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ABSTRACT

Lagged cross-correlation and regression analysis are commonly used to gain insights into interaction

mechanisms between climatological processes, in particular to assess time delays and to quantify the

strength of a mechanism. Exemplified on temperature anomalies in Europe and the tropical Pacific and

Atlantic, the authors study lagged correlation and regressions analytically for a simple model system. A

strong dependence on the influence of serial dependencies or autocorrelation is demonstrated, which can

lead to misleading conclusions about time delays and also obscures a quantification of the interaction

mechanism.

To overcome these possible artifacts, the authors propose a two-step procedure based on the concept of

graphical models recently introduced to climate research. In the first step, graphical models are used to detect

the existence of (Granger) causal interactions that determine the time delays of a mechanism. In the second

step, a certain partial correlation and a regression measure are introduced that allow one to specifically

quantify the strength of an interaction mechanism in a well interpretable way that enables the exclusion of

misleading effects of serial correlation as well as more general dependencies. The potential of the approach to

quantify interactions between two and more processes is demonstrated by investigating teleconnections of

ENSO and the mechanism of the Walker circulation.

The article is intended to serve as a guideline to interpret lagged correlations and regressions in the

presence of autocorrelation and introduces a powerful approach to analyze time delays and the strength of an

interaction mechanism.

1. Introduction

Lagged correlation analysis is a simple and very com-

mon method in many fields of science, popularized in

climate research already by the seminal works of Walker

(1923, 1924). It is a first step to gain insights into the

possible interaction mechanisms between different pro-

cesses. Specifically, the cross-correlation lag function is

used to assess the time delay and to quantify the strength

of the link mediated by a certain mechanism. To name

just a few examples, Lanzante (1996) computed lag cor-

relations of sea surface temperatures between different

tropical regions to assess their mutual interaction. Klein

et al. (1999) studied the mechanism by which the El

Ni~no–Southern Oscillation (ENSO) influences the At-

lantic and Indian Oceans and southern China. They in-

ferred time delays between 3 and 6 months and suggest

that changes in atmospheric circulation accompanying El

Ni~no induce changes in cloud cover and evaporation that,

in turn, increase the net heat flux entering these remote

oceans. This was then postulated to be responsible for the

surface warming. Gu and Adler (2011) investigated the

impact of ENSO on tropical land surface temperatures
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and precipitation and find that the influence of ENSO on

land precipitation has much shorter lags than the effect

on land temperatures. They interpret this difference by

suggesting, ‘‘This 5-month time lag suggests a rough time

scale needed for land surface air temperature to adjust

because of the variations of surface energy budget caused

by ENSO-associated circulation and precipitation anom-

alies.’’ Hashizume et al. (2009) inferred a more compli-

cated mechanism by investigating the impact of the

Indian Ocean dipole (DMI) on the malaria risk in west-

ern Kenya. They find that ‘‘the 3- to 4-month lag in the

positive association between DMI and the number of

malaria cases coincided with the sum of the lag between

DMI and rainfall (1 month) and the lag between rainfall

and the incidence of malaria (2–3 months).’’

These examples demonstrate that the cross correla-

tion’s maximumdelay is used in interpreting the delay of

the underlying physical mechanism that couples two

processes. Apart from the analysis of time lags, the value

of the cross correlation is commonly used as a measure

of the effect of one process on another or a measure of

the strength of a link or association, in line with the

statistical interpretation of the square of correlation as

the proportion of variance of one process that can be

linearly represented by the other (Von Storch and Zwiers

2002; Chatfield 2003). These analyses are often accom-

panied by regressions.

But is it really justified to infer physical time lags from

the maximum of the cross-correlation function? How

reliable is this method? The delay of what mechanism is

actually measured? And how can the value of the cross

correlation be interpreted physically?

Through a motivating example in the next section,

we will show that these conclusions about a physical

mechanism are strongly dependent on many factors.

Generally, often climatological time series exhibit serial

correlations or serial dependencies, often also referred

to as autocorrelations or time series featuring a red noise

spectrum (Von Storch and Zwiers 2002). Especially in

tropical temperature time series, where the temperature

at a given month very much depends on the tempera-

tures of the previousmonths. In this article, the influence

of serial correlation on lagged correlation functions and

regressions will be in detail analytically investigated on

a simple linear model system. It will be demonstrated

how this influence can lead to misleading conclusions

about time delays and how it also obscures a quantifica-

tion of the interaction mechanism and, therefore, mis-

guides a physical interpretation.

To overcome these possible artifacts, we propose

a two-step procedure based on the concept of graphical

models that has recently been introduced to climate

research (Ebert-Uphoff and Deng 2012a). In a first step,

the framework of graphical models is used to detect the

existence of (Granger) causal interactions yielding the

interaction time delays, while in a second step a certain

partial correlation and a regression measure are intro-

duced that allow one to specifically quantify the strength

of an interaction mechanism in a well interpretable way.

We will demonstrate that our approach goes beyond the

pure graphical models analysis of Ebert-Uphoff and

Deng (2012a) and enables us to exclude the misleading

effects of serial correlation as well as more general ex-

ternal dependencies. Our method is then applied to trop-

ical and European midlatitude time series with strong

and weak autocorrelations to demonstrate the different

effects on an assessment of a coupling mechanism. As

a further step, the potential of the approach to quantify

the interactions also between more than two variables is

demonstrated to shed light on the mechanism of the

Walker circulation. The classical correlation and the novel

partial-correlation approach are discussed regarding their

statistical as well as their climatological implications.

The article is structured as follows: In section 2, a

motivating example from two very different pairs of time

series data is given, and section 3 gives detailed analytical

derivations for the cross correlation and regressions of

a typical simplemodel example. In the light of the studied

examples, the physical interpretation of correlations and

regressions is discussed in section 4. As a solution to the

problem, in section 5 the framework of graphical models

and its relation to the concept of Granger causality is

introduced and in section 6 the proposed partial corre-

lation and regression measures will be defined and some

important characteristics discussed. Finally, in section 7

several teleconnection examples and the Walker circu-

lation are analyzed. The climatological implications are

discussed in section 8. We focus on climatological ex-

amples in the main text and provide further theoretical

results and discussions in the appendixes.

2. Motivating example

To motivate the problem considered here, cross-

correlation and autocorrelation functions for two very

different pairs of monthly surface temperature anoma-

lies from the NCEP–NCAR reanalysis (Kalnay et al.

1996) are analyzed for the period 1948–2012 with 780

months. Anomalies are taken with respect to the whole

period. In the first example, Ni~no-3 is the time series of

the spatial average over the Ni~no-3 region in the eastern

Pacific and ATL is the average over a region in the

tropical North Atlantic (all regions are shown on the

map in Fig. 10). In the second example, the cross cor-

relation between two time series fromEurope is studied.

WEUR is the average over a region in western Europe
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at 458–558N, 08–108E, and EEUR is the average over a

region in eastern Europe at 458–558N, 408–508E. Figure 1a
shows the time series andFig. 1b shows the cross-correlation

and autocorrelation functions.

Several observations are apparent from Fig. 1b: the

peak of the tropical cross correlation with its maximum

r̂5 0:43 at lag14 is higher and broader than those of the

European cross correlation that has values above the

significance threshold only at lag11 (r̂5 0:12) and from

around 112 to 113 months (r̂5 0:132 0:14). A corre-

lation between the eastern Pacific and the tropical At-

lantic is also reported in Lanzante (1996), where a lag of

around 6 months with a correlation of 0.34 was found.

Interpreting cross correlation as a measure of the

strength of a link mediated via a climatic mechanism,

we have to ask, do these results imply that the Pacific–

Atlantic link over a distance of about 4500–8500 km

(depending on whether the region’s corners or centers

are used) is stronger than the link in Europe with a dis-

tance of only 2000–3000 km? Can one infer that the

mechanism in the tropics is present at the whole range

of lags from 21 to 111 months, since these lags are sig-

nificantly correlated?Does themechanism to transfer the

Pacific anomalies take 4 months to reach the Atlantic?

Note that the significance test used here assumes two

uncorrelated Gaussian lag-1 autoregressive [AR(1)]

processes and thus accounts for autocorrelation.We also

estimated univariate regressions as shown in Table 1 that

also give a larger coefficient for the tropical interaction.

One explanation for the differences between the

tropical and European correlations could be the much

stronger persistence, that is, autocorrelation in the trop-

ical time series as can be seen from the slowly decaying

autocorrelation functions Fig. 1b. The autoregressive lag-1

coefficients are 0.95 (Ni~no-3) and 0.91 (ATL), but only

0.19 (WEUR) and 0.26 (EEUR). These differences seem

to very much affect the cross-correlation lag function,

which raises the question how in particular a peak value

and the lag at which the maximum occurs are to be in-

terpreted. This question will be addressed in the next

section and some geophysical explanations will be given

in section 4.

3. Correlation and regression of model example

To investigate how the value and lag at the maximum

of the cross-correlation function and regression coefficients

depend on serial correlation, consider the following bi-

variate first-order autoregressive process of two serially

correlated subprocesses with a unidirectional influence

of X on Y:

FIG. 1. (a) Time series and (b) estimated (left) cross-correlation and (right) autocorrelation functions for monthly temperature

anomalies from the Ni~no-3, ATL, WEUR, and EEUR regions. All regions are shown on the map in Fig. 10. The lag-1 autocorrelation

coefficients are 0.95 (Ni~no-3), 0.91 (ATL), 0.19 (WEUR), and 0.26 (EEUR). In (b), the two-tailed a 5 95% significance threshold

(dashed) for cross correlation is computed from uncorrelated Gaussian surrogate time series with the same autocorrelation coefficients

and variances as the data. Note that for the autocorrelations the 0 lag is not shown. The plots demonstrate apparent differences in the cross

correlations that can be attributed to much stronger persistence in the tropical time series.

TABLE 1. Results of univariate regression analyses of time series in

the tropics and Europe (after subtracting their mean).

Dependent

Variable Coef (lag t) Estimate Std error p value

ATL Ni~no-3 (4) 0.27 0.02 ,1025

EEUR WEUR (1) 0.18 0.05 ’0.001
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Xt 5 aXt21 1 «Xt

Yt 5 bYt211 cXt211 «Yt , (1)

where («X, «Y) are independent and identically distrib-

uted Gaussian random variables, sometimes referred to

as the innovations,with zeromean and covariancematrix

S5

 
s2
X sXY

sXY s2
Y

!
. (2)

In the following, a and b—commonly regarded as the per-

sistence of a process—are assumed positive as is often the

case for climate time series (Von Storch and Zwiers 2002).

a. Cross-correlation lag function

The cumbersome formula of the lagged cross corre-

lation can be found in Table 2 in a comparison with the

novel introduced partial-correlation measures. Already

from this formula we see that the correlation function

rYX(t) clearly not only depends on c and the variances,

but also on the autocorrelation coefficients a and b. To

illustrate this dependence, we show in Figs. 2a and 2b

plots of rYX(t) for fixed coupling coefficient c 5 0.1

and different autoregressive coefficients awhile keeping

b 5 0.9 fixed in Fig. 2a and vice versa in Fig. 2b.

Several observations can be made. The height of the

peak of the correlation function for the same small

coupling coefficient c5 0.1 strongly varies from very low

to very high values for increasing autocorrelation strength

a (Fig. 2a). Especially for large autocorrelation even

a slight variation in a of 0.025 causes an increase in r of

about 0.1. On the other hand, for increasing b the maxi-

mum first increases and for very large b decreases again

(Fig. 2b) with an overall variation in r of about 0.3. Also,

the lag at which the maximum occurs is shifted toward

larger lags for increasing a and b. This can happen even for

low autocorrelations like b 5 0.6 and a 5 0.7, while for

tropical temperature anomalies values above 0.9 are very

common as is the case in our motivating example. Also

here, for high autocorrelations, even for a slight variation

in b of 0.025, the maximum’s lag is shifted by up to 4 lags.

In Figs. 2c and 2d, the value and lag of the maximum are

plotted for all combinations of a and b. The maximum’s

value and lag are rather asymmetric and strongly non-

linear in their dependence on the coefficients. For in-

creasing a the maximum can easily become very large and

for additional large b the lag can be strongly shifted.

TABLE 2. Analytical comparison of lagged cross-correlation and the partial-correlationmeasures ITY andMIT as well as univariate and

multivariateMIT regressions for themodel example Eq. (1) on the dependent variableY. The parents used in ITY andMIT for this model

arePYt
5 fYt21,Xt21g andPXt

5 fXt21g. For the contemporaneous linkXt2Yt, theMIT regression coefficientB(XPX )t
corresponds to the

quotient of the residual’s covariance and variance after laggedMIT regressions ofX on its parents yielding BXt21
5 a and Y on its parents

yielding (BXt21
,BYt21

)5 (c, b). The formulas demonstrate the dependence of cross-correlation and univariate regressions on the auto-

correlations strengths a and b. Interestingly, for this model ITY still depends on the autocorrelation strength ofY, whileMIT fully excludes

both autocorrelation influences.

Model example Eq. (1) for sXY 5 0 Model example Eq. (1) for sXY 5 0 Eq. (1) for c 5 0

cross correlation r(Xt2t ;Yt)

5

8><>:
a11jtjcs2

X

(12 a2)(12 ab)

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
GXGY

p
for t# 0

cs2
X [a

jtj(12 ab)2bjtj(12 a2)]

(12 a2)(a2b)(12 ab)

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
GXGY

p
for t. 0

with GX 5
s2
X

12 a2
, GY 5

c2s2
X(11 ab)1s2

Y(12 a2)(12 ab)

(12 a2)(12 b2)(12 ab)

univariate regression

BXt21
5

c

12 ab

univariate regression

BXt
5
(12 a2)sXY

(12 ab)s2
X

partial correlation rITYX/Y (t)

5

8><>:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2s2
X [c

2s2
X 1 (12 ab)2s2

Y ]

c4s4
X 1 2(12 ab)c2s2

Xs
2
Y 1 (12 a2)(12 ab)2s4

Y

s
for t5 1

0 for t 6¼ 1

partial correlation rMIT
X/Y(t)

5

csXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s2

X 1s2
Y

q
for t5 1

0 for t 6¼ 1

8>><>>:

MIT regression

BPYt
5

�
BXt21

BYt21

�
5

�
c

b

� MIT regression

B(XPX )t
5
sXY

s2
X
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In Fig. 3 a case with additional contemporaneous co-

variance sXY 5 0.6 is shown. Especially for the two

upper curves, albeit the maximum is at lag 0, one is still

tempted to interpret the larger correlation for negative

lags as a sign for a mechanism where Y drives X, while

actually the opposite is the case. Note that often inter-

actions appear contemporaneous due to a low time

resolution of the data, which can cause misleading phys-

ical interpretations.

b. Regressions

It is a common approach in regression analysis to re-

gress Y on X at the lag with maximum correlation. As

studied in the previous paragraph, this can yield very

misleading lags. Here, two cases are studied: (i) where

the directional coupling coefficient is set c 5 0, but the

contemporaneous dependence sXY is nonzero (then the

maximum is at lag 0); and (ii) with the contemporaneous

covariance coefficient set tosXY5 0. Then, formoderately

strong autocorrelation coefficients inmodel Eq. (1), that is,

outside the region shown in Fig. 2d, themaximumwill be at

lag 1. For both cases the regression of Yt on Xt and Xt21,

respectively, the coefficients BXt
and BXt21

can easily be

derived from the covariances (given in appendix B)

demonstrating their dependence on a and b. The formulas

are again shown in Table 2 for comparison. In Fig. 4 the

quotients of these coefficients divided by the coefficients

B0
Xt

and B0
Xt21

for zero a and b are plotted for varying

a and b to illustrate the factor by which the regression

coefficient is changed because of autocorrelation. The

plots show that the regression coefficient for contempo-

raneous regressors can become zero (in the limit a/ 1) or

even twice as large depending on a and b (Fig. 4a), while

for lagged regressors it varies nonlinearly in a and b and

FIG. 2. Plots of the analytical cross-correlation function given in Table 2 for model Eq. (1). (a) The correlation function for fixed c5 0.1,

sX 5 sY 5 1, zero contemporaneous dependence sXY 5 0, b5 0.9, and varying a5 0, 0.6, 0.8, 0.95, and 0.975 (bottom to top). The black

dots indicate the maxima for the whole range from a 5 0 to a 5 0.975 in steps of 0.025. (b) The reverse case where a 5 0.9 is fixed and

b varies in the same range. (c) The value of the maximum and (d) the maximum’s lag for varying a and b. In (d), only the region where the

lag is shifted is plotted. In the model—assuming zero contemporaneous dependence sXY 5 0—, this region is independent of c and given

by b. 1/2 and a. (12 b)/b assuming positive a and b. Note that the a axis has been reversed for better visibility. The plots demonstrate

the strong and nonlinear dependence of the correlation function on the autoregressive coefficients.
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can be larger by orders of magnitude due to autocorrela-

tion (Fig. 4b). Interestingly, for zero autocorrelation a5 0

in X, the autocorrelation b in Y makes no difference.

Summarizing, both themaximum’s value and lag of the

lagged cross correlation as well as regression coefficients

are strongly affected by large autocorrelations and cannot

be easily related to the coefficients of the underlying

model. For high autocorrelations, these commonly ap-

plied measures are, therefore, not even a good first-order

approximation of the lag and coupling coefficient of the

underlying model. In the next section, we provide a

physical picture for this effect and discuss its implications.

