity matrix of order m. The Kronecker product of
matrices X ® Y € R™P*"  where X € R™*" and Y € RP*9.
|| - || is the Euclidean vector norm in R”. Let a graph be
G = [V,€], where V = {1,..., N} stands for the vertex
set and £ = {e(i, j)} is the edge set. N; represents the
neighborhood of vertex i in the sense N; = {j € {V :
e(i, j) € &}. The graph G is supposed to be connected and
undirected, (e(i, j) € & implies e(j,i) € &) and simple
(without self-loops and multiple edges). Let L = [a,-j]f.j’ =1
be the Laplacian matrix of graph G, which is defined as: for
any pair i # j,a;j = aj; = —1 if e(i, j) € &; otherwise,
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ajj = aj; =0. ajj = — Z;-Vzljj#i a;j is the degree of vertex
i (i €V). The symbol #Q stands for the number of elements
in finite set Q composed of the vertices to be controlled.
For Q@ C V and Vi € V\Q, there exists at least one vertex
J € Q such that a path between the vertices i and j exists. Let
(Q, F, P) be a complete probability space, where Q represents
a sample space, F is a c-algebra and P is a probability
measure. [E{a} stands for the expectation of a. Prob{.} denotes
the probability of one event.

A. Nonlinear Dynamical Networks With Multiple Stochastic
Disturbances

Here, we consider complex networks, which are composed
of identical nodes with multiple stochastic disturbances as
follows:

dxi() = [f(xi, Dk D @) - xi(r»]dr
JeN;

+ Z O-m(-xl'a t)dwm(t),
meA

ieV (1)

where x;(t) = [xi1(t), xi2(t), ..., xin()]T € R"G € V)
denotes the state vector of the ith node; f(x;,f) =
[fi(xi, 1), ..., fu(xi,)]7 is a continuous nonlinear function
to stand for the node’s dynamics; k is the global coupling
strength of the network; o, (-, -) : R x R" — R”" is the noise
intensity function, where A is the set A = {1,...,q} for
different noise intensities; w,,(t)(m € A) is 1-D Brownian
motion defined on (Q, F, P) satisfying E{dw,,(t)} = 0 and
E{[dw, (t)]z} = dt. According to Gershgorin disk theo-
rem [26], all the eigenvalues of L corresponding to graph G
satisfy the following relationship 0 = 41(L) < A3(L) < --- <
An(L). In addition, G is connected if and only if 12(L) > 0.
Since G is connected, we conclude that (L ® I,,)x = 0 if and
only if ¢;; = O holds for Vi, j = 1,..., N, where ¢;; = x; —x;
is the difference between the states of nodes i and j. Note that
N equals to the cardinality of V.

To achieve global synchronization of the complex network
in (1) in mean square, distributed controllers u; (¢) are added
into the set of driver nodes (pinned nodes)

50) = | £k 3 06,0 = x0) + )

JeN;
+ Z U'm(xi»t)dwm(t), i@
meA
dxi(1) = [f(xi, 0k > () - xi (r))}dr
JjeN;
+ D on(xi, Ddwn (@), i ¢ Q. )
meA

In the following, we consider two kinds of pinning mecha-
nisms, which are formulated as follows:

R1 is a fixed pinning set

Ri,
= 3
{Rz(t), Ro(t) is a time-varying pinning set )
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where R stands for the fixed pinning set and R, () is the
stochastic switching pinning set according to a set of Bernoulli
variables.

The distributed controllers u;(t) are written as follows:

wi(t) = > &) (x; () — xi(0)),
JjeN;:

i€Q 4)

where ¢;(r) is the control gain of vertex i, which is updated
according to the following:

T
dei(t) = a[ > xji) - x,-(t))}
JeN;

X[Z(Xj(t)—xi(t))}dt, ieQ (5
jeN;

where o > 0.

The Bernoulli switching pinning set R2(¢) is time-varying
according to a set of Bernoulli variables ¢;(¢), (i € V), which
describe the following events:

(6)

node i € Rp(z), if ¢i(t) =1
node i ¢ Ro(¢), if ¢i(t) =0

where Prob{¢; (1) = 1} = E{¢;(1)} = ¢i € [¢,¢] < [0, 1].
Here, we assume that all Bernoulli variables ¢;(t) (i € V)
and the Brownian motions w,, () (m € A) are independent
of each other. The Bernoulli variables follow an unknown
but exponential distribution of switchings and the probabilities
should be known a priori [15].

Remark 1: In most of the existing results regarding pinning
synchronization problems, fixed pinning schemes are consid-
ered, see [7], [10], [17], [18], [20], [21], [24], [25], [27], and
references therein. Different from these works, we consider
two kinds of pinning mechanisms: the first one follows the
idea in [7], [10], [17], [18], [20], [21], [24], [25], [27], and
the second one is a time-varying pinning set to be updated
according to a binary switching. Actually, the first pinning
scheme is a special case of the second one. One can set some
nodes in V to be always chosen (by setting the probabilities
¢i = 1,i € Q) and some nodes to be never selected as driver
nodes (¢; = 0,i ¢ Q). In this special case, the second pinning
scheme reduces to the first pinning one.

Remark 2: In the fixed pinning set /%1, only a small fraction
of nodes are allowed to assess the distributed controllers
along the time evolution. However, in the Bernoulli switching
pinning set R2(¢), each node in set V has the possibility of
being chosen as a pinned node. To make a connection between
R1 and Ra(z), we give the following descriptions. Since R ()
is stochastic switching and time-varying, we can only calculate
the expectation of the element number in R (¢) as E{#R>(¢)}.
Assuming that E{#R»(t)} = #R holds, the equality shows
that the expectation of the number of pinned nodes equals
to that of in the fixed pinning set R1. More precisely, we
define the pinning portion pg for Ry and R, (), which has
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the following relationship if E{#R,(t)} = #R:
#R1
N
E{#R(1)}
N
ey Probigy(1) = 1)

N
_ Zi 2% Qbi
== (N
N
Remark 3: Different from the usage of Bernoulli variables
in [17], the Bernoulli variables here are used to characterize
a pinning set in networked systems, while the Bernoulli
variables in these works are used to characterize the failure of
distributed controllers. In [17], only a fixed pinning scheme is
considered. That is, for the nodes in R1, the controllers might
suffer from the failure to activate. Therefore, only a part of
nodesi € 7@2 (t) € R can be activated in R . Here, Bernoulli
variables are just used to characterize the switching pinning
set Ry (). In this paper, two kinds of pinning strategies are
considered for investigating the problem of pinning distributed
synchronization of stochastic networked systems.
Based on the above expression and for the sake of math-
ematical derivation, system (2) under R and R (#) can be
written as follows, respectively:

Po =

dxi(1) = [f(xi, D +k D () —xi(0) + ui(t)}dt

JeN;
+ D omxi, dwy (), i €Ry
meA
50 = | 7.0k 3 05,0 =509 [
JeN;
+ D owlxi, Ddwn (), i ¢ R ®)
meA
and
dxi(t) = [f(xi, D +k D () = xi() + pi(Ou; (t)}dt
JjeN;
+ D omlxi dwy (), i€V 9)
meA

Remark 4: The model (8) or (9) is quite general, which
includes the self-nonlinear dynamics f (., .), the coupling term
and multiple stochastic disturbances o, (.,.). The multiple
stochastic disturbances >, . 4 om(xi, 1)dw;,(t) characterize
the noises coming from different sources in a networked
environment. Therefore, the stochastic perturbation term here
encompasses the one in [17], which was also neglected in [24].
In addition, one of the main characteristics of this paper is to
study the effects of stochastic disturbances on the synchro-
nization performance of dynamical networks. Compared with
[28], there are major differences in both research problems and
optimization methods. In this paper, the optimization method
is a mixed optimization method including both constraint
evolutionary computation methods and semidefinite program-
ming (SDP). In addition, two kinds of pinning schemes are
considered and stochastic disturbances are included in this
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paper. In [28], using SDP, the synchronization was investigated
for the network with multiple randomly occurring events
including nonlinearities under random switchings.

For the switching pinning set R (¢), we introduce two mea-
sures to characterize the average of terminal control strength
and convergence rate, respectively

1
M. = N Zfi,oo
ieV

(10)

o0 1 _ _
My = E{ /O ~ 1 g[xi(r) — 2O xi(n) — x(z)]dr]
(1)

where x(t) = (1/N)x(¢) and €00 = lim;— o0 Efe;(¢)}. It is
worth mentioning that a good synchronization performance
indicates a high convergence rate (a small M) and low mean
control gain (a small M), as shown in (10) and (11).

The following assumptions and definitions are necessary to
derive our main results.

Assumption 1 [17]: Functions f (x;, t) and o, (x;, t) are said
to be locally uniformly Lipschitz continuous with respect to ¢
if there exists positive constants /2 and g;, (m € A) such that
the following inequalities hold for all x;, x; € R":

ILf(xint) — fxj, O < hallxi — xjl
||0'm(xi;t) _O'm(xj»t)” = gm”xi _.Xj”, l;.] € Vﬂm € A

(12)

Assumption 2 [29]: A vector-valued continuous function
f(x,1) : R" x Rt — R” is said to be uniformly decreasing
if there exist ¥ > 0 € R and A > 0 € R such that

C=NTfED—fO,D—wE—] <-AGx—y) x—y)
(13)

holds for all x,y € R" and ¢ > 0.
Assumption 3: f(0,t) =0 and ¢,,(0,1) =0, m € A.
Definition 1: Let x;(t)(1 < i < N) be a solution of
the stochastic complex network in (2), where x;(0) =
(x?,xg,...,xg). If forallt >1,1 <i <N
lim Ellx; (1) —x;(0OII° =0, i,jeV
—>00
then the complex network with multiple stochastic disturbances
in (2) is said to achieve pinning distributed synchronization in
mean square.

