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Synchronization of bursting Hodgkin-Huxley-type neurons in clustered networks
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We considered a clustered network of bursting neurons described by the Huber-Braun model. In the upper
level of the network we used the connectivity matrix of the cat cerebral cortex network, and in the lower level
each cortex area (or cluster) is modelled as a small-world network. There are two different coupling strengths
related to inter- and intracluster dynamics. Each bursting cycle is composed of a quiescent period followed by
a rapid chaotic sequence of spikes, and we defined a geometric phase which enables us to investigate the onset
of synchronized bursting, as the state in which the neuron start bursting at the same time, whereas their spikes
may remain uncorrelated. The bursting synchronization of a clustered network has been investigated using an
order parameter and the average field of the network in order to identify regimes in which each cluster may
display synchronized behavior, whereas the overall network does not. We introduce quantifiers to evaluate the
relative contribution of each cluster in the partial synchronized behavior of the whole network. Our main finding
is that we typically observe in the clustered network not a complete phase synchronized regime but instead a
complex pattern of partial phase synchronization in which different cortical areas may be internally synchronized
at distinct phase values, hence they are not externally synchronized, unless the coupling strengths are too large.
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I. INTRODUCTION

In the brain neurons are connected through synapses and
comprise a complex network, due to both the large number
of nodes (N ∼ 1011 cells) as well as the large connectivity
(each neuron is linked to ∼ 104 others, with K ∼ 1015 links)
[1]. However, there are several description levels in which we
can investigate complex anatomical networks in the brain. In a
microscopic level we consider the neurons as nodes and their
synaptical connections as links [2]. However, at a macroscopic
level areas of the cerebral cortex can be taken as nodes, the
corresponding links being axonal fibers connecting neurons
from different cortical areas [3]. There are also functional
networks, for which the nodes are cortical areas as well, but
the links are determined from correlations between such areas
when the subject performs a given function. This is currently
done by using medical imaging [4].

There are some neuroanatomic networks which have been
intensively studied in the past several years which have served
as paradigmatic models for computer simulations of neuronal
networks. One of them is the cat cerebral cortex, consisting of
N = 53 cortical areas, connected through K = 826 directed
links [5]. These cortical areas are organized into four classes
according to their common functionality: visual, auditory,
somatosensory-motor, and frontolimbic [6,7]. Each cortical
area is a network itself formed by neurons connected through
electrical and chemical synapses. Hence a proper description
of the cat cortex would be a network of networks or clustered
network [8].

In this case, each cortical area is regarded as a network of
neurons interacting with neurons from the same cortical area as
well as from others. Many different connection architectures
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for clustered networks have been considered. One of them
considers each cortical area as a small-world network in which,
from the N neurons belonging to each area, 30–40% of them
are connected with neurons belonging to different areas [9].
This can be modelled as a random network characterized
by an intercluster probability (“random-plus-small-world”).
Another connection architecture regards each cortical area as
a scale-free network, in which there is a highly connected
hub. These richly connected hubs interact through a globally
coupled network (“rich club”) [10].

In this paper we propose a different architecture for
clustered networks based on the cat cortical connectivity
matrix, where each cortical area is modelled by a small-world
network of individual neurons. Instead of considering the
synapses among neurons belonging to different cortical areas,
we make the hypothesis that the cortical areas interact through
their mean fields. In other words, we assume that the axonal
fibers connecting two cortical areas are represented by a
coupling between the corresponding microscopic mean fields.
This is actually a coarse-grained description of neuron activity
and is expected to hold as long as we regard each cortical area
as producing a coherent membrane potential. Hence, we expect
the neurons from each cortical areas to act synchronously to
generate a coherent signal which is represented by the mean
field.

One intensively investigated type of synchronization in
neuronal networks is synchronization of bursting behavior
[11]. The latter is characterized by groups of fast spikes
with subsequent quiescent behavior, i.e., there are two time
scales: fast (spiking) and slow (bursting) [12]. It is known that
practically any neuron can exhibit bursting if stimulated or
pharmacologically manipulated in a convenient way. Bursting
behavior is crucial in neuronal communication. In particular,
in a burst of many repeated spikes the excitatory postsynaptic
potentials of each spike are added, facilitating the production
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of suprathreshold potentials [13]. Moreover, bursts are all-or-
nothing events, in the sense that some individual spikes may
be due to noise, whereas bursts of spikes are robust events with
respect to noise [14].

Neurons described by Hodgkin-Huxley equations spike due
to the interplay between fast sodium and potassium currents
[15]. Such neurons exhibit bursting due to slow calcium
currents that modulate spiking activity. Other models, how-
ever, are based on Hodgkin-Huxley-type thermally sensitive
neurons [16–18], which describe spike train patterns experi-
mentally observed in facial cold receptors and hypothalamic
neurons of a rat [19], electroreceptors organs of freshwater
catfish [20], and caudal photoreceptor of a crayfