FINAL VERSION: DISTRIBUTED ROBUST SYNCHRONIZATION OF DYNAMICAL NETWORKS WITH STOCHASTIC COUPLING 1

Distributed Robust Synchronization of Dynamical
Networks with Stochastic Coupling

Yang Tang, Member, IEEE, Huijun Gao, Senior Member, IEEE, and Jirgen Kurths

Abstract—This paper deals with the problem of robust adaptive
synchronization of dynamical networks with stochastic coupling
by means of evolutionary algorithms. The complex networks
under consideration are subject to: 1) the coupling term in
a stochastic way is considered; 2) uncertainties exist in the
node’s dynamics; 3) pinning distributed synchronization is also
considered. By resorting to Lyapunov function methods and
stochastic analysis techniques, the tasks to get the distributed
robust synchronization and distributed robust pinning synchro-
nization of dynamical networks are solved in terms of a set
of inequalities, respectively. The impacts of degree informa-
tion, stochastic coupling and uncertainties on synchronization
performance, i. e., mean control gain and convergence rate,
are derived theoretically. The potential conservativeness for the
distributed robust pinning synchronization problem is solved by
means of an evolutionary algorithm-based optimization method,
which includes a constraint optimization evolutionary algorithm
and a convex optimization method and aims at improving the
traditional optimization methods. Simulations are provided to
illustrate the effectiveness and applicability of the obtained
results.

Index Terms—Synchronization/Consensus, Complex dynamical
networks, Stochastic coupling, Evolutionary algorithms.

I. INTRODUCTION

The past decades have seen a tremendous upsurge in the
research efforts toward the intrinsic features of complex net-
works and multi-agent systems. Complex networks have found
applications in various fields as communication networks,
genetics regulatory networks, social networks, neuronal net-
works, and the Internet [1]-[4]. Among them, synchronization
and cooperative control have attracted unprecedented attention
of the physics and control communities [5]-[13] in view
of their wide applications in various emerging fields such
as chemical reactions, information consensus, power grids,
formation control in robots and flights, etc [14].
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For a variety of biological, physical and social networks,
a typical problem is cooperative control and regulating the
dynamics of coupled networked systems to a desired state by
means of a small fraction of inputs owing to the reduction of
mean control gain. Therefore, pinning control/controllability
of complex networks or multi-agent systems has been at-
tracting recurrent research interests [15]-[20]. In [21], [22],
adaptive pinning synchronization was investigated and some
useful criteria were proposed to ensure synchronization of
complex dynamical networks. Specially, it was found that the
underlying network topology can affect the convergence rate
and the terminal mean control gain [21]. In [23], distributed
pinning synchronization of stochastic coupled neural networks
under controller missing was studied by casting the problem
into a convex optimization problem. However, due to the
difficulty in a mathematical derivation, there are still basic
points for improving the above mentioned results in particular:
1) how to determine driver nodes for obtaining better global
synchronizability or controllability of complex networks; 2)
the pinning synchronization of complex networks with pa-
rameter uncertainties and stochastic coupling has been widely
overlooked in the current literature, despite their importance
in practice.

In fact, the limited energy, computational power, and inter-
nal and external factors will inevitably lead to deterministic
and stochastic disturbances that are rather challenging in
investigating pinning synchronization of complex networks.
Firstly, modelling errors are usually used for describing dy-
namics of complex networks, since they can account for the
occurrence of unstable fluctuations of message transmissions
through the networks and the estimation of the variance from
statistical tests for identification of the network parameters,
etc. Secondly, the network coupling could occur in a stochastic
way, and stochastic disturbances could appear in both the
coupling term and the overall networks caused by noisy
environments [24]. Therefore, synchronization of complex net-
works with uncertainties or stochastic coupling has attracted
increasing attention during the past few years [25]. Unfor-
tunately, these mentioned results are based on linear matrix
inequalities (LMIs), whose main focus is on presenting criteria
to ensure under what kinds of conditions the synchronization
of complex networks can be achieved. It still remains unclear
how to characterize the synchronization performance, such as
mean control gain and convergence rate when uncertainties
and stochastic coupling are included.

An evolutionary algorithm (EA) is a generic population-
based meta-heuristic optimization algorithm, which is inspired
by principles of biological evolution, such as reproduction,
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mutation, recombination, and selection. Recently, local con-
trollability of complex networks, including determining driver
nodes and designing control gains, has been investigated by
means of single objective optimization EAs [26] and constraint
optimization EAs [27], respectively. However, the investigated
problem is local controllability instead of a global one and
the measures of controllability are confined to complex net-
works without any disturbances, which substantially limits the
application of the presented results. To the best of authors’
knowledge, up to now, very little research effort has been made
to distributed robust (pinning) synchronization of uncertain
networked systems with stochastic coupling. It is important
to emphasize that the optimization for such problems in this
paper is based on EAs and convex optimization methods.
Therefore, the main purpose of this paper is to investigate
the distributed (pinning) synchronization problem of dynam-
ical networks with stochastic coupling and to unveil the
relationship between stochastic coupling and synchronization
performance, where an EA-based approach is utilized to solve
the addressed problem.

In this paper, we focus on the distributed robust (pinning)
synchronization problem for networked systems with stochas-
tic coupling, which is solved by an EA-based optimization
method. The impacts of uncertainties and stochastic coupling
on synchronization performance are also analyzed theoreti-
cally. The main contributions of this paper can be listed as fol-
lows: (1) intensive stochastic analysis is performed to establish
a unified framework for robust distributed (pinning) synchro-
nization of dynamical networks that provides the simultaneous
presence of parameter uncertainties as well as stochastic
coupling; (2) effects of uncertainties and stochastic coupling
on synchronization performance are derived in a theoretical
way, in which some information such as degree information
and edge number are used to analyze the theoretical results on
synchronization based on graph theory; (3) the obtained results
for distributed robust (pinning) synchronization of uncertain
networked systems with stochastic coupling are solved in
terms of an EA-based convex optimization method.

The remainder of this paper is organized as follows. In
Section II, the problem addressed is formulated and some
preliminaries are briefly outlined. In Section III, the main
results are given for the distributed robust (pinning) synchro-
nization of networked systems. In Section IV, an EA-based
optimization algorithm is introduced for solving the presented
synchronization criteria. In Section V, one numerical example
is given to demonstrate the effectiveness of the obtained
results. In Section VI, some concluding remarks are provided.
In Section VII, proofs of the main theorems are presented.

Notations: In this paper, R"™ and R™*™ indicate, respec-
tively, the n-dimensional Euclidean space and the set of all
n X m real matrices. The Kronecker product of matrices
X®Y € Rx" where X € R™*™ and ¥ € RP*9,
|.|c denotes the cardinality. |.| is the absolute value. ||.|| is
the Euclidean vector norm in R™. Apax(.) is the maximum
eigenvalue of a matrix. Let a graph be G = [V, £], where
V = {1,..., N} stands for the vertex set and & = {e(7,7)} is
the edge set. N; represents the neighborhood of vertex 4 in the
sense N; = {j € {V :e(4,j) € £}. The graph G is supposed

to be connected, undirected and simple. Let L = [a;;]]_,
be the Laplacian matrix of the graph G, which is defined as:
for any pair i # j,a;; = a;; = —1 if e(i,j) € &; otherwise,
s
aij = aji = 0. a;; = — D j=1,j-i @ij is the degree of vertex
i (i €V).ForT CV, all vertices V\T can be accessible from
the vertex set 7, i.e., for any vertex ¢ in V\7, there exists at
least one vertex j € 7 such that a path between vertices i
and j exists. 07 (+) is the characteristic function of the set
7T, ie., 67(i) = 1if i € T; otherwise, 07 (i) = 0. [ is the
element number of the finite set 7 composed of the vertices to
be controlled. Let (€2, F,P) be a complete probability space,
where () represents a sample space, F is a o-algebra and P
is a probability measure. E{.} stands for the expectation and
Prob{.} denotes the probability of an event.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, the problem addressed is formulated and
some preliminaries about the dynamical model and evolution-
ary algorithms are briefly outlined. In this paper, complex
networks with stochastic coupling are considered as follows:

dri(t) = [(A+AA(Q)) '-( )+f(xi,t) + m(z;,t)
ey (a(t (t))]dt
JjEN;
+ 3 (glajt) — glai t)du(t) i €V, (1)
JEN;

where z;(t) = [zi1(t), zi2(t), ..., zin(t)]T € R™ (i € V)
is the state vector, A > 0 is the system matrix and
AA(t) represents the uncertainty in the linear part satisfy-
ing MA@ < flzi,t) = [fa(2i,1), .., ful@i 1) and
g(zi,t) = [g1(w4,1), ..., gn(w;, )] are continuous nonlinear
functions; m(x;,t) = [mq(x;,t), ..., mp(x;,)]7 is the uncer-
tain nonlinearity [28]; ¢ is the global coupling strength; v(t)
is one-dimensional Brownian motion defined on (€2, F,P)
satisfying E{dv(t)} = 0, and E{[dv(t)]?} = dt. According
to Gershgorin’s disk theorem [29], all the eigenvalues of L
corresponding to graph G satisfy the following relationship
0=MA(L) < X(L) < ... < An(L). In addition, A2(L) > 0,
since G is connected and undirected.
Here, we define the following set 7:

7=V,
TCV,
The pinning controllers u;(t) are used in the set of driver

nodes for achieving distributed synchronization in mean square
of (1):

if all the nodes in V are controlled,
if a fraction of nodes in V' are controlled.

2

dri(t) = [(A+ AA®))xi(t) + f(xit) + m(zi,t)
Fui(t)+e Y (x(t) — zi(t)))dt
JEN;
+ Z g(zj,t) — g(a;, t))dv(t),i € T,
i€N;
dri(t) = [(A+AA(t )) () + fl@i,t) + m(zi, 1)
+ec Z xj(t) — x;(t))]dt
JEN;
+ > (g(xj ) — gl t)dv(t),i ¢ T. (3)

JEN;
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The distributed controllers u;(t) are designed as follows:

wit) = Y elt)(a;(t) —wi(t),i € T, )

JEN;

where €;(t) is the control gain of the ith node and is updated
according to the following equation:

dei(t) = o[ Y (w(t) — 2 (1)]"
JEN;
(> (wj(t) —it)))dt,i € T, (5)

JEN;

where «; > 0 and «; € [&,&] C [0, 1].

Remark 1. In reality, it is unavoidable that modeling errors
occur in the process of constructing multi-agent systems and
complex networks. Modeling errors may arise from fluctu-
ations of information transmission among the nodes, some
inconsistency induced by the discretization process, or the
estimation variance from statistical tests for the identification
of the network parameters. In order to characterize mod-
elling errors, a natural and efficient way is to use parameter
uncertainties to stand for modeling errors. Here, we con-
sider distributed robust synchronization under norm bounded
uncertainties and the effects of parameter uncertainties on
synchronization performance will be analyzed theoretically.
Compared with previous works on robust synchronization
of complex networks [25], [30], the influence of parameter
uncertainties on synchronization will be investigated in the
following.

Remark 2. In system (3), the nonlinear stochastic coupling
term 3 x- (9(25(t))—g(xi(t)))dv(t) is to describe stochastic
effects of the information transmission among the nodes and
reflects nonlinear properties in the communication. Although
synchronization of complex networks with stochastic coupling
has been investigated in [31], the impacts of stochastic cou-
pling on synchronization performance still remains unclear due
to the mathematical difficulty, despite its importance in prac-
tice. In addition, previous works on pinning synchronization
of networked systems have not taken into account parameter
uncertainties and stochastic coupling [16], [18]-[23] and thus
our model here renders more practical factors. In the following,
we will shorten such a gap by investigating robust distributed
(pinning) synchronization of uncertain networked systems with
stochastic coupling in (3).

Remark 3. Model (3) is general, since it includes parameter
uncertainties, deterministic and stochastic coupling into one
unified model. Different from the models in [10], [23], the
stochastic coupling and the uncertainty term are included in
our model and the synchronization of system (3) is investigated
by means of an EA-based algorithm. Hence, our model is more
general to describe uncertainties or noise information, since we
aim at considering various disturbances by utilizing parameter
uncertainties and stochastic coupling.

Remark 4. Usually, “pinning synchronization” is referred
as controlling the states of networks to the isolated node,
such as a chaotic system, a periodic solution or a equilib-
rium [7], [20], [32]. According to the definition of [19],
“pinning controllability” means that the states of networks are

forced to a desired state. In this paper, the desired state is
the consensus value of the nodes, which is like the concept
of conventional synchronization or consensus in [8], [14].
By injecting distributed controllers to the driver nodes in
networks, synchronization can be finally reached. In order
to differ from the usual “pinning synchronization” in [7],
[20], [32], we refer pinning synchronization in our paper as
“pinning distributed synchronization” if only a subset of nodes
in networks are injected with distributed controllers to achieve
conventional synchronization.

III. CONDITIONS AND UPPER BOUNDS FOR DISTRIBUTED
ROBUST SYNCHRONIZATION OF DYNAMICAL NETWORKS

In this section, the distributed synchronization (pinning)
synchronization of the dynamical network in (3) is investigated
under 7. Upper bounds of C and S are derived for 7 =V,
where C and S are provided in the following to quantify the
synchronization performance:

1
C=§ 2 i ©)
i€V
and
B S ) — 20l (t) — 2
° _E/o N-1 ;[m) 2O faa(t) - 2()dt, (D)
where Z(t) = Fa(t) and € o0 = limy_o E{e;(t)}. Appar-

ently, a good synchronization performance indicates a high
convergence rate (a small ) and low mean control gain (a
small C), as shown in (6) and (7).

A. Assumptions and definitions

The following assumptions, lemmas and definitions are
necessary to derive our main results.
Assumption 1. The functions f(x;,t), g(x;,t) and m(x;,t)
are said to be Lipschitz continuous with respect to ¢ if there
exists positive constants hj, he and hg such that the following
inequalities hold for all z;,z; € R™:

1t = Flag, O < halles — a1,
lgeist) — glas, )] < holles — a1,
Im(ei,t) = may, )l < halle - a]li,5 € V. ®

Assumption 2. [21] The vector-valued continuous function
f(z,t) : R x R™ — R" is said to be uniformly decreasing
if there exist ¥ > 0 € R and A > 0 € R such that

(z =)' [f(z,t) = fy, 1) — Oz —y)]
< —A-y)T(z-y), ©)

holds for all x,y € R™ and ¢ > 0.

Assumption 3. f(0,¢) =0, ¢(0,¢t) = 0 and m(0,¢) = 0.
Lemma 1. [33] Let G be a simple graph. d(u) is the degree

of vertex u € V and m(u) is the average of the degrees of the

vertices adjacent to u. G contains M edges. Assume that by 7

and §, the maximum and minimum degrees of G, respectively.
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Sort the degree of G as di > dy >
following inequalities hold:

1. AN (L) < max{d(u) + d(v)|(u,v) € £},
2. Av(L) <dny + \/(dN - %)2 + Zdz(dz —dn) + %7

i€V
where the equality if and only if G is a regular bipartite

. > dy. Then, the

graph.
3. AN (L) < max{d(u) +
4. An(L) <

6o — 14 /(82 — 1)2

m(u)|u € V},

+8(62 +2M — (N — 1)d2)
2 )
where the equality if and only if G is a regular bipartite

graph.
5. n(L) <

max{d(u) + d(v) — [Ny NNy lc|(u,v) € E}. (10)

Lemma 2. [33] Let G be a simple graph. Denote by dj; the
kth largest degree of G. Then, the following inequality holds:

Ao(L) > dy_1 — N +3. (11)

Definition 1. Let z,;(¢)(1 < i < N) be a solution of the
uncertain complex network with stochastic coupling in (3),
where x;(0) = (29,29,...,20). If there exists a nonempty
subset & C R”, with z;(0) € Q(1 < ¢ < N), such that
xl(t) € R™ for alltZtmI <i<N,

Jim |z (t) — 2;(8)|* = 0,4, € V,

then the uncertain complex network with stochastic coupling
in (3) is said to achieve distributed synchronization in mean
square.

B. Distributed synchronization of uncertain dynamical net-
works with stochastic coupling under T =V

Theorem 1. For 7 = V), suppose that the graph G is
connected and f(.,t), and g(.,t) satisfy Assumptions 1-3. If
the following inequality holds:

2
[(Amax(A) + ¢+ 9+ h3)Iy —aL —cL + %IP]L <0, (12)

where a is a positive constant, then the uncertain network with
stochastic coupling in (3) under (4) and (5) will be globally
synchronized in mean square.

Proof: See the appendix. |

Following Theorem 1, we have the following corollary by
enlarging the noise term in stochastic coupling.

Corollary 1. For 7 = V), suppose that the graph G is
connected and f(.,t), and g(.,t) satisfy Assumptions 1-3. If
the following inequality holds:

[()\max(A) +i14+9+ hS)IN
2
—aL—cL—i—%)\N(L)L}LSO, (13)

where a is a positive constant, then the uncertain network with
stochastic coupling in (3) under (4) and (5) will be globally
synchronized in mean square.

From Corollary 1, if we utilize Lemma 1, we can have the
following corollary.

Corollary 2. For 7 = V), suppose that the graph G is
connected and f(.,t), and g(.,t) satisfy Assumptions 1-3. If
the following inequality holds:

2
[(Amasc(A) + ¢+ 0 + ha) Iy — aL — L + %qﬁL]L <0, (14)

— —1)2 2 _ —
where ¢ = 2 L+ /(62 = 1)? +8(6F +2M — (N — 1)dy)

a is a positive constant, then the2uncertain network with
stochastic coupling in (3) under (4) and (5) will be globally
synchronized in mean square.

Remark 5. It should be mentioned that ¢ in Corollary 2
can be replaced by using other terms of the right hand of
the inequalities in Lemma 1. For example one can set ¢ =

\/dN— )2+ di(d; dN+ , ¢ = max{d(u)+

%
m(u)|u € V} or ¢ = max{d(u)+d(v) — |Nu NNyl (u,v) €
E}. From Lemma 1 and Corollary 2, it can be seen that the
properties of networks such as the degree information, the
number of edges and the degree of neighbors can heavily
affect the synchronization results. From Lemma 1, one can
conjecture whether the conditions are satisfied by knowing
some statistical information of the dynamical networks. In the
following, we will also illustrate the effects of the properties
of networks on synchronization performance.

By utilizing the matrix decomposition theory [29], one has
the following theorem from Theorem 1.

Theorem 2. For 7 = V), suppose that the graph G is
connected and f(.,t), and g(.,t) satisfy Assumptions 1-3. If
the following inequality holds:

Amax(A) + ¢+ 9 + hg — aX; (L)
h2

dn +

—e\i(L) + (15)

where a is a positive constant, then the uncertain network with
stochastic coupling in (3) under (4) and (5) will be globally
synchronized in mean square.

Proof: See the appendix. |

C. Distributed synchronization of uncertain dynamical net-
works with stochastic coupling under T C 'V

In the following, we will investigate the pinning distributed
synchronization of the uncertain dynamical network in (3) with
stochastic coupling.

Theorem 3. For 7 C V), suppose that the graph G is
connected and f(.,t), and g(.,t) satisfy Assumptions 1-3. If
the following inequality holds:

h2
[Amax(A) + ¢+ + h3)Iy —aLZ — cL + ZQLQ]L <0, (16)

, then the uncertain network

where a is a positive constant,

1, if i=3507()=1
0, else
with stochastic coupling in (3) under (4) and (5) will be
globally synchronized in mean square.
Proof: See the appendix. |
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Remark 6. In Theorem 1 and Theorem 2, the mean square
synchronization problem is investigated for the uncertain com-
plex dynamical network with stochastic coupling in (3) in
terms of inequalities that can be readily solved by using convex
optimization algorithms [34]. It is worth mentioning that once
an adequate complex network is established in Theorem 1 and
in Theorem 2, and the corresponding parameters are identified,
we can analyze the synchronization problem of uncertain com-
plex networks with stochastic coupling by simply checking
the feasibility of the inequalities. In the past decade, convex
optimization methods have gained much research attention
and their efficiency has been shown without tuning additional
parameters.

Remark 7. In Theorem 2, the singular matrix Z is used
to denote the fixed pinning set, i. e., if the element is 1
then the node is selected as a driver node; otherwise, the
node is just a follower. Usually, statistical methods from the
complex networks theory are employed to construct Z, such as
degree-based methods, betweenness centrality-based methods
and closeness-based methods [26]. In [23], after determining
the driver nodes by using degree-based methods, the criteria
are converted into a convex optimization problem. Although
it is convenient to apply, the selection of driver nodes suffers
from unavoidable conservativeness. Actually, the selection of
driver nodes is a combinatorial optimization problem and thus
it is naturally a NP-hard problem. Therefore, in order to
select the driver nodes with accuracy, enhancing controllability
is now becoming a hot topic in both physics and control
communities [19], [20], [22]. In addition, Theorem 3 is a little
bit difficult to check. How to simplify the conditions by using
other tools is a future research topic in the near future.

Remark 8. In order to handle the selection of driver nodes,
local controllability of complex networks was investigated
by means of evolutionary algorithms (EAs) [26], [27]. The
selection of driver nodes and the design of control gains are
converted into single objective optimization problems [26] and
constraint optimization problems [27], respectively. Neverthe-
less, the optimization problem is composed of two parts: a
combinatorial optimization problem and a continuous opti-
mization problem. The design of control gains is a continuous
optimization problem, which increases the complexity of the
problem and reduces the accuracy of EAs. Fortunately, an
alternative way is to design an adaptive controller and an
updating law to reach synchronization without additionally
adjusting control gains. In this sense, adaptive pinning control
is a suitable way to deal with controllability of networks [20],
[22], [23].

D. Upper bounds of C and S of uncertain dynamical networks
with stochastic coupling under T =Y

Theorem 4. If all assumptions and conditions in Corollary
1 are satisfied, then when ¢;(0) = 0, (Vi € V), an upper bound

of the mean control gain C is as follows:

£ 23 + 2‘]’\(}0‘}, ifF>0,
c<C= o (17)
E ?Sa}, else,
where
5 Amax(A) + ¢+ 9 + hg
il
+( 2 N(4) —4o) +ala—1),
1 , (18)
w=73 3 lesO)F,
i€V jEN;
. &
o = —.
o
An upper bound of S is
N Qqu
ES———->——12
{(Nl)A%(L)d[ STV N }}
S<S§=! if§>0, (19)
N 2Q()d
IE{ N 1)/\§(L)o'z” N },else.
Proof: See the appendix. |

By utilizing Lemma 2, one can have the following theorem.

Theorem 5. If all assumptions and conditions in Corollary
1 are satisfied, then when ¢,;(0) = 0, (Vi € V), an upper bound
of the mean control gain C is as follows:

E{ 25+ 2330‘}, it § >0,
c<C= A (20)
E 2000 else
N ) )
where
35— Amax(A) +1+9+hg  (h3¢ — 4c)
N Ao (L) 4
+a(@—1),
o= V(02 — 1)2 +8(67 +2M — (N — 1)d2)
2
6o —1 21
+ 2, o
1 2
w0=72 > lles O
i€V jeN;
Y
o= .
(0%
An upper bound of S is
N QQQd
E ———F—5——1|2
{(N—l)A%(L)d[ s+
S<S8={ifg>0, (22)

- N 2qo&
]E{ (N —1)x2(D)aV 13 }7615"'

Remark 9. From Theorem 4, it is observed that stochastic
coupling greatly influences the upper bounds of C and S. In
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addition, the norm of uncertainties has effects on synchro-
nization performance. Like Remark 5, one can also replace ¢

b= Lo (d — 1
as follows: ¢ = dy +, /(dn 2) +;dz(dl dn) + 5
¢ = max{d(u) + m(u)lu € V} or ¢ = max{d(u) +
d(v) — Ny N Nylel(u,v) € &} In addition, if Ao >
dv-1— N +3 > 0 in Lemrr(1a22, one can also have

)\max(A) +L+’l9+h3 h2¢—40) - .

5§ = dn N3 1 +a(a@—1) in
Theorem 5. By this way, the upper bound of C and S can be
obtained without knowing the eigenvalues of G. The advantage
for this is that we can estimate the upper bounds of mean
control gain and convergence rate by only knowing partial
information of the networks. For example, if one does not get
the global coupling matrix and it is impossible to calculate the
eigenvalues of G. Fortunately, it is still achievable to estimate
the upper bounds of mean control gain and convergence rate
if one has the degree information for each node.

IV. OPTIMIZATION METHODS FOR SOLVING DISTRIBUTED
ROBUST (PINNING) SYNCHRONIZATION OF NETWORKED
SYSTEMS WITH STOCHASTIC COUPLING

In this section, we will present two algorithms for solving
the criteria for distributed robust (pinning) synchronization of
networked systems with stochastic coupling in (3). The first
one is aimed at presenting a convex optimization method for
solving the criteria in Theorem 1 under 7 = V. The latter one
is to present an EA-based optimization approach for solving
the criteria in Theorem 3 under 7 C V.

A. Optimization problems for distributed (pinning) synchro-
nization of networked systems with stochastic coupling in (3)

In order to measure the optimization results, we consider
the transformation of the criteria in Theorems 1 and 3 into
the following optimization problems. Taking into the criteria
in (15) and (16), the optimization problems can be formulated
as follows, respectively:

[Amax(A) + ¢+ 9+ h3)Iy —aLlly —cL
2

+l2 121 <o,

Assumption 2 should be satisfied,

(23)

and
min c¢
subject to
[(Amax(A) + ¢+ 9+ hg)Iy —aLZ — cL
+2 121 <0,
Assumption 2 should be satisfied,

(24)

1, if i=467r34)=1
0, else ’

For Theorem 1, the convex optimization method can be
employed to solve (23). However, for Theorem 3, (24) can
be solved by the convex optimization method once 7 is
fixed. As mentioned in the introduction and main results,
how to determine 7 is the key for solving (24). If 7 is
chosen satisfactorily, the conservativeness of the results will

where Z(i,7) =

be reduced. In the following, an EA-based algorithm will be
adopted to solve the problem of distributed robust pinning
synchronization of networked systems with stochastic coupling
in (3), in which the convex optimization method is embedded
into the framework of EAs.

B. An improved dynamic hybrid framework

Here, we adopt an improved dynamic hybrid framework
(IDyHF) in [27] to solve the distributed robust pinning algo-
rithm in (24). IDyHF is used to select driver nodes character-
ized by Z and deal with the constraints in (24).

An improved dynamic hybrid framework (IDyHF) was pro-
posed in [27]. IDyHF is a constraint optimization evolutionary
algorithm (COEA), which is composed of a search approach
and a constraint handling technique.

Algorithm 1 An EA-based optimization method in [35]
Begin
Generate a random population P,(n = 0) with SP
individuals and D = [ + 1 in ¥. One individual from the
population P, is initialized by the degree information [23].
Set fo = 0,n = 0. /*The first [ dimension is to represent
Z, which follows the encoding scheme in [27]. The [ + 1
dimension is to denote c*/
Calculate the number of feasible solutions (NFS) in P,
while f. < fc max do
Compute the objective value ¢ and the constraint
violation ¥ according to (24) /*X can be computed by using
Matlab and Yalmip [34] to make the inequalities satisfied*/
X = %; /*Calculate the portion of infeasible
solution in P, */
P, = IDyHF(P,,) /*Update the solutions according
to IDyHF*/
Update f;
n=n+1.
end while
End

C. An EA-based optimization method for distributed robust
pinning synchronization of networked systems with stochastic
coupling

The main motivation of improving IDyHF by presenting
an EA-based optimization method is that IDyHF suffers
from its inefficiency in matrix computation of the constraints
of (24) [35]. The convex optimization method has gained
increasing attention due to its capabilities of dealing with
matrix computation. Here, we utilize a hybrid optimization
method [35], in which these two methods are combined into
one unified optimization framework and thus their advantages
are combined too.

Remark 10. It is also worth mentioning that the results in
[27] have the following deficiencies: 1) the controllability is a
local one and it is difficult to extend the results to the model
with either uncertainties or stochastic coupling; 2) IDyHF is
used to detect driver nodes and design the coupling strengths



FINAL VERSION: DISTRIBUTED ROBUST SYNCHRONIZATION OF DYNAMICAL NETWORKS WITH STOCHASTIC COUPLING 7

Fig. 1.
synchronization errors.
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Fig. 2.
(c) the impact of ho on C; (d) the impact of hp on S.

between the states in networks and the desired state, which
renders occupation of unnecessary computation resources.
Different from [27], parameter uncertainties and stochastic
coupling are taken into account in the model of this paper. In
addition, adaptive control is used to design coupling strengths
and thus coupling strengths are tuned adaptively, which makes
the results more applicable.

Remark 11. In Algorithm 1, we initialize the population
P, by using the information of degree. Therefore, the method
here will perform not worse than the method in [23]. In
addition to the advantages pointed out in Remark 2 over
the results without considering parameter uncertainties and
stochastic coupling in [21]-[23], our results present a unified
framework to deal with pinning synchronization of uncertain
networks with stochastic coupling, and choosing driver nodes
from the perspective of hybrid optimization including convex
optimization and artificial intelligence.

V. EXAMPLES

In this section, one example is given to demonstrate the ef-
fectiveness of the proposed criteria and optimization methods.

The complex network is composed of an identical Hopfield

Synchronization results with parameter uncertainties and stochastic coupling when [ = 5 and IV = 100. (a) Control gains; (b) state trajectories; (c)

0 02 04 ;06 08 1 0 02 04

© (d)

The impacts of the bound of uncertainties and the intensity of stochastic coupling on C and S. (a) The impact of ¢ on C; (b) the impact of ¢ on S;

neural network on each node [36]:
dai(t) = KA+AAO)()+f@uﬂ+m@mU+W@)
+ec Z xj(t) — x;(t))]dt

JjEN;
+ Z g(zj,1)
i€N;
KA+AAU)
+c Z :C]
JEN;
+> (9
JEN;
where 2;(t) = [zi1(t), 2i2(t), mi3(D)]T, f(2i,t) =
Hh(x;), A, C and H are given as follows:
0.01 0 0
A= 0 001 O ,C =
0 0 0.01

1.25 —-3.2 =32
-32 11 -—-44
-3.2 44 1

and AA(t) = diag(|esin(t)], |esin(t)], [¢sin(t)]). There-
fore, ||AA(t)] < ¢ Here, we choose ¢ = 0.0005.
mi(xi,t) = diag(hgtanh(xil),hg tanh(.’ﬂig),hg tanh(xig)).
hs is set as hg = 0.0005. The nonlinear function h(z;) =
(hia), h(wi2), h(wia))” (;) = Ceetiintl,

g(x;,t)do(t),i € T,

i(t) + fxs t) + m(xzs,t)

— z;(t))]dt
—g(@i, t))do(t),i ¢ T, (25)

.13],

—Cz; +

OO =
o = O

H =

is picked as h(x
The function g(x;) in the stochastic coupling term is g(z;) =
hoxi(t). We set hg = 0.2. The «; in wu;(t) are chosen as
o; = 0.5. The simulation time is set as 7' = 10. The step size
of our algorithm is chosen as 0.005. The connecting matrix
considered here is a scale-free network [2]. The growth starts
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from three nodes and no edges. At each step, a new node with
three edges is added to the existing network. Repeating this
method, we will generate a scale-free network, which satisfies
“connected” condition. In order to satisfy Assumption 2 in
(24), the following inequality should be feasible [37]:

2C+9) —bxW? —2A —H

_HT o <0,

(26)
where W = 1.

We consider the distributed robust pinning synchronization
of networked systems with stochastic coupling in (3), i. e.,
T C V. The parameter setting for IDyHF follows [27]. The
initial interval for the population of IDyHF is (0, N + 1) for
the first / dimension and (0, p) for the last dimension, p = 10
when N = 100. The maximum number of fitness evaluation
iS femax = D * &, where D is the dimension size of the
problem and £ = 1000 is an adjustable parameter for balancing
the tradeoff between complexities and accuracies. The running
times of the EA-based algorithm are 20 times.

When N = 100 and the number of pinned nodes [ = 5, the
result of optimizing ¢ achieved by the convex optimization
method adopted in [10], [23] is 5.92, in which 7 is selected
according the descending degree information. However, by
means of the EA-based optimization method, the mean result
of optimizing c is 3.72 and the minimum result of optimizing
c is 3.67. The results indicate that the EA-based optimization
method is reliable and even more accurate than the convex op-
timization method in [23]. The corresponding feasible solution
for the minimum c is

a = 36.4948, A = 5.5936, 9 = 0.0146,

U = diag{6.6888, 7.3906, 5.7143}. Q7

The adaptive control gains, synchronization errors and state
trajectories are plotted in Fig. 1, which further validates the
effectiveness of our main results.

In the following, the impacts of uncertainties and the
intensity of stochastic coupling on C and S are illustrated by
simulations. We use the same network as above and all the
nodes are injected with distributed controllers. For showing the
impacts of uncertainties the intensity of stochastic coupling on
C and S, we vary ¢ and ho, respectively. The results are shown
in Fig. 2. We find that increasing the bound of uncertainties
and the intensity of stochastic coupling, C and S increase
accordingly. The simulations verify the theoretical results in
Theorem 4 well.

VI. CONCLUSIONS

In this paper, distributed robust (pinning) synchronization
was investigated for a class of complex networks with pa-
rameter uncertainties and stochastic coupling. By employing
the Lyapunov functional stability theory and the stochastic
analysis technique, it was verified that such distributed robust
(pinning) synchronization can be ensured in mean square sense
if a set of matrix inequalities are solvable. Upper bounds of
mean control gain and convergence rate were derived which
show the effects of degree information, parameter uncertainties
and stochastic coupling on the synchronization performance.