B. Preliminaries for Constraint Optimization Problems and
Evolutionary Algorithms

In general, the constrained optimization problem
can be written as follows: find the decision variables
X=(xy,...,xp) € R? to minimize the objective function

min Fj(X), ¥€QCS

where Q is the feasible region and S is the decision space
defined by the parametric constraints L; < x; < Uj,
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i = 1,2,...,D. X should satisfy r constraints including 1
inequality constraints
0;(%) <0, j=12,...,1
and # = m — 1 equality constraints
Hj(xX)=0, j=1+12,...,r.

The degree of constraint violation of a vector ¥ on the jth
constraint is defined as

max{0, Q;(x)},

. l<j=u
M;(x) = Imax{O, |H;(X)},

1+1=<j=<r (14

Then, (%) = Z;’=1 M;(x) shows the degree of constraint
violation of the vector X.

EAs are artificial intelligence search approaches inspired
by natural selection and survival of the fittest in biological
society [30]. Recently, constraint optimization EAs (COEAs)
have been significantly improved for dealing with constraint
optimization problems. COEAs are made up of two major
parts: a search algorithm and a constraint-handling approach,
where the search algorithm is aimed to enhance the exploration
and exploitation abilities of the population and the constraint-
handling approach concentrated on incorporating the con-
straints into EAs. In the following, more details regarding
COEAs will be given.

III. CONDITIONS AND UPPER BOUNDS FOR PINNING
SYNCHRONIZATION OF STOCHASTIC
DYNAMICAL NETWORKS

In this section, the pinning synchronization problem of the
dynamical network in (8) and (9) will be investigated under
two pinning sets Ry and R;(t), respectively. Upper bounds of
M, and M, are derived for @ = R;(¢). The proof of the
following results are based on [17] and [21].

A. Synchronization of Dynamical Networks Under Q = R

Theorem 1: For Q = Ry, suppose that f(.,t) is contin-
uous on (.,¢#) € R" x RT and satisfies Assumptions 1-3,
om(., 1), (m € A) satisfies Assumptions 1 and 3 and the graph
G is connected. If there exists a positive constant a such that
the following inequality holds:

1 .
[(w +3 > gi)IN —aLly —ij| L<0 (15

meA
where
s 1, ifi=jr, ) =1
IN(Z’J)_IO, otherwise

then the stochastic network in (8) under (4) and (5) will
be globally synchronized in mean square and the coupling
strengths will converge in mean.

Proof: Let e;j = x; — xj,Vi,j € V. Define x =
[x],...,xZ1" € R"™N. Choose the following Lyapunov can-
didate

1 1
V(1) = ZZ > eleii+ () —a)?  (16)

ieV jeN; ieR
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where a is a positive constant.
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Using Assumptions 1, (16), (18), and (19), we have

By the Ito-differential formula [31], the stochastic derivative

of V can be obtained as follows:

LV < —Z D el lf (i) = fxj, 1) — pei )
ieV jeN;

T
dv(t) = LV (t)d
(t) (0)dr + 5 ;/;N’geu +3 Z D weleij — kZ[Z e,-,} [Z ew}

X[ (1 (1), 1) — 0 (1), DA w (). (17) e Ve T N
To satisfy Definition 1, we need to prove that —a Z [ Z €ij :| [Z €ij i|
E{dV(t)/dt} < 0. Note that taking the expectation of ’ER‘ jeNi jeNi
both sides of (17), E{dV(t)} = E{&LV(t)dt} < 0, since 4= Z g2 (L ® I,)x. (20)
E{dw,;,(t)} = 0. Therefore, in the following, we only need m A

to prove that E{.ZV (¢)dt} < 0. The operator .Z is given as

follows according to (8):

Using Assumption 2 and (19), we yield from (20)

ZLV(t) < ——Z Z Aeljel] + - Z Z z/leljel]

LV = = ZZ U[(f(xl,r)—f(x,,r)) iV jeN; 2o

1eV jeN;

+ kz (xg—x;) — k Z (xr—xj)

keN;

ieV jeN; JeN;
+ = Zg xT(L® I)x

o iz

reN;

T z Z u{ft(’)[Z(xk—xl} meA

lER] jeN;

keN;

—fj(f)[
rEN;

S| Tl )

ieR| = jeN; JeN;
Z (x, _xj)i“
= —AxT(L® L)x +xT { [(w + 5 Z gy
meA

T
+ > (et —a)[ >, eu} [ > ezy} —aLly —kL}L@I,,]x

i€R jeN;

+ - Z Z Z [om (xi (1), 1) — O-m(x](t) t)]

lEV jeN;meA

X O-m(-xi(t)a t) - O-M(-xj(t)’ t)]

jeN:
< —AxT(L ® I)x. 1)
Therefore, pinning synchronization of the complex network

(18) in (8) will be achieved in mean square. This completes the
proof. [ ]

Following the definition of e;;,x, L and Assumption 2, we  Remark 5: From Theorem 1, (15) should be satisfied to

obtain
— Z Z el]el] =xT(L ® I)x,
lEV]EN
T
s(54) (51)
ieV “jeMN; JjeN;:

=x"(L*® I,)x,

ensure mean square pinning synchronization of the dynamical
network in (8), in which a fixed pinning set is considered.
However, Iy is a singular matrix to denote whether one node
is chosen as a driver node or not, which will lead to much
difficulty to satisfy this inequality. One has to determine the
pinned nodes first and then use a convex optimization method
to satisfy (15), as shown in [17]. Recently, a large number
of methods have been proposed to select driver nodes (pinned
nodes), such as degree-based methods, betweenness centrality-

EH Z Z eg €i (1) Z eki] based methods and closeness-based methods [25]. However, it

ieRy jeN;

has been shown in [18] that such kinds of methods are easy
to apply but fail to achieve satisfactory performance, since

keN;

T
= — Z € (;)|: Z eij:| [ Z eiji| they inevitably induce conservativeness. In [7] and [25], we

ieRl jeN;

have proposed improved single objective EAs (SOEAs) and
constraint optimization EAs (COEAs) to select pinned nodes

jeN;

X — Z Z Z [om(xi (1), 1) for pinning synchronization of complex networks.
lEV jeNimeA Remark 6: 1t is worth mentioning that although improved
—om(x j(t),t)]T EAs have been proposed for identifying driver nodes of
< [om (i (1), 1) — o (x; (), 1)] complex netyvorks and blologlc.al netw.orks [.7], [10], [2.5], we
1 have to design the control gains, which will greatly induce
<= z gixT (L ® I)x. (19) complexity of the optimization problems. Fortunately, adaptive
2 meA control can avoid this problem by updating control gains
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according to the environment. In addition, the controllability
in [7], [25], and [10] is a so-called local controllability,
while in this paper, the problem of global controllability of
complex networks is investigated. In the proposed method,
the control gains are updated according to adaptive laws and
EAs are used to identify key nodes to inject controllers, which
greatly reduces complexity. Hence, our work improves the
optimization methods in [7], [10], [17], and [25] by proposing
a novel mixed optimization method.

B. Synchronization of Dynamical Networks Under Q = R (t)

In the following, we will investigate the pinning synchro-
nization of the dynamical network in (9) with multiple stochas-
tic disturbances, in which the Bernoulli switching pinning set
Ra(t) is used. It is worth mentioning that we can extend the
results in Theorem 1 into Theorem 2.

Theorem 2: For Q@ = R»(t), suppose that f(.,t) is con-
tinuous on (.,7) € R” x R* and satisfies Assumptions 1-3,
om(., 1), (m € A) satisfies Assumptions 1 and 3 and the graph
G is connected. If there exists a positive constant a such that
the following inequality holds:

1
[(V/Jfg 2. g,%,)IN—aLI—kLi|L <0 (22

meA

where 7 = diag{¢1, ..., ¢n}, then the stochastic network in

(9) under (4) and (5) will be globally synchronized in mean

square and the coupling strengths will converge in mean.
Proof: Consider the following Lyapunov candidate:

1 i
V=13 Y det Y L —a @3)
ieV jeN (i) ieV

where a is a positive constant.
Similar to the proof of Theorem 1, the operator .Z is given
as follows:

1
E(LV (1)} < E{z > > eii{(f(xi,r) — fxj, 1)

ieV jeN;
—peij +k D (xk —xi)
keN;
—k D> (= x)) +¢,-(r>e,-(r>[ > —x,-)}
re./\/’j keN;
—¢,-(r>e,-<r)[ S (o —xj-)“
reN;
1
“rzz z We;eij
ieV jeN;
T
+ > dile) —a)|: > eiji| [ > eiji|
iey JjeN;: JeN;

1
Y g we 1,,>x].
meA
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Using Assumption 2, it can be checked from (24) that
E{LV (1)} < E{ — AxT(L ® I)x

+ xT”:(t//—f-% z gi)IN

meA
—alZl — kLi|L ® In}x]

< E{—AxT(L ® I,)x}. (25)

Following the proof of Theorem 1, the proof is completed. ®
If i = ¢ (i € V), then one can obtain the following results.
Corollary 1: For Q@ = Ry(t), suppose that f(.,7) is con-

tinuous on (.,7) € R” x RT and satisfies Assumptions 1-3,

om(., 1), (m € A) satisfies Assumptions 1 and 3 and the graph

G is connected. If there exists a positive constant a such that

the following inequality holds:

1
[(w +3 %gi)m —apL — ij| L<0  (26)
me

then the stochastic network in (9) under (4) and (5) will
be globally synchronized in mean square and the coupling
strengths will converge in mean.

Following the matrix decomposition theory [26], one can
further have the following results from Corollary 1.

Theorem 3: For Q = R;(¢), suppose that f(.,t) is con-
tinuous on (.,1) € R* x R" and satisfies Assumptions 1-3,
om(., 1), (m € A) satisfies Assumptions 1 and 3 and the graph
G is connected. If there exists a positive constant a such that
the following inequality holds:

v+ % D 8m—adii(L) —kii(L) <0, ieV\{1} @7
meA
then the stochastic network in (9) under (4) and (5) will
be globally synchronized in mean square and the coupling
strengths will converge in mean.
Proof: According to (25) of Theorem 2

1
E{LV (1)} < E[— AxT(L®1n)x+xT[[(w +5 %gi)m

—aqSL—kL}L@I,,]x]. (28)
From the matrix decomposition theory [26], there exists
a unitary matrix U such that L = UAUT, where
A = diag{i1(L), A2(L), ..., An(L)} = diag{0, 12(L), ...,
IN(D)Y, U = [ur,uz, ... uyl, and u; = 1/J/N[1,1,...,
7. Let z(t) = (UT ® L)x(t) = [z} (1), 23 (1), ...,z O],
where z; (1) e R" (i € V), x(t) e RV (UT @ I,,) e RN"xNn,
Therefore, it yields that

xTI:(W n % > gi)L ® In}c

meA
1
=0T ® In)|:(1// +3 Z}Ag;)L ® I,,i|(U ® In)z
al 1
= ZZ?[(W +t3 > gi)ii(L)}zi. (29)
i=2 meA
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Similarly, one has

—agz" (UT ® 1,)(L* ® I,)(U ® 1)z
= —ap"(UTL*U ® I)z

N
—a¢ > A L)zl zi

i=2

—agxT(L*> @ I,)x

(30)
and

N
—kx"(L* ® In)x = —k »_ J3(L)z] 2. 31)

i=2

Therefore, using (29)—(31) and the inequality in Theorem 3,
we have

xT”:([// + % z g,%,)IN —a¢L —kL:|L® In]x

meA

N
= ;J%(L)[V/Jr%%gﬁ, —agpli(L) — kii(L)}zi <o.
(32)

Substituting (32) into (28), we have E{ZV()} <
E{—AxT(L ® I)x} < 0. Therefore, it is easy to observe that
E{ZV(t)} < 0. Following the statement below (17), pinning
distributed synchronization will be achieved in mean square.
This completes the proof. ]

Remark 7: Theorem 3 only presents a sufficient condition
that ensures the mean square synchronization if the noise
intensity is below a given upper bound. It is important to find
necessary conditions that ensure the mean square synchroniza-
tion.

By considering the lower bound of ¢, one further corollary
can be obtained as follows based on Theorems 2 and 3.

Corollary 2: For Q@ = Ry(t), suppose that f(.,7) is con-
tinuous on (.,7) € R" x R' and satisfies Assumptions 1-3,
om(., 1), (m € A) satisfies Assumptions 1 and 3, and the graph
G is connected. If there exists a positive constant a such that
the following inequality holds:

1 y
[(‘/’JFE Zgi)];v —a¢L—ij|L <0 (33)

meA

then the stochastic network in (9) under (4) and (5) will
be globally synchronized in mean square and the coupling
strengths will converge in mean.

Remark 8: 1t is worth mentioning that one can easily extend
the main results to the case of (9) without stochastic dis-
turbances. The corollaries are omitted here due to the page
limitation.

C. Upper Bounds of M. and M of Dynamical Networks
Under Q = Ry(t)

In the following, upper bounds of the mean control gain
M, and the convergence rate M; are derived for the case of
switching pinning set Rz (¢). Here, we further assume that gzvﬁ
is nonzero, where <;7> is given in (6).
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Theorem 4: If all assumptions and conditions of
Corollary 2 are satisfied, then when ¢;(0) = 0, (Vi € V), an
upper bound of the mean control gain M. is

Elzgg 4 |20 ] if 27 >0
N ¢N
Me =M, = . (34)
]E[ 51005 ], otherwise
Vo
where g0 = 3Dy Xjen lesOIF 2 =
QY+ Xpea8n =~ 2Kia(L))/202(L)§ +a@ ~1).¢ = 5.
An upper bound of My < My is
2
| [+ 2]
. (N - DA (L)a $N
M,=1if 2 >0 (35)

N 2
E{ 3 51005 ], otherwise.
(N - 1Di5(L)ya\ ¢N

Proof: Let p; be the eigenvector of L associated with
the eigenvalue 4;(L) ordered by 0 = 41(L) < A2(L) <
A3(L) < --- < An(L). The eigenvectors are chosen such that
they correspond to the same eigenvalue with multiplicity, i.e.,
P1, ..., py compose an orthogonal standard basis of RY. Any
p € RY can be written as p = > ;.\, vipi, (i € V). Thus, we
get pl pj=0,Vi # j

2‘” + ZmEA gii|L2

T
P ”(‘”’5”)_ 2ia(L)

—[(a$+k)L - %(w + 2 gi)INHp

meA

— T . 7 2V/+Zm Ag2
= ;pi pz[(a¢+k— —2/12(;) '")

x A7(L) — (ad + k) A7 (L)

+('// + % > gi)ii(L)}v?

meA
. 2w + 2
+ ZZZpiT[(aqﬁ +k— VT ZmeAdm ZE&E)Ag'")Lz
iV j>i 2
. 1
~ (@ RL= ot 5 Loy
meA