4. Geophysical interpretation and discussion

There are also observational examples that agree with

our analytical findings. To name just two, in the example

from Gu and Adler (2011) mentioned in the introduc-

tion, ENSO was found to influence land precipitation

with much shorter lags compared to land temperatures

(their Figs. 4c,d). In light of our analysis this finding can

be interpreted differently: the coupling delay of the

mechanism of ENSO’s influence on temperature and

precipitation might be the same and just the precipita-

tion has a much lower autocorrelation as often is the

case for precipitation data. Also, in Huang et al. (2011)

the correlations of meteorological variables on malaria

are found to bemuchweaker after prewhitening the time

series. Prewhitening refers to the procedure to fit and

remove an AR(1) model from the time series that ob-

viously decreases serial correlation.

How can these results be interpreted physically? And

what do these results mean for the interpretability of

correlation as ameasure of the delay and link strength of

a mechanism? To give a physical intuition, Eq. (1) for

sXY 5 0 can be interpreted as a model of two particles

fluctuating around an equilibrium state in their parabolic

potential wells (i.e., two Ornstein–Uhlenbeck processes).

As visualized in Fig. 5, a strong autocorrelation in Y

(large b) can then be understood as a very shallow po-

tential well that leads to the particle taking large de-

partures from its equilibrium position before slowly

coming back, giving rise to a strong persistence in the

time series. A shallow potential well also renders the

particle Y more susceptible to external fluctuations. If

also the particleX is immersed in a shallow potential well,

a more persistent external force is exerted onY. Thus, for

large autocorrelations these two effects act together

leading to a large covariation ofX and Y slowly decaying

back to their equilibrium, which implies that even if the

coupling strength c is small,X has a large effect onY, and

consequently there is a larger cross correlation. Further,

for increasing b the delay is shifted toward larger lags due

to the strong inertia of Y. But where does the ‘‘shallow

FIG. 3. Plot of the analytical cross-correlation function for model

Eq. (1) for fixed c 5 0.1, sX 5 sY 5 1, contemporaneous de-

pendence sXY 5 0.6, b 5 0.4, and varying a 5 0, 0.6, 0.8, 0.95, and

0.975 (bottom–top). The plot shows that autocorrelation could

even lead to a misinterpretation of the direction of influence.

FIG. 4. (a) Plots of quotientsBXt
/B0

Xt
5 (12 a2)/(12 ab) for a con-

temporaneous regression [case (i)] and (b) BXt21
/B0

Xt21
5 1/(12 ab)

for a lagged regression [case (ii)]. These quotients describe the

factor by which the regression coefficients are altered due to au-

tocorrelations a and b. Note that the quotient BXt21
/B0

Xt21
goes to

infinity for a 5 b 5 1. The plots demonstrate the strong nonlinear

dependence of univariate regressions on autocorrelation.

FIG. 5. Physical picture of persistence or autocorrelation via

amodel of a particle in a potential well subject to stochastic forcing:

(a) a shallow potential well leading to large autocorrelation and (b)

a narrower well leading to a weaker autocorrelation.
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potential well’’ come from in the example of surface

temperatures in the tropics, and where does the ‘‘nar-

rower potential well’’ come from in Europe? Geo-

physically, one reason for more inertia in the tropical

surface temperatures above the ocean is the higher

specific heat capacity of the ocean leading to dampened

temperature fluctuations. Accordingly, the almost van-

ishing autocorrelation for the European time series

can be well explained by the ‘‘short-term memory’’ of

the midlatitude atmosphere. More climatological inter-

pretations will be given in comparison with the novel

measures in section 8.

The important point now is that only the coefficient c

reflects the actual factor of the mechanism by which X

influences Y. And since this factor is still dependent on

the units of the variables, only c normalized by the in-

novation’s variances reflects the actual strength of the

mechanism. Further, only the lag occurring in the phys-

ical equation reflects the actual delay (e.g., in delay dif-

ferential equations). Then, again, we stress that the

analysis implies that the cross correlation is not even a

good first-order approximation of the coupling strength,

and themaximum’s lag is also not a good indicator of the

coupling delay of the mechanism. Rather, the analysis

demonstrates their strong sensitivity even on slight de-

viations in high autocorrelation. But should a measure

of coupling strength and delay betweenX and Y depend

on their internal dynamics, here given by the width of

their potentials?

In many statistical methods the effect of autocorre-

lation is not desired and these methods are, therefore,

modified to account for autocorrelation, for example, in

the context of trend estimation (Zhang 2004) and the

detection of regime shifts (Rodionov 2006) or change-

points (Wang 2008). Also, one usually accounts for

autocorrelation in assessing the significance of a cross

correlation (e.g., via permutation tests; Zwiers 1990;

Ebisuzaki 1997) because autocorrelation inflates the

sample cross-correlation coefficient even for indepen-

dent time series. Further, it is known that for auto-

correlated data the significance tests of adjacent lags in

the cross-correlation lag function are not independent

anymore (Von Storch and Zwiers 2002). Apart from the

linear framework studied here, the qualitative proper-

ties for the cross correlation also hold for the lag func-

tion of the more general information–theoretic mutual

information (Cover and Thomas 2006) since it does not

take into account autocorrelation. Mutual information

and more measures are in detail studied in Runge et al.

(2012a).

Now we propose to also account for autocorrelation

and even more general ‘‘external’’ dependencies in as-

sessing the strength and lag of a mechanism to avoid the

problems analyzed in the previous sections. To be clear,

this does not refer to problems of the estimate of the

cross-correlation coefficient but to the theoretical pro-

perties of the cross-correlation function. Our solution

developed in the next sections is based on the frame-

work of graphical models, in which we derive a partial-

correlation measure that is not as ambiguous and is

better interpretable than cross correlation as demon-

strated analytically and on climatic examples.

5. Graphical models and causality

The application of graphical models (Lauritzen 1996)

in climate research was recently suggested by Ebert-

Uphoff andDeng (2012a,b) who also provide a thorough

overview of the concept. Therefore, the introduction

is kept brief here. Graphical models provide a tool to

distinguish direct from indirect interactions between

and withinmultiple processes. Underlying is the concept

of conditional independencies in a general multivariate

process, which can be explained as follows. Consider three

processes whereX drives Z and Z drives Y as visualized

in Fig. 6a. Here, X and Y are not directly but indirectly

interacting and in a bivariate analysisX and Y would be

found to be dependent—implying that their correlation

would be nonzero in the case of a linear dependency.

The same holds for a common driver scheme in Fig. 6b.

In larger systems there are usually many more indirect

connections than direct ones, and a bivariate analysis

would show many nonzero correlations without con-

taining much actual information about the underlying

causality.

If, however, the variable Z is included into the anal-

ysis, one finds that X and Y are independent conditional

on Z, written as

XvY jZ .

This implies that the joint probability density p(X, Y, Z)

factorizes into a product of conditional probability

densities.

FIG. 6. Causality between three processes: (a) indirect chain and

(b) common driver system. The shading of links underlines the

difference between the graphical models approach that only as-

sesses the existence of causal links and our approach to additionally

quantify their strength.
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a. Definition of time series graphs

Time series graphs are based on the concept of con-

ditional independence like graphical models and were

introduced for the linear case by Dahlhaus (2000) and

Eichler (2005, 2012) and in a certain nonlinear gener-

alization to phase synchronization (Schelter et al. 2006).

As depicted in Fig. 7 for model Eq. (1), each node in that

graph represents a single random variable (i.e., a sub-

process of a multivariate process X) at a certain time t.

Compared to the general concept of graphical models

that is applicable also to data without time ordering, for

time series graphs the time dependence is explicitly used

to define directional links. Nodes Xt2t and Yt are con-

nected by a directed link Xt2t / Yt pointing forward in

time if and only if t . 0 and

Xt2t �
vYt jX2

t nfXt2tg , (3)

that is, if they are not independent conditionally

on the past of the whole process denoted by X2
t 5

(Xt21,Xt22, . . . ) excludingXt2t (denotedby the symboln).
If Y 6¼ X, the link Xt2t / Yt represents a coupling at

lag t, while for Y 5 X it represents an autodependency

at lag t. Further, nodes Xt and Yt are connected by an

undirected contemporaneous link Xt—Yt (Eichler 2012)

if and only if

Xt �
vYt jX2

t11nfXt,Ytg , (4)

where also the contemporaneous present XtnfXt, Y.g is

included in the condition. Note that stationarity implies

that Xt2t /Yt whenever Xt02t / Yt0 for any t0.
While this definition applies to very general nonlinear

interactions (Runge et al. 2012b), for a linear descrip-

tion, the conditional independencies can easily be re-

lated to the coefficients of a linear model. Model Eq. (1)

can be written in matrix notation as

�
Xt

Yt

�
5

�
a 0

c b

�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

F(1)

�
Xt21

Yt21

�
1

�
«Xt
«Yt

�
, (5)

whereF(1) is the lag-1 coefficient matrix and higher lags

are null matrices: F(s) 5 0 for s . 1. Now it can be

shown that for models of this class [given by Eq. (B1) in

appendix B] each coefficient in the matrix F(1) corre-

sponds to a directed link pointing forward in time and

each nonzero value in the inverse covariancematrixS of

the innovation « corresponds to an undirected contem-

poraneous link (Eichler 2012).

It is important to note that these graphs can be linked

to the concept of a lag-specificGranger causality (Granger

1969). Granger causality measures whether the prediction

of one process is improved by taking into account another

one. More precisely, in the original definition of Granger

causality, X 2 X Granger causes Y 2 X with respect to

the past of the whole process X if 1) events in X occur

before events inY and 2)X improves forecastingY even

if the past of the remaining process XnfX, Yg is known.
The latter property is directly related to the conditional

dependence betweenX at some lag and Y given the past

of the remaining process XnfX, Yg that defines links in

the time series graph.

The definition of the novel partial-correlation mea-

sure and the corresponding regression is based on the

important notion of parents PYt
of a process Yt in the

time series graph. They are defined as

PY
t
[ fZt2t :Z 2 X, t. 0,Zt2t /Ytg , (6)

and the neighbors N Yt
as

N Y
t
[ fXt :X 2 X,Xt 2Ytg . (7)

Note that also the past lags of Y can be part of the

parents. For example, in Fig. 7 the parents of Yt are

fYt21, Xt21g and the only neighbor is Xt. The parents of

all subprocesses in X together with the contemporane-

ous links comprise the time series graph.

b. Estimation

The time series graph can be estimated by different

methods. In Runge et al. (2012b), a modification of the

PC algorithm (Spirtes et al. 2001), named after its in-

ventors Peter and Clark, for the estimation of the gen-

eral nonlinear time series graphs using the information

theoreticmeasure conditional mutual information (Cover

andThomas 2006) is described.Here, the focus lies on the

linear case (as in the original introduction by Granger)

and in the analyses of the following sections, the PC

FIG. 7. Visualization of model Eqs. (5) and (1) as a time series

graph. Each node corresponds to a lagged subprocess and owing to

stationarity links for t imply links for all t21, t22, . . . . Process Yt

(black node) has two parents (gray nodes, connected via incoming

links from the past) and one neighborXt (hatched node, connected

with an undirected contemporaneous link) as defined in Eqs. (6)

and (7). In the case of a linear model, each multivariate regression

coefficient a, b, and c can be attributed to a link.
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algorithm in combination with partial correlation (as

introduced in the next section) is used to measure con-

ditional linear dependence.

Since the PC algorithm was originally introduced to

estimate graphical models where no information about

time order is assumed in the data, it consists of two steps:

in the first step only undirected links are inferred, which

are tested for directionality in the second step. This

approach is also adopted in Ebert-Uphoff and Deng

(2012a). But in our case of time series, the time ordering

of nodes already provides the directionality and we omit

the second step. Instead, we estimate the above-defined

contemporaneous links without trying to assess a direc-

tionality. Note that due to a too large sampling time step

of the data, a monthly contemporaneous link could ac-

tually be a lagged directional link on a daily time scale.

As an illustration of how the modified PC algorithm

estimates the time series graph shown in Fig. 7 for model

Eq. (1), consider the inference of the parents of Yt.

The algorithm tests possible links from all processes

(including Y) at all lags up to a maximum delay. Here,

the hypothetical link Xt22/Yt would be tested by first

checking whether the ‘‘unconditional’’ cross correlation

r(Xt22; Yt) is nonzero. The graph-theoretical approach

can explain that this is the case because there exists

a path between Xt22 and Yt (this path–theoretic in-

terpretation is discussed in appendix B). In the next it-

eration step, the conditional linear dependence is tested.

As a heuristic for selecting the conditions in each test, we

choose the conditions sorted by their absolute correlation

value in the previous step. In our example, the partial

correlation r(Xt22; Yt jYt21), which excludes the in-

fluence of Yt21, would be tested [because jr(Yt21; Yt)j .
jr(Xt21; Yt)j . . . .]. This partial correlation would be

nonzero due to the unblocked path Xt22 / Xt21 / Yt.

Also, the test with the next largest condition on Xt21

yields a nonzero partial correlation. After some more

tests with ‘‘weaker’’ conditions, two conditions are used

and the partial correlation r(Xt22; Yt jYt21, Xt21) would

be found to vanish because all paths are blocked, such

that the hypothetical link can be removed. If the itera-

tively increasing number of conditions equals the num-

ber of remaining parents and the partial correlation is

still nonzero, a causal link has been found. In analogy,

contemporaneous links are inferred by conditioning it-

eratively on more and more neighbors and additionally

conditioning on all their parents (Runge et al. 2012b).

The free parameter of the algorithm is the maximum

time lag to be considered. Some further parameters can

be used to speed up the convergence and limit the

computation time: for example, the initial andmaximum

number of conditions to take into account and the num-

ber of different conditions to test. How these parameters

influence the convergence speed and other characteristics

of the algorithm is further discussed in Runge et al.

(2012b).

Different tests are possible for the null hypothesis

that a link does not exist. For the information–theoretic

quantities usually no theoretical results about the sam-

pling distribution exists, and in Runge et al. (2012b) a

shuffle test is proposed to at least approximate this dis-

tribution. The use of partial correlation, however, has

the advantage that the sampling distribution is known

and theoretical significance thresholds for different a

levels can be used. Like Ebert-Uphoff and Deng (2012a),

we also adopt this approach.

c. Discussion

It is important to note that the goal in the PC algo-

rithm used in Ebert-Uphoff and Deng (2012a) is only to

test for the existence of links but not to quantify their

strength. In Ebert-Uphoff and Deng (2012a) links that

are still present at higher significance levels are called

strong while we prefer to use this term for the value of

the partial-correlation measure introduced in the next

section. The strength and level of significance of a link

are two distinct properties. Strong links can vanish at

low a levels and weak links can be highly significant. We

refer to those highly significant links as more robust and

check different a levels in our examples.

A problem we found with the significance test is that,

for example, the distribution of r̂(Xt22; Yt jYt21) is still

‘‘inflated’’ by autocorrelations inX that is not accounted

for in the theoretical alpha level. However, this is not the

case for the novel partial-correlationmeasure. In appendix

A, we further discuss general limitations and estimation

issues of the time series graph inference algorithm.

6. Partial correlation and regression using time
series graphs

The determination of the strength and delay of a

mechanism now is a two-step procedure. In the first step

the time series graph is estimated, which determines the

existence or absence of a link and thus of a (Granger)

causality between lagged components of X. The cou-

pling delay betweenX2X andY2X is precisely defined

by the nonzero link Xt2t / Yt (or possibly more than

one link at different lags t) in the time series graph. In

the second step discussed now, the weight of each as-

sessed causal link is determined using the novel partial-

correlationmeasure. Additionally, the determined parents

and neighbors can be used in a multivariate regression.

Partial correlation measures the correlation between

two variables with the influence of a set of controlling

variables removed (partialed out). We explain it in the
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framework of regression analysis, which in climate re-

search is widely used for estimating the linear influence

of possibly multiple variables, the regressors U, on (the

mean of) a dependent variable Y. If one regresses two

variables X and Y on the same regressors U, then the

cross correlation between the residuals

XU 5X2UG21
U GU;X

YU 5Y2UG21
U GU;Y|fflfflfflfflfflffl{zfflfflfflfflfflffl}
regression
coefficient
(vector)

(8)

is the partial correlation rYXjU 5 r(XU;YU). Here, GU is

the covariance matrix of the regressors and GU;Y is the

covariance vector of each regressor with Y, analogously

for X.

We seek for a partial-correlation measure for the

strength of a coupling mechanism between Xt2t and Yt

that is independent of the internal dynamics of X and Y

to overcome the discussed ambiguities of the cross cor-

relation. The question now is which influence to partial

out (i.e., on what to condition?). We will show that the

crucial idea is to define a measure that quantifies how

much the variability in X at the exact lag t directly in-

fluences Yt, irrespective of the pasts of Xt2t and Yt. This

measure of coupling strength is based on the parents Y

and theparents ofX. In analogy to the general information–

theoretic measure described in Runge et al. (2012a), we

call it rMIT, where MIT stands for momentary infor-

mation transfer, which in the linear case should be

understood as momentary variance transfer. It is de-

fined as

rMIT
X/Y(t)[ r(Xt2t;Yt j PY

t

nfXt2tg,PX
t2t

) . (9)

That is, MIT is the cross correlation of the residuals after

Xt2t and Yt have been regressed on both the parents of

Xt2t and Yt [i.e., the residuals in Eq. (8) for U5
(PYt

nXt2t ,PXt2t
)]. The attribute momentary (Pompe

and Runge 2011) is used because MIT measures the

variance of the ‘‘moment’’ t 2 t in X that is transferred

to Yt. One can also define a contemporaneous MIT,

which in the linear case of an autoregressive model is

equivalent to the normalized inverse covariance of the

residuals after regressing each process on its parents

(Runge et al. 2012a). Formodel Eq. (3), this corresponds

to the inverse of the innovation’s covariance matrix S.

Importantly, MIT differs from the partial correlation

used in the PC algorithm, named information transfer to

Y (ITY) in Runge et al. (2012a), which only excludes the

effect of the parents of Y, defined as

rITYX/Y(t)[ r(Xt2t;Yt j PY
t
nfXt2tg) . (10)

In analogy, for every variable Y 2 X we define a

(multivariate) MIT regression where the parentsPYt
are

taken as regressorsUMIT
Y . The residual’s covariance and

inverse covariance matrix can then be estimated from

the regression residuals.