The presented distributed robust (pinning) synchronization
criteria were solved by a mixed optimization algorithm, which
is based on a constraint optimization evolutionary algorithm.
The obtained results were illustrated by a simulation example.

In the end, it is worth providing some future works. One
should extend the results into the case of directed networks,
which is more practical in applications. It is also of great
importance to design controllers with fixed control gains for
reducing the mean control gain by employing the optimal
control theory [38].

VII. APPENDIX

The following proof is based on the results of [10], [21],
[23], [28], [39].

A. Proof of Theorem 1

Proof:  Let e;; = x; — x;,Vi,j € V. Define z =
[F, . 2] e RN, y = [wl,..,9%]T € R™Y and 2 =
21, s 2R )T € R™Y, where y; = 375 v, €50 2 = 2 e w, i
and gj; = g(z;,t) — g(x;,t). Take the Lyapunov candidate as
follows:

V(t) = iz > elei+> %%(ei(t) —a)?,  (28)

1€V jEN; %

where a is a positive constant to be determined.
By the It6-differential formula [39] and the Appendix, the
operator .Z is computed according to (3):

2V = %Z 3 ez;{(A-l-AA(t))(xi—mj)

i€V jEN;
+ f(l‘“t) - f(mja t) + m(x“t) - m('rﬁt)

+CZ($1€—$¢)—CZ($T—$]‘)}

keN; reN;
3D IEACIOID SIS
i€V jEN; keN;
—6O1Y (@~ )]}
reN;
+Y (at)—a) )Y eyl D el
i€y JEN; JEN;

1
+ ZzT(L ® Ip,)z. (29)
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The following equalities or inequalities are true:
1
52 Y ehey =" (Lo L),
i€V jEN;
DO e (D ey) =" (I @ L),
i€V JEN; JEN;

SO ehelt) > ex

i€V jEN; keEN;

- YT el 1Y el

i€y JEN; JEN;

1 T
52 doehled eri—c ) el

iGVjGNi kENi TGN]‘
= e [ el el
i€V JEN; JEN;
= —al(I?®I,)z,
1
ZzT(L ®1I,)z

hs
< Y (L® L)y

_ M3 orgs

= 47 (L° @ I,)x.
Utilizing the fact of ||AA(¢)]] < ¢, Assumptions 1 and 2, (29)
and (30), we have

ZV(t)
1 1
—52. > Aeljeis+ 5> D vejes
2 £~ . 9L
i€V jEN; iEV jEN;
1
50 D Cmax(A) + o+ ha)efjes;
i€V JEN;

—(a+0) > [D €'Y el

1€V JEN; JEN;

(30)

(11)
<

h2
+ ZzzT(LS ® I,)x
(14)
< —AT(L®lI,)=.

€29

Therefore, it follows from (31) that E£V (¢) < 0. Accord-
ing to Theorems 2.2 and 2.3 of [39] and the mean square
stability of the Lyapunov function in [40], the distributed
robust synchronization of uncertain networked systems with
stochastic coupling in (3) can be achieved in mean square.
This completes the proof. |

B. Proof of Theorem 2
Proof: According to (31) of Theorem 2, we have

2LV (t)
< —AT(L @ L)z + 2" {[(Amax(A) + ¢ + 9 + hs) Iy
2
—alL —cL + %B]L ® I, }x. (32)

There exists a unitary matrix U such that L = U AUT [10],
[29], where A = diag{\i (L), o(L),...,An(L)} =
diag{0, \2(L), ..., AN(L)}, U = [u1, ug,...,un], and u; =
1/vV/N[1,1,...,1]7. We consider the transformation w(t) =

UT@1,)x(t) = [wl(t),wl®t),...,wk )], where w;(t) €
R™ (i € V). Therefore, we have

2 [(Amax(A) +9 + 1+ h3)L @ 1))z
= wH(UT @ L) [(Amax(A) + 9 + ¢
+h3)L @ L,)(U ® I,)w

N
= > 0] [(Amax(A) + 0 + e+ ha)\i(LD)]wi. (33)
1=2

Similarly, one gets

—azxT (L* @ I,)x
= —aw'(UT@L)(L*®L)U®IL)w
= —awT(UTL?U @ I,)w

(34)

(35)
and
hé:ﬂ(ﬁ” @I,z = h3 > X (L)w] w;. (36)
4 4 : 1 K3

Combining (32)-(36) yields that

2T [(Amax(A) + 9 + ¢ + h3) Iy
2
—aL —cL + %LQ]L ® L, }x

N
= > w XN(L) Amax(A) + 9 + .+ ha — aXi(L)
1=2

h3

= eXi(L) + AN (L)w; <0. (37)

Therefore, it follows from (32) and (37) that EZV(¢) < 0.
Similar to Theorem 1, the robust distributed synchronization
of uncertain networked systems with stochastic coupling in (3)
can be achieved in mean square. This completes the proof. ®

C. Proof of Theorem 3

Proof:  Consider the following Lyapunov candidate:

V) = i S e+ Y %%(q(t) o),

i€V jEN; €T

(38)
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where a is a positive constant to be determined.
The operator .Z is calculated as follows:

2LV(E) = —E; % e”{ A+ AA(Y))(z; — ;)
i€V je
+ (f (@i 1) = fxj,8) + (m(zs, 1) — m(z;,1))
+CZ xk—xz—cz —x]}
keN reN;
+5 20 d{a®lY (o - )
zET]EN kEN;

— 6O (@ - xm}

T‘ENJ'
+ Y (et —a)[ Y ei]T 1Y el
ieT JEN; JEN;
+ izT(L(@In)z. (39)

Utilizing the fact of ||AA(¢)]] < ¢, Assumptions 1 and 2 and
(39), we have

LV (1)

< —AsT(L @ L)x+ 27 {[(Amax(A) + ¢ + 9 + hs)In
2
—aLZ —cL + %LQ]L ® I}z
< AN (Lo )z, (40)

o 1, if i=j,67(i) =1
where Z(i,5) = 0. else 307 (0) .