N 1
_ T | _ ,
— ; P p,[ ML)A,(L)H}

1
x (w +5 2 gi)&-(L)v?
meA

<0. (36)

Integrating both sides of (5) yields

EHZ/OOdE,-(t)] :EZ/OOO“L%%T[Z e,-,-}dt.

iey /0 iey jeN:
37



TANG et al.: PINNING DISTRIBUTED SYNCHRONIZATION OF STOCHASTIC DYNAMICAL NETWORKS

M. can be calculated as follows:

a o0
M, = IE{—/ T2 In)xdt}. (38)
N Jo
We obtain the following inequality from Corollary 2:
1
EZLV < E{xT(t)[((y/ + 3 Z g,%,)IN
meA
—adL - kL)L ® In]x(t)}. (39)

Thus, we find

.= E{%/OooxT(t)(Lz ® In)x(t)dt]

aiZ(L) o T
E <
H Nl(agp +k)A2(L) — /] /0 * 0

x[((ad + k)L — A Iy)L ® In]x(t)dt]

IA

- _ [ _ ala(L) x[/oofvdt”
Ni(ag + k)ar(L) — o] 0
_ Ei _ah(D) [Vo — voo1]
Nl(ag +k)12(L) — ]
_ EI ala(L) [qo
[(ad +k)/12(L) — o
+ 32 Gacioe - e,%oo)]]
lEV
I ala(L)
Nl(ag +k)A2(L) —
[ aNqﬁ N¢M2” 40)

where &/ = y + (1/2)zm€Ag,2n,Vo = V), Voo =

limy 00 V1), and go = (1/4) Xicy 3 jep; lleij 0117 Let
¢ = g By solving the last inequality (40), we have
- 2
Me< Mo =B 2+ | a2 4 22 (41)
$N
where
2 2k -
g = W Zneasn — b ) ta@G-1). @2

222(L)é
According to the inequality ~/a? + b2 < a-+b, where a and

beRarea,b>0
2qo0
EH%—F‘%’—F |2 ]
N
2qoa )
{23{+ } it 2 >0,
oN (43)

2qp0
$N

AZC = A%C::

E otherwise

in the following, we will present an upper bound for M.
Denote U/ = (u;;) with u;; = —(1/N) if i # j and
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ui=1—A/N)¥i=1,2,...,N)and # = (1/m — HUTU.
Thus, M can be written as follows:

M, =E / - T @ I)x(t)dt. (44)
0

The following inequality holds according to [21]:
W o< ; 2
T (N - 1DA3(L)
From (38) and (44), it can be checked that

M, <E OOxT(t)(Lz ® I,,)x(t)dt]

(N - DA(L) /0

N
o ——
(N — 123(L)a
N 2
<El— [+ |22+ T2 @)
(N = D25(L)a éN
By using +/a? + b2 < a + b, one has
- N 2qp0.
Mg <E{ ——m—— + + . (46
T [(N—l)/l(L)[ ] V¢N] o
Hence, one has from (46)
N 2
Bl 22+ [Z])
) (N - D23 (L)a SN
M, = if 27>0 47)
N 2
E{ f] 0% }, otherwise
(N — 1)/1 (L)a\ ¢N
this completes the proof. [ ]
If i = ¢,i €V, we have the following results.

Corollary 3: If all assumptions and conditions of
Corollary 2 are satisfied, then when ¢;(0) = 0, (Vi € V), an
upper bound of the mean control gain M. is

E{2@+ /2;10:], it >0
M, = (48)

C S c — 2
E{ il ], otherwise
\ #N
Where 6]0 = (1/4) ZIEV Zjej\f ”elj (O)” > =
QCy + ZmEA gm —2kAz(L)/222(L)$). An upper bound
of M is
IE[ —N [2@ 2400 ”
(N — 1)/1 (L)a ¢N
M = M = if% >0 (49)

N 2
]E[ 5 0% ], otherwise.
(N —1DA5(Lya\ ¢N

Proof: The proof is straightforward to obtain from
Theorem 4 and hence omitted here. [ ]
Remark 9: From Theorem 4, it is observed that the noise
intensities greatly influence upper bounds of M, and M.
Therefore, the smaller the intensities of stochastic distur-
bances, the better the synchronization performance is.
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IV. OPTIMIZATION METHODS FOR SOLVING PINNING
SYNCHRONIZATION OF STOCHASTIC
DYNAMICAL NETWORKS

In this section, based on EAs and SDP, we will propose
two optimization algorithms for solving the pinning syn-
chronization of stochastic dynamical network in (8) and (9),
respectively.