In the next section, we compare the different mea-

sures on climatological examples. For a detailed ana-

lytical comparison of the (partial) correlation measures

for model example Eq. (1), further theoretical results

and a description of bootstrap confidence bounds, we

refer the interested reader to appendix B. In essence, the

value of the cross correlation and also of the partial

correlation ITY used in the PC algorithm depends on

multiple coefficients and cannot be easily attributed to

one single influence. On the contrary, one can prove that

the MIT value solely depends on the underlying cou-

pling parameter and the innovation’s variances, that is,

as shown in Table 2 the coefficient c and the variances

s2
X ,s

2
Y in model Eq. (1). MIT, thus, disentangles the

correlation value and allows one to attribute the strength

solely to the causal link, excluding the influence of other

processes or autocorrelations. The strength of the auto-

correlation can independently be quantified by the MIT

of the autodependency links [rMIT
Y/Y(t)]. Also a multivar-

iate regression on the parents in the graph is easier to

interpret because—as shown in Table 2—the regression

recovers the coefficients of the model, without inter-

mixing the coefficients as for the univariate regressions.

A further practical advantage is that the MIT sampling

distribution is not ‘‘inflated’’ by autocorrelation like that

of cross correlation and ITY, allowing more accurate

significance tests. In the next sections we show how these

characteristics of MIT can be utilized to interpret cli-

matological interactions.

7. Climatic examples

Now we analyze several bivariate climatic examples

using the method developed in the previous sections to

compare the different measures on real data. Further,

we give a trivariate example to demonstrate that our

approach can be used to detect more complicated in-

teraction mechanisms. In addition to the surface air

temperature indices Ni~no-3, ATL, WEUR, and EEUR

analyzed in the motivating example in section 2, we

study surface air temperatures in the eastern (EPAC)

and central Pacific (CPAC) from the same dataset and

monthly surface pressure anomalies over the western

Pacific (WPAC), also from the National Centers for

Environmental Prediction–National Center for Atmo-

sphericResearch (NCEP–NCAR) reanalysis (Kalnay et al.
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1996) dataset. Further, the index SSA is the monthly pre-

cipitation rate anomaly over a region in southern South

America (seemap in Fig. 10) from theGlobal Precipitation

Climatology Project (GPCP) dataset in years 1979–2012

(Adler et al. 2003). In all examples we run the algorithm

with a maximum time lag of tmax 5 15 months and use

a two-tailed significance level of a 5 95%. More sig-

nificance levels are also discussed at the end. Addition-

ally, we show the 5% and 95% confidence bounds (i.e.,

the 90% confidence interval). The6 values given in the

text roughly approximate the 90% confidence interval

shown in the figures. Here, we focus on the statistical

interpretation, while the results will be discussed cli-

matologically in the next section.

a. Bivariate examples

In this section, we reexamine the European west–east

link and the influences of Ni~no-3 on the tropical Atlantic

and also on precipitation over southern South America.

Further, we study the mutual interaction between the

eastern and western Pacific.

The panels in Fig. 8 show the cross-correlation and

autocorrelation lag functions in light gray. In the same

plots we show the values of the PC algorithm measure

ITY (dark gray) and MIT (black), where all non-

significant links are marked by gray crosses. Contrary to

the common plot of lag functions versus positive and

negative lags t shown in Fig. 1, the presentation as a

matrix of lag functions with only nonnegative lags un-

derlines the interpretation of the partial-correlation lag

functions as directional influences in the sense ofGranger

causality. The estimated parents and neighbors of each

variable can be read off from the ITY values in the

columns in this matrix. First, we only compare MIT to

the lagged cross correlation and discuss the more subtle

differences between the PC algorithm measure ITY and

MIT afterward.

Reexamining the motivating example of lag functions

in the tropics and Europe, the strength of autocorrela-

tion in Ni~no-3 as measured byMIT in Fig. 8b is very high

and mostly coming from lags at t 5 1 and 3, while lags

farther in the past do not contribute much more for

explaining the present. Also ATL has a strong autode-

pendency MIT value at lag 1. In our model example

analysis in section 3, such high autocorrelations resulted

in a high and broad peak at a shifted lag in the cross-

correlation function. Also here, most of the broad peak

links in Ni~no-3 / ATL with a maximum at lag 4 are

actually nonsignificant links. Rather, the MIT partial

correlation is much smaller than the correlation and

significant only at lag 1.

On the other hand, the peak at lag 1 for the cross-

correlation WEUR / EEUR in Fig. 8b is not much

reduced and the value rMIT 5 0.1 6 0.07 even slightly

larger than the link Ni~no-3 / ATL with rMIT 5 0.09 6
0.06, albeit this difference is negligible considering the

large confidence bounds. The European time series

have almost no autocorrelation that could alter the

position and value of the peak. Additionally, we per-

formed a multivariate regression using UMIT with the

parents inferred by the algorithm as regressors. The

results are summarized in Table 3. Also here, we see that

the coefficient of the multivariate regression of ATL on

Ni~no-3 (1) is much smaller than that of the univariate

regression shown in Table 1 at lag 4 (0.06 compared

to 0.27), while the coefficients are unchanged in the

European example within the error bounds. As can be

seen from theR2 values, Ni~no-3 andATL are rather well

explained by their regressors, while the variance in

WEUR and EEUR comes almost entirely from the in-

novation’s variance. In Figs. 8a and 8b the black solid

lines are the numerically evaluated cross correlations for

a multivariate autoregressive process with the same

coefficients and innovations of Gaussian white noise

with the same covariance matrix as the original re-

siduals. The fitted lines well agree with the estimated

correlations. This demonstrates that a large part of the

covariance structure can be explained by a Gaussian

model based on the time series graph.

While the MIT values of the Ni~no-3 / ATL and

WEUR / EEUR links are equal within confidence

bounds, the ITY value of Ni~no-3/ATL is significantly

larger than the corresponding MIT value (0.22 6 0.06

compared to 0.096 0.06). As discussed in the analytical

comparison in appendix B, the reason is that ITY be-

comes larger for strong autocorrelations within X, here

within Ni~no-3. A further difference is that some values

that are significant for ITY became nonsignificant for

MIT, for example, the autodependency link within

Ni~no-3 at lag 5: again, the reason being that the sample

distribution of the partial correlation ITY is inflated for

strong autocorrelations.

These differences between the measure ITY used in

the PC algorithm and MIT are further explored by the

climatic examples in Figs. 8c and 8d. Figure 8c shows

that the precipitation rate over South America (SSA)

has no significant auto-ITY or auto-MIT value corre-

sponding to a zero coefficient b in our model example

Eq. (1) and wewould not expect a shift of the peak of the

cross-correlation function that is also not the case here.

But the exclusion of autocorrelation in Ni~no-3 signifi-

cantly reduces the value of MIT (0.196 0.07) compared

to ITY (0.296 0.10) and the correlation (0.296 0.08) of

the link Ni~no-3/ SSA lag 1. In Fig. 8d we observe both

cases in a feedback. The weakly autocorrelated WPAC

drives (and is driven by) the highly autocorrelated
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EPAC at lag 1. The link WPAC / EPAC could have

actually easily been overseen in a cross-correlation

analysis because it is not at the peak of the lag function.

While here the values of ITY and MIT are almost equal

(0.13 6 0.06 for MIT versus 0.16 6 0.06 for ITY), for

EPAC/WPAC the value ofMIT is much smaller than

that of ITY (0.09 6 0.05 versus 0.26 6 0.06). Note that

ITY does not entirely exclude autocorrelation in Y

as shown in Table 2. In Fig. C1a of appendix C, we

also show a 30-yr sliding window analysis of this pair

and note that the EPAC / WPAC link is observed

more or less for the entire 1948–2012 period, while the

FIG. 8. Correlations and partial correlations of (a)–(d) four climatic example pairs. The matrix of lag functions in each panel shows the

autocorrelations and correlations (light gray) and the values of ITY (dark gray) andMIT (black), where nonsignificant links aremarked by

gray crosses. The horizontal gray line denotes the two-sided 95% significance level (here without taking into account autocorrelation) for

the correlations and autocorrelations. The error bars mark the 90% confidence interval. For example, (a) the upper right plot shows the

lagged cross-correlation function r(Ni~no-3t2t; ATLt) for t $ 0 in light gray and the ITY and MIT value at the only significant link

Nino3 t21 / ATLt in dark gray and black. For this link, MIT is the partial correlation r(Nino3t21;ATLt j PATL t
nfNino3t21g,PNino3t21

)

with parents PATL t
nfNino3t21g5 fATLt21,ATLt210g and PNino3t21

5 fNino3t22, Nino3t24, Nino3t26g. Note that for autocorrelations

(on the diagonal) the 0 lag is not drawn. (a),(b) The solid black lines mark the numerically evaluated cross correlations for a Gaussian

model fitted to the time series according to Table 3. The plots demonstrate that much of the correlation links are actually merely due to

the autocorrelation and show the differences between ITY and MIT.
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WPAC / EPAC interaction becomes significant only

from 1970 on.