Therefore, it follows from (40) that EZV (¢) < 0. Similar
to Theorem 1, the robust distributed pinning synchronization
of uncertain networked systems with stochastic coupling in (3)
can be achieved in mean square. This completes the proof. ®

D. Proof of Theorem 4

Proof: By carrying out integration of (5), the following
equality holds:

{Z/ dei(t }_Z/ il 3 el T1Y euldt. @)
% i€V JEN; JEN;

Therefore, C can be calculated according to (6) and (41):

CE{/

where © = diag{ay,...,an}.
According to Corollary 1, one has

EZV < E{zT(#)](Amax(4) +
—cL + %/\N(L)L]Lx(t)}.

T(LOL ® I,)xdt}, (42)

L+19+h3)IN —alL
(43)

Now we aim to show that the following inequality holds:

[(a+c— h)\N(L)) - Amax(A)}:(z;r LAMCITE
< [late- h—AN(L))L
_()‘maX(A) t+ 9+ hg)In]L. (44)

Pick p; be the eigenvector of L associated with the eigen-
value A;(L) sorted by 0 = A (L) < A(L) < A(L) <
< An(L). For any p € RY, p can be written as
P = Y ey TiPi, (i € V). The eigenvectors are chosen such
that they correspond to the same eigenvalue with multiplicity
such that pq,...,py compose an orthogonal standard basis of
RN, We get pI'p; =0,Vi # j.
Note that

Amax(A) + ¢+ 9 + hg
A2 (L)

p{(la+e-"av ) - L2

—[(a+c— %)\N(L))L
~Omax(A) + 0+ 9+ hg)IN]L}p
= Snfate-"aw)

%

7>\max(A) +L+19+h3 9

—(a+e— */\ (L)AF(L)

+Oumax(4) + 149+ R\ (L)

+2ZZP¢T[(G +c— %AN(L)

i€V j>i
Amax(lél) +o+9+ h3 h

—(Amax(A) + ¢+ + h3)In)L]p;rir;

N
_ T
= ;pzm @)

o+ 9+ hg) N (L)r?
0. (45)

)L? —

)\1' (L) + 1] ()\max (A)

IN

Therefore, (44) is true. Thus, we find

c = E{N/ ) (LOL ® I,)x(t)dt}
- aXo(L) 0
< {N[(HCW - 3€][/O 2va))
O[)\Q(L)
- E 8 Vo — Ve
Nlare- EA(D)ha(L) - R
= E{ h?)Q(L) (90
Nl(a+c— ZAN(L))A2(L) — X]
+3 o= Caci — )]}
i€V
< B ()
Ni(a+ e - Ban(L)h(L) - %]

alN N
Xlao + - — S-C?)),

where X = Apax(A) + ¢+ 9 + hs, Vo = V(O), Voo =

limy oo V(t) and go = 1 3., Do ieN: lle;;(0)]|%. Let & = £.
By solving the last inequality in (46), an upper bound of C

(46)
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can be obtained
_ 2004
C<C=E{5+/82+ (ﬁ}a},

Admax(A) + 40 + 49 + 4hs + Mo (L) (h3AN (L) — 4c)
4o (L)
+a(a —1). (48)

(47)

where

g =

According to the inequality va? + b? < a+b, where a and
b € R are nonnegative real numbers, we have

ez -sfa= f+/2E)
) E{23+A 2?30‘} if3>0, o
E 23\(}0[, else.

In the following, we are in a position to estimate an upper
bound for S. Denote ® = (d;;) with d;; = —=; if i # j and
diy =1— % (Vi=1,2,..,N) and 20 = —L-DTD. Thus, S
can be calculated as follows:

S = E/ 2T (4)(W @ I,)x(t)dt. (50)
0
The following inequality is true according to [21]:
1
<— 17
YEmoNm
From (7), (42) and (50), it can be checked that
1 oo
< E T (LOL ® I,,)x(t)dt
S < g |, oweLe L)
N
< E
{(N — l)Ag(L)dC}
N 2qocx
2
= ]E{(N— DM(L)a FeyE e
One can further have
= N 2(]06&
< - -
S<E (N—l)A%(L)d[S+‘S|+ o (52)
Hence, one has from (52):
N 2(]0(3[
E{ ——s——12
) {(N—1)A§(L)d[§+ N
S=< ifF>0, (53)
N 2(]0(34
E Ise.
{(N—l)Ag(L)a\/ N }’“e
This completes the proof. |

E. It6’s formula

1t6’s formula is given in [39] as Theorem 6.4, which is given
as follows:

Theorem 6.4 in [39]. Let 2(t) be a d-dimensional It process
on t > 0 with the stochastic differential

dx(t) = f(t)dt + g(t)dv(t). (54)

Let V € C*}(R% x RT;R), where C%1(RY x RT; R) denotes
the family of all real-valued functions V' (z, ) defined on R¢ x
RT which are continuously twice differentiable in z € R?
and one differentiable in R™. Then V (z(t),t) is again an It6
process with the stochastic differential given by

av(z(t),t) = [th(w(t), t)+ Va(z(t), 1) f(t)
+§trace(gT(t)Vm(x(t),t)g(t))]dt
FL(0), D (1)do(t)

= ZLV(t) + Va(z(t), t)g(t)dv(t),  (55)
where
LV (t) = Vi(a(t),t) + Va(a(t), £) f (1)
+ gtrace(g” (Ve (a(0), (1),
Ve V= ()
Viz = ( il (56)

8mi8mj )dXd.
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