A. SDP for Distributed Pinning Synchronization

We convert the criteria in Theorem 1 or 2 into an SDP
problem when the number of driver nodes [ is fixed [17]
and the driver nodes are selected according to certain rules.
Following Theorems 1 and 2 to solve the stochastic dynamical
network in (8) and (9), the optimization problem is formulated
as follows:

min k
subject to

{[(w LS 82y —al A —kLIL <0

. : (50)
Assumption 2 should be satisfied

where 57 = | n for Theorem 1 and 5# = 7 for Theorem 2
A~ |1, ifi=j0g () =1
InG, )= [ 0, otherwise

should be provided before
diag{¢1, ..., N}

optimization and Z =

B. Constraint Optimization Evolutionary Algorithms

EAs have been used to identify controlling regions in
complex networks by treating the problem into single objective
optimization problems [10], [25] and constraint optimization
problems [7]. However, in these works, we have to design
control gains for driver nodes, which inevitably result in huge
complexity.

1) JDE: A self-adaptive differential evolution algorithm
(JDE) was proposed by [32], in which the scaling factor F and
the crossover probability C, are encoded into the individual
Xis = (xis, Fi.5,Crig),i = 1,...,SP, (SP is the population
size), s is the generation number and adjusted by two new
arguments 71 and 7. The newly generated F; ;41 and Cr; 541
are used before the mutation is implemented. Because of
simplicity and effectiveness of jDE, it has been widely used
in single objective, constraint, and multiobjective optimization
problems.

2) IDyHF: An improved dynamic hybrid framework
(IDyHF) was proposed in [7], which is based on jDE [32] and
DyHF [33]. IDyHF is a COEA and it has been demonstrated
that IDyHF improves the performance of DyHF by replacing
the search engine in the global scheme of DyHF using jDE.
Such a simple replacement makes the IDyHF more powerful
to deal with constraint optimization problems, since jDE
can efficiently adjust the control parameters in differential
evolution and thus adapt to the search situations [7], [32].

The global search model in IDyHF is to refine the overall
performance of the population, which adopts the following
steps.
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Step 1: Each target vector X; s(i = 1,2,..., SP) is utilized
to generate a trial vector #;; through the mutation and
crossover operations of the jDE. The control parameters of
jDE is updated according to the self-adaptive scheme [32].

Step 2: Compute the two objectives, i.e., Xj(x) and the
25(x), for the trial vector ii; .

Step 3: Based on the multiobjective optimization methods,
if ii; ; dominates X; , the trial vector u; ; will replace the target
vector X; 5, otherwise no replacement occurs.

For more details, please refer to [7] and references therein.

C. Mixed Optimization Method for Distributed Pinning
Synchronization

The mixed optimization method proposed here is an evo-
lutionary algorithm based on a convex optimization method
(EACOM), which includes a COEA and a convex optimization
method. Here, we embed convex optimization method into
the COEA to solve the pinning distributed synchronization of
the dynamical network in (8) or (9) with multiple stochastic
disturbances. The proposed EACOM takes the advantage of
finding feasible solutions for the matrix computation and
dealing with the selection of driver nodes efficiently. The main
steps of EACOM are listed as follows:

Step 1: Initialize a population & with SP individuals and
(#Q + 1) dimension size. One individual in the population
is initialized by the method in [17], which means that the
driver nodes are selected according to degree information in
a descending way. The first #Q dimensions represent the
locations of driver nodes, i.e., fN. The (#Q + 1)th dimension
stands for the value of the coupling strength k. The first part
of the encoding scheme follows the one in [25].

Step 2: Calculate the fitness values of &2 and their violation
values X according to (50), where X can be obtained from
linear matrix inequality box in MATLAB and Yalmip. In this
step, convex optimization methods and COEAs are included
for constraint handling together.

Step 3: Sort the individuals in &2 according to Pareto
dominance. If two solutions are both infeasible, the solution
having a less violation value dominates the other one. If both
solutions are feasible, the solution having a less fitness value
dominates the other one. If one solution is feasible and the
other is not, the feasible solution always dominates the other
one.

Step 4: Using IDyHF to perform global and local searches,
thus the individuals are updated adaptively.

Step 5: Check whether the termination condition is satisfied
or not. If so, the best solution is recorded. If not, go to Step 2.

Remark 10: It is worth mentioning that in Step 1, the
population &2 is initialized by using the information of degree
satisfying the SDP in (50). Due to the elitism of IDyHF,
EACOM will always perform not worse than the method
in [17], which will also be verified in the following section.
Moreover, EAs with an elitism method (i.e., the best individual
survives with probability one) like EACOM are able to find the
global optimum with probability 1 if the number of generations
tends to infinity. Such kind of statement has been proved
using the concept of nonhomogeneous Markov chains [34].
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Synchronization errors and state trajectories of pinning distributed the nonlinear stochastic dynamical network in (8) under Rq. (a) State trajectories;

TABLE 1
COMPARISON WITH THE METHOD IN [17] AND THE MEAN RESULTS OF EACOM IN 20 RUNS OF THIS PAPER

#Q=2 #Q=4 #Q=8 #Q=10 #Q=16 #Q=24
[17] 3.12 3.09 2.98 2.84 251 0.01
EACOM 2.90 2.74 2.53 2.20 1.23 0.0091

Although we cannot ensure that EACOM can find an optimum
in every run, the statistical tests can be carried out to show its
effectiveness by running the algorithm for M > 20 times [10],
[33], [35].