Summarizing, we find a Ni~no-3 / ATL link with

a delay of 1 month rather than the broad peak around 4

months in the cross correlation, while for the other ex-

amples without strong autocorrelations in both variables

the lag is—as expected—not shifted, but only the value

differs apart from the weakly autocorrelated European

time series. We have tested the robustness of these ex-

amples by running the algorithm at different significance

levels. As expected, the previously detected and more

links occur for a, 95% levels, at 97% the links Ni~no-3/
ATL andWPAC/EPAC vanish, at 99% also EPAC/
WPAC vanishes, and at 99.9% also WEUR / EEUR

becomes nonsignificant, while the strongNi~no-3/ SSA is

still significant.

b. Mechanism of the Walker circulation

In the previous example we have only considered the

bivariate case, now the power of our approach will be

demonstrated by taking into account another variable in

the Pacific EPAC–WPAC example and constructing the

time series graph for this three variable process.

To test whether the feedback between EPAC and

WPAC was mediated via the surface of the central equa-

torial Pacific, we study the three variable process (EPAC,

CPAC, and WPAC) where CPAC is a time series of the

average surface air temperature over a region in the central

Pacific shown on themap in Fig. 10 (58S–58N, 1508–1208W).

Figure 9 shows the analysis using the same significance

level as before. The parents inferred are PWt
5 fWt21,

Wt22,Wt210,Wt215,Ct21,Et21g, PCt
5 fCt21,Ct23,Et21,

Et27g, and PEt
5 fEt21,Et22,Et25,Wt21g, where we ab-

breviated the variables by their first letter. Further, we

found the contemporaneous linksEt2Ct andCt2Wt. Note

that—as mentioned before—since the parents and neigh-

bors are inferred with ITY, some of the corresponding

links can have nonsignificantMIT values. The lagged cross

correlation between EPAC and CPAC is broadly peaked

around lag 1 with a peak value of 0.75 6 0.04. The MIT

values are 0.32 6 0.05 for the contemporaneous link and

0.156 0.07 for the link EPAC/ CPAC at lag 1. It seems

that the strong contemporaneous link prevents the peak

frombeing shifted toward larger lags as would be expected

for such strong autocorrelations. Note that the two links at

lags 0 and 1 are an example of a side path discussed in

appendix B, and theMIT value at lag 1, therefore, cannot

be unambiguously related to this link. Further, CPAC

drives WPAC with a lag 1. Very interestingly, the link

EPAC / WPAC, which was robust before, vanishes.

This result holds even for a low significance level of 95%.

This link was obviously mediated via the surface of the

equatorial central Pacific. On the other hand, the link

back WPAC / EPAC does not vanish (only at higher

significance levels), and the value is almost the same as

in the bivariate example (0.14 6 0.06). This shows that

the link back takes a different path, not via the surface

of the equatorial central Pacific. Also these results are

recovered in a sliding window analysis as shown in Fig.

C1b of appendix C. Interestingly, the MIT value of the

linkWPAC/EPAC along a distance of about 14500km

is of the same strength as the CPAC/WPAC link with

a distance of about 9500 km.

Summarizing this statistical perspective, for the bi-

variate examples we confirm the findings from our an-

alytical model study and can explain the differences

between cross correlation, ITY, andMIT. The trivariate

example further demonstrates the power to detect in-

direct links not only in autodependencies (leading to

shifted peaks) but also between multiple processes.

8. Climatological discussion

We now discuss the results of the previous section

from a climatological perspective. All results are shown

in Fig. 10 along with the regions used in the analysis.

TABLE 3. Results of MIT (multivariate) regression analyses

(after subtracting the mean) and the covariance matrix of the re-

siduals. The parents of every dependent variable in the time series

graph are chosen as regressors, which can be read off the columns

in Figs. 8a and 8b. The coefficients of links relevant for the dis-

cussion are in bold.

Dependent

Variable Coef (lag t) Estimate Std. error p value

Ni~no-3 Ni~no-3 (1) 1.10 0.02 ,1025

Ni~no-3 (3) 20.12 0.04 ,1023

Ni~no-3 (5) 20.08 0.02 ,1023

R25 0.91

ATL ATL (1) 0.83 0.02 ,1025

ATL (10) 0.09 0.02 ,1025

Niño-3 (1) 0.06 0.01 ,1025

R25 0.84

Ni~no-3 ATL

Ni~no-3 0.05 0.0004

ATL 0.03

WEUR WEUR (1) 0.18 0.04 ,1025

WEUR (3) 0.08 0.04 ’0.03

WEUR (11) 0.08 0.04 ’0.02

R25 0.05

EEUR EEUR (1) 0.24 0.03 ,1025

WEUR (1) 0.15 0.05 ’0.004

WEUR (12) 0.12 0.05 ’0.02

WEUR (13) 0.14 0.05 ’0.01

R25 0.10

WEUR EEUR

WEUR 2.11 20.02

EEUR 4.60
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For the European example, we have found almost no

difference between the lagged cross correlation and

MIT, as expected due to weak autodependencies (i.e.,

low persistency) in the single time series. We have un-

covered maxima for the European example cross-

correlation function at 1- and 12–13-month time lags.

The 1-month time lag is in good agreement with the

characteristic time scale t+ 5L2/4K for the turbulent

heat exchange between two points at a distance L,

withK as the characteristic value of the corresponding

turbulent coefficient, in the considered case of the

synoptic-scale turbulent heat exchange in the mid-

latitudes with L about 3 3 106m and K about 106-

m2 s21 (Stone and Yao 1987). This yields t+ about

2.4 3 106 s 5 30 days. This estimation well corresponds

to quasi-stationary atmospheric planetary Rossby waves,

which mediate this macroturbulent synoptic-scale heat

exchange between western and eastern Europe on the

considered (monthly) time scale, with a pronounced

seasonality inherent in these waves (Palm�en and Newton

1969).

Also for the influence of Ni~no-3 on precipitation

anomalies in southern South America, the peak of the

cross correlation is at the same lag as the ‘‘causal’’ link

inferred in the algorithm. But here the MIT value is

smaller than the maximum of the cross correlation. This

could be understood as an effect of the strong inertia in

the tropical Pacific due to its large specific heat capacity.

This implies that a large part of the covariation between

Ni~no-3 and SSA is driven by a persistent momentum

contribution from the past months in Ni~no-3 due to the

large oceanic heat capacity. MIT attempts to exclude

these internal dynamics by ‘‘conditioning out’’ informa-

tion in the past of both processes, resulting in a smaller

value than the cross correlation. Still, theMIT value is the

strongest coupling mechanism among the four studied

bivariate examples.

For the Pacific–Atlantic teleconnection we have

found that a model with a link Ni~no-3 / ATL at lag 1

well explains the observed cross-correlation function,

which peaks at lag 4. A lag of about 3–6 months is also

reported in many other studies (e.g., Enfield and Mayer

FIG. 9. Cross correlation (gray) and significant MIT values (black) for all pairs of variables

(WPAC, CPAC, and EPAC). For example, here MIT for the link CPAC / WPAC is the

partial correlation r(Ct21;Wt j PWt
nfCt21g,PCt21

) with parents as given in the main text. The

most important finding is the vanishing link EPAC/ WPAC, which shows that the influence

of the east on the west Pacific is mediated via the surface of the equatorial central Pacific. On

the other hand the link WPAC/ EPAC stays, implying that this influence was not mediated

via this region.
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1997; Giannini et al. 2000; Wang and Enfield 2006;

Chang et al. 2006). These studies also report higher peak

values than we measure for the MIT. How can this dif-

ference be explained? What lags do the two approaches

measure? In section 4, we have given the simple picture

of a particleY fluctuating in a shallow potential well that

models the internal dynamics. This particle is subject to

random forces and to the external system X that acts on

Y with a certain coupling delay t via a coupling mech-

anism. In the Pacific–Atlantic teleconnection, this cou-

pling mechanism corresponds to the ‘‘heat signal’’ being

advected from Ni~no-3 to the Atlantic region’s atmo-

spheric column by the Pacific–Atlantic Walker circula-

tion. The characteristic horizontal velocity V of this

process is about 1–2m s21 (Wang 2002), which well ex-

plains the delay of t 5 LNA/V 5 1 month estimated

in the time series graph for this distance LNA 5 8.3 3
106m. After the signal arrived, the strong internal dy-

namics of theAtlantic in the oceanicmixed layer (OML)

underlying the surface air counteract these perturba-

tions. Any initial increase or decrease in surface air

temperature forces an immediate reaction of the oppo-

site sign in the sensible and latent heat fluxes to the

atmosphere from the OML—with a thickness of about

20–30m in the equatorial regions—and the latter begins

to cool or warm with a characteristic time scale of about

3–6 months. This process is accompanied by the corre-

sponding changes in the surface winds and the lower

atmosphere vertical velocities. We believe that this

is the time delay quantified by the cross correlation,

which measures the aggregate effect of the coupling

mechanism plus internal dynamics. Apart from the

coupling delay, we have found that the MIT values of

the Pacific–Atlantic teleconnection and the European

teleconnectionwere the same, suggesting that the coupling

mechanisms via the Pacific–Atlantic Walker circulation

and the synoptic macroturbulence and planetary Rossby

waves are actually of the same strength, while the

physics is very different. Note also that the Atlantic and

Pacific regions are much farther apart.

Last, concerning the EPAC/ CPAC /WPAC /
EPAC feedback loop (summarized in the inset in

Fig. 10), the basic mechanism of the Walker circulation

(Walker 1923, 1924; Bjerknes 1969; Rowntree 1972;

Webster 1981; Wang 2002; Hosking 2012) suggests this

circulation is primarily driven by heating on the western

flanks of the equatorial oceans. The inset in Fig. 10,

which is drawn on the basis of our results depicted in Fig.

9, illustrates well this feature for the Pacific branch of the

above circulation. In normal and La Ni~na phases of

ENSO, the latter is driven by strong sensible heating and

latent heat release associated with penetrating moist

convection in the western Pacific under a pronounced

supply of the lower troposphere moisture there. The

lower part of this circulation (see the inset in Fig. 10)

promotes upwelling of waters in the eastern part of the

Pacific Ocean and downwelling of waters in the western

part. As far as oceanic temperatures decrease with in-

creased depth, any decrease (increase) of surface pres-

sure in the western part of the Pacific Ocean, which

accompanies an increase (decrease) in sea and air sur-

face temperatures and moist convection there, favors

FIG. 10. Overview over important links determined in the analyses. The black dashed boxes denote the regions

used in the bivariate analyses, while the gray boxes show the three regions analyzed to study theWalker circulation

(see the inset). The arrows indicate the direction with the gray shading roughly corresponding to the MIT strength.

The undirected line CPAC—EPAC denotes the contemporaneous link and the link EPAC / CPAC is drawn

dashed because this link has a side path via the contemporaneous link and the MIT can, therefore, not un-

ambiguously be attributed to this link. The label gives the MIT value and time lag in months in parentheses. Note

that the 5% and 95% confidence bounds of these MIT values are typically 60.06.
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a decrease (increase) of sea and air surface temperatures

in the eastern and central Pacific. Our results track well

this feature of the Pacific atmospheric and oceanic cir-

culation: we have obtained a positive MIT value (like

the cross correlation) between surface pressure over

WPAC and surface air temperatures over EPAC.

The described above Walker circulation pattern over

the Pacific Ocean is different during El Ni~no events,

where the region of atmospheric updrafts shifts toward

the central Pacific and also broadens out. A statistical

analysis of theWalker circulation thus actually demands

to investigate the different seasons (El Ni~no, La Ni~na,

and normal conditions) separately. This will be studied

in a forthcoming article; here, we used the whole time

sample to test the hypothesis that the average influence

is mediated via the central Pacific.

In summary, physically MIT is well interpretable as a

measure that solely depends on the strength of a coupling

mechanism and ‘‘filters out’’ internal dynamics (i.e., in-

ertia or persistence) and even possible effects of external

processes (if taken into account in the conditions). The

strength of internal dynamics can be quantified by the

corresponding auto-MIT value. The cross correlation, on

the other hand, cannot separate these influences. Both

approaches measure different aspects of an interaction,

but we believe that the improved interpretability of MIT

is better suited to assist in understanding the underlying

physics.

9. Conclusions and outlook

Cross-correlation lag functions and regressions are

commonly used to identify interaction mechanisms

between climatological processes, in particular to

assess possible time delays of a mechanism and as a

measure to quantify the strength of the link mediated

by the mechanism. In this article, we have investi-

gated how justified such an approach is in the pres-

ence of large autocorrelations that typically occur in

tropical temperature time series. An analytical study

of a simple autoregressive model suggests that uni-

variate regression coefficients and the cross-correla-

tion lag function’s maximum value and lag are very

sensitive to even slight changes in high autocorrela-

tion. Using the picture of a particle in a shallow po-

tential we also give a physical explanation for this

effect and come to the conclusion that cross-correlation

and univariate regressions are quite ambiguously influ-

enced by internal dynamics with strong inertia (e.g.,

a large oceanic heat capacity) and misguide an estimate

of a physical coupling strength.

To overcome these issues, we propose a two-step

procedure based on the concept of graphical models that

has recently been introduced to climate research. In

a first step, graphical models are used to detect the ex-

istence of (Granger) causal interactions yielding the

time delay of the coupling mechanism, while in a second

step a certain partial correlation and a regression mea-

sure, based on the idea of momentary information

transfer (MIT), are introduced that allow one to spe-

cifically quantify the strength of an interaction mecha-

nism. This enables us to exclude misleading effects of

serial correlation as well as more general dependencies,

a feature that can also be proven for very general pro-

cesses and makes MIT well interpretable.

Our method is then applied to several climatic ex-

amples. For the influence of the tropical east Pacific on

the northern tropical Atlantic, we detect a short lag of

1 month for this coupling mechanism consistent with

the advection speed of the Pacific–Atlantic Walker

circulation, while previous studies using the maximum

of the cross-correlation lag function found lags of

3–6 months. Also, we uncover that the coupling mecha-

nism is actually quite weak (even comparable to the

coupling mechanism between western and eastern Eu-

rope) and that the large cross-correlation value can be

explained by strong autocorrelations present in both

time series.

As a further step, the potential of our approach to

quantify the interactions also between more than two

variables is demonstrated by investigating the mecha-

nism of the Walker circulation. The purely statistical

analysis confirms that the positive correlation of surface

temperatures over the eastern Pacific and surface pres-

sure over the western Pacific is mediated via the central

Pacific while the lagged correlation back cannot be

explained by variabilities in surface temperatures of the

central Pacific. The time lags of this circulation are weeks

to 1 month between the eastern and central Pacific, an-

other month for the impact of the central Pacific on the

western Pacific, and 1 month for the link back via the

upper atmosphere. For the path CPAC / WPAC /
EPAC, we find that the strength of these two mechanisms

is very similar; even so, they act on very different distances.

Several questions remain to be investigated: in par-

ticular, why there seems to be no statistically significant

link from the western Pacific to the central Pacific, al-

though descent occurs along the whole equatorial Pacific

(Hosking 2012). This question could be related to the

point that the different phases of theWalker mechanism

were not taken into account here. The modification of

the presented method for this case will be studied in

a forthcoming article.

In Runge et al. (2012a), we compare more alternative

quantifications of coupling strength for themore general

nonlinear case, also the information–theoretic analog to
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Granger causality, transfer entropy (Schreiber 2000), and

show that this measure also depends on autocorrelations.

Online (at http://tocsy.pik-potsdam.de/tigramite.php)

we provide a program with a graphical user interface to

estimate the time series graph and the partial correlation

measures ITY and MIT and to create the figures shown

in this article.

The approach introduced in this article aims at en-

abling climate researchers to statistically test specific

hypotheses on interactions in the data. While the con-

cept introduced here is purely statistical, it may serve

as a first step to construct conceptual or more complex

models of physical processes.
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APPENDIX A

Further Remarks on Time Series Graph Estimation

As further discussed in Ebert-Uphoff and Deng

(2012a), two main assumptions are underlying a causal

inference with the PC algorithm. The first one is faith-

fulness, which guarantees that the graph entails all

conditional independence relations true for the under-

lying process. Second, to call the links in the graph

causal one assumes causal sufficiency, implying that no

hidden common drivers are present. This assumption is

obviously violated if a finite set of climatic variables is

analyzed (given the continuous nature of physical pro-

cesses) and we, therefore, would call these links only

‘‘(Granger) causal with respect to the variables taken

into account.’’

Regarding estimation, one concern with the PC al-

gorithm is the problem of sequential testing. That is, if

each link is tested multiple times at the same a level, the

resulting combined alpha level is higher, which should

be kept in mind when interpreting the false positive rate

of inferred links. This problem is usually treated by

correcting for the number of tests (e.g., using a Bonferroni

correction), but this number is not known a priori in the

algorithm. Especially in the linear framework, an alter-

native to the PC algorithm is the direct fit of a specific

model. Then one can control the false discovery rate

(Benjamini and Hochberg 1995) with the drawback that

the model might be incorrectly specified and more pa-

rameters need to be selected.

APPENDIX B

Analytical Comparison and General Theoretical
Results

In this appendix, we give a detailed analytical com-

parison of the (partial) correlation measures for model

example Eq. (1), further theoretical results, and discuss

significance and confidence tests.

a. Derivation of covariances for model Eq. (1)

Here, we derive the analytical expressions for the

covariances needed to evaluate the regressions, cross

correlation, and the partial correlations ITY and MIT

shown in Table 2. These results are discussed in section 2.