V. NUMERICAL EXAMPLES

In this section, two simulation examples are presented to
demonstrate the effectiveness of the proposed results and
methods for pinning distributed synchronization of stochastic
dynamical networks with multiple disturbances.

A. Model Description

A Hopfield neural network is considered on each node,
which shows chaotic behavior [36]

dxi = [~Cxj + Ah(x)}dt + D o (xi, 1)dwn (1)
meA

(51

where x; (1) = [xi1(t), xi2(t), xi3(t)]7; the matrices A and C
are picked as follows:

1.25 =32 =32 100
A=|-32 11 —44), C=1010
-32 44 1 001

The nonlinear function h(x;) = [h(x;1), h(xi2), h(xi3)]T is
chosen as h(x;) = ((|x; + 1| — |x; — 1])/2). A is taken as
A = {1,2}. The noise intensity functions are chosen as
o1(xj,t) = 0.1x;(¢t) and o2(x;,t) = 0.11x;(¢). Hence, the
noise intensities in Assumption 1 are g; = 0.1 and go = 0.11.
The simulation time is set as 7 = 10. The step size of our
algorithm is chosen as 0.005. The graph considered here is
a scale-free network [37], in which the degree distribution
follows a power law. The growth starts from three nodes and
no edges. At each step, a new node with three edges is added

to the existing graph until N achieves a predefined value.
Repeating this method, we will generate a scale-free network,
which the graph G to be connected is satisfied. The parameter
setting for IDyHF follows the method in [7]. The maximum
number of fitness evaluation is fe max = D*¢, where D is the
dimension size of the problem and ¢ = 1000 is an adjustable
parameter for balancing the tradeoff between the computation
resources and accuracies. Results are obtained for a total of
20 trials to show the reliability of EACOM [10], [33], [35].
The initial range for IDyHF is (0, N + 1) for the first #Q
dimension and (0, v) for the last dimension, where v = 5 for
N =25 and v = 10 for N = 100. To make Assumption 2
in (50) satisfied, we need to consider the following inequality
constraint:

2CHy) —Dx W2 —2A —A
[( ‘”)_AT (D}<o. (52)

B. Example 1

In this example, pinning distributed synchronization of the
complex network in (8) is investigated using EACOM. The
parameters are set as a = 0.5, N = 100, #Q = 3. It can be
checked that W = 1.

Iy is chosen according the descending degree of each node
in the network [17]. Using linear matrix inequality toolbox and
Yalmip [38] to solve (50), one can find as a result k = 6.5.
However, if we use EACOM, the mean value of k£ achieved
in 20 runs is 3.74 and the minimum value of k achieved in
20 runs is 3.68. The feasible solution for k = 3.68 is listed as
follows:

A =0.0150, w =5.5943, a = 50689,
® = diag{6.6897,7.3914, 5.7121} (53)

which shows that the proposed EACOM outperforms the one
in [17], since EACOM can efficiently select Iy to reduce
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possible conservativeness. The pinning distributed synchro-
nization of the complex network in (8) with multiple stochastic
disturbances is ensured in mean square under fixed pinning
set Ri1. The synchronization errors and state trajectories
under R are shown in Fig. 1(a) and (b), which verify the
effectiveness of the proposed method.

To further illustrate our method, a network with N = 25 is
considered. The k achieved by the SDP [17] and EACOM is
shown in Table I, in which the mean results of EACOM of
20 runs are given. Note that all the final solutions of EACOM
are feasible here. It is shown that the proposed method can
efficiently reduce the conservativeness induced by the naive
selection of Iy, which manifests the reliability of the proposed
method.

C. Example 2

In this example, the distributed pinning synchronization
of the complex network in (9) is studied using SDP. The
parameters are set as a = 0.5, N = 100, #Q = 3,¢| = ¢» =
$=05,¢;=0,i =4,...,N.

Using linear matrix inequality toolbox and Yalmip [38] to
solve (50), k found is 3.7995. One feasible solution is listed
as follows:

A =4.1765x 107%, y =5.5641,
@ = diag{6.6515,7.3604, 5.6678}.

a = 203.2593,
(54)

Thus, the pinning distributed synchronization of the complex
network in (9) with multiple stochastic disturbances is guar-
anteed in mean square under switching pinning set R (¢).

VI. CONCLUSION

The problem of pinning distributed synchronization has
been investigated for a class of nonlinear dynamical net-
works with multiple stochastic disturbances, based on fixed
pinning and switching pinning schemes. Using the Lyapunov
stability theory and graph theory, criteria are presented for
pinning mean square distributed synchronization of stochastic
dynamical networks. For the fixed pinning scheme, an
EA-based convex optimization method has been developed
to select driver nodes and find feasible solutions for matrix
computation. For a Bernoulli switching pinning strategy, upper
bounds of mean control gain and convergence rate have been
derived to show the relationship between the synchronization
performance and systems’ parameters. Simulation examples
are presented to illustrate the advantage and effectiveness of
the proposed method. In the future, we can apply our results
to industrial processes [39], [40].
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