The model Eq. (1), here better discussed in the form

of Eq. (5), belongs to the general class of vector autor-

egressive processes of order p defined as

Xt 5 �
p

s51

F(s)Xt2s 1 et , (B1)

where F(s) are the M 3 M matrices of coefficients

for each lag s and the M-vector et ; N (0, S) is an

independent identically distributed Gaussian ran-

dom variable with zero mean and covariance matrix

S. The random variable e is sometimes referred to as

the innovation term. Its variances on the main di-

agonal of S are denoted by s2
i and the covariances

by sij.

For this model, there exists an analytical expression of

the covariance in terms ofF (Brockwell andDavis 2009,

chapter 11.3):

Gij(t)[E(Xi
t1tX

j
t)5 �

‘

n50

[C(n1 t)SCT(n)]ij , (B2)

where the matrix C(n) can be recursively computed

from matrix products:

C(n)5 �
n

s51

F(s)C(n2 s) . (B3)

In the case of an AR(1) model, all coefficient matrices

F(s) with lags s . 1 are 0, and as can be seen from Eq.

(B3), C is simply given by the matrix powers of F(1)

that are

C(n)5F(1)n 5

 
a 0

c b

!n

5

24 an 0

(an 2 bn)
c

a2 b
bn

35 .
(B4)

Then the variances for t 5 0 are
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GX 5 �
‘

n50

[C(n)SCT(n)]XX

5s2
X �

‘

n50

a2n (B5)

and

GY 5 �
‘

n50

f[C(n)SCT(n)]gYY

5 �
‘

n50

(
[(a2b)2s2

Y1c(cs2
X22asXY12bsXY)]b

2n

1a2nc2s2
X22anc(cs2

X2asXY1bsXY)b
n

)
.

(B6)

Noting that the infinite sums are geometric series that

converge assuming 0 , jaj, jbj , 1, one arrives at the

variances in Table 2 (where additionally sXY was set to

0). Similarly, the covariance function for the direction

Y / X (valid for t # 0) is

GXY(t)5 �
‘

n50

[C(n1 t)SCT(n)]XY

5
1

a2 b
�
‘

n50

an1t[ancs2
X 2 bn(cs2

X

2 asXY 1 bsXY)] , (B7)

and for the direction X / Y (valid for t . 0) is

GYX(t)5 �
‘

n50

[C(n1 t)SCT(n)]YX

5
1

a2 b
�
‘

n50

an[an1tcs2
X 2 bn1t(cs2

X

2 asXY 1 bsXY)] , (B8)

fromwhich the cross correlation in Table 2 follows (with

sXY 5 0). Note that GYX(t) does not diverge for a 5
b since in this limit according to L’Hôpital’s rule

GYX(t) 5
a5b bt21[bd(12 b2)2 b2cs2(t2 1)1 cs2t]

(12 b2)2
.

(B9)

As a check, for no autocorrelation, that is, for a 5 b 5
0 and at the correct coupling lag t 5 1, this gives

GYX(1) 5
a5b5 0

cs2
X . (B10)

The inequality relation in the caption of Fig. 2 for zero

contemporaneous dependency sXY5 0 is obtained from

simplifying GYX(2) . GYX(1) using the assumption that

a and b are positive and smaller than 1. The regression

coefficients are gained by inserting the previously de-

rived covariances into the regression formula in Eq. (8).

ITY can be derived by analogously computing GYY(1)

and using the fact that the partial correlation r(Xt21;

Yt jYt21) is equivalent to the cross correlation of the

residuals of Xt21 and Yt after regression on Yt21. This

leads to the residual covarianceGYX(1)2GYX(0)GYY(1)/GY

and the residual variances GY 2 GYY(1)
2GY and GX 2

GYX(0)
2GY from which the value in Table 2 follows (with

sXY 5 0). MIT could be similarly computed but also

follows from the coupling strength autonomy theorem

[Eq. (B12)].

b. Analytical comparison and general
theoretical results

We now discuss the differences between univariate

and MIT regressions and compare cross correlation and

the partial correlations ITY (used in the PC algorithm)

and MIT for the model example Eq. (1) with no con-

temporaneous dependence, sXY 5 0.

First, we give a brief graph–theoretic analysis of the

cross-correlation function of model Eq. (1) to further

illustrate its dependencies. The lagged covariance Eq.

(B2) can be expressed as

GYX(t)5 �
‘

n50

[F(1)n1tSF(1)n
T

]YX . (B11)

Graph–theoretically, a nonzero coefficient [F(1)3]YX 6¼ 0

corresponds to the number of paths composed of three

links, each with lag 1, for example, Xt23 / Xt22 /
Yt21/Yt. The covariance GYX(t) then is an infinite sum

of the triple product of matrix powers composed of the

coefficient and innovation’s covariance matrix and

therefore a nonlinear polynomial combination of co-

efficients of all possible paths that end in X and t lags

later in Y, emanating from nodes and their neighbors

(contemporaneous nodes at the same time lag) at all

possible lags. These paths can be nicely read off from the

time series graph as in Fig. 7. In essence, most spurious

links in the cross-correlation lag function are due to the

common driver effect of past lags (Fig. 6b) or the in-

direct causal effect due to intermediate lags (Fig. 6a).

In Table 2, the dependence of the cross correlation

and regressions on the model parameters is given as

plotted in Figs. 2 and 4. As opposed to these complicated

dependencies, those of the partial-correlation measures

are much simpler. First, ITY and MIT are nonzero only

at the causal time lag t5 1. Regarding the value, we find

that—counterintuitively—ITY actually still depends on

the autocorrelation strength parameter b for this model,
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even so the past lag ofY is used as a condition. OnlyMIT

fully excludes both influences.

This result can be even more generalized in that for

a link Xt2t / Yt in a general linear vector autore-

gressive processes [given by model Eq. (B1)], MIT can

be shown to generally depend solely on the corre-

sponding coupling coefficient in FYX(t) and the vari-

ances s2
X ,s

2
Y in the innovation’s covariance matrix S:

rMIT
X/Y(t)5

FYX(t)sXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[FYX(t)]

2s2
X1s2

Y

q . (B12)

This formula is the linear version of the coupling strength

autonomy theorem that treats the general nonlinear case

(Runge et al. 2012a). One case, where the influence of X

at lag t 2 t cannot be unambiguously related to the link

Xt2t / Yt alone is shown in Fig. 7 for t5 1, where an-

other path of influence is Xt2t 2 Yt21 / Yt, which van-

ishes for sXY 5 0. These side paths are further discussed

in Runge et al. (2012a), where we also proved that the

value of MIT is always smaller or equal to ITY.

Also a multivariate regression on the parents in the

graph is easier to interpret, because—as shown inTable 2—

the regression recovers the coefficients of the model,

without intermixing the coefficients as for the univar-

iate regressions. In analogy to the coupling strength

autonomy theorem, for the regressions a similar theo-

rem holds in that also for a general multivariate autor-

egressive process given by Eq. (B1),UMIT
Y can be shown

to yield the corresponding coefficients in the lagged

matricesF(s). Regression coefficients for the regression

on UMIT
Y and the partial-correlation measure MIT cap-

ture different aspects of a coupling mechanism. A re-

gression coefficient of a parent Xt2t gives the scale

factor that determines the proportion of Xt2t influenc-

ing Yt. The partial correlation, on the other hand, is

a normalizedmeasure and can, thus, be better compared

to the partial correlation of other processes with quite

different innovation’s variances.

c. Remark on significance testing
and confidence bounds

The advantage of MIT to filter out autocorrelation

can also be used for further significance testing because

the sample coefficient rMIT
X/Y
b is not inflated by autocor-

relation like the sample cross correlation and also the

partial correlation ITY used in the PC algorithm. The

MIT value of links inferred by themodified PC algorithm

can, thus, become nonsignificant. Apart from significance

testing, in the analyses of section 7 we also provide boot-

strap confidence bounds (Efron and Tibshirani 1994)

that allow one to quantify the uncertainty in the sample.

These are computed from surrogates by drawing sam-

ples with replacement from the jointly lagged sample.

For example, a surrogate for the partial correlation es-

timate r̂(Xt21;Yt jYt21) for a sample length of T is cre-

ated by randomly choosing T triples of lagged samples

(Xt21, Yt, Yt21) and estimating their partial correlation.

APPENDIX C

Further Stationarity Analysis of Walker Example

To further assess the stationarity of the Walker cir-

culation example, we conducted a sliding window anal-

ysis with windows of length 30 yr (360 month samples) in

steps of 3 yr leading to 12 windows (albeit only two are

nonoverlapping). We used the same algorithm param-

eters and significance level as before. The results are

shown in Fig. C1. As discussed in the main text, the link

WPAC / EPAC is significant only after 1970 but un-

changed in the bivariate (Fig. C1a) and trivariate (Fig. C1b)

analyses. Apart from the contemporaneous link be-

tween CPAC and WPAC, all other links are rather

stationary. Note that the use of daily data would yield

more precise lags but also bring about the problem that

a much larger number of significance tests has to be

conducted.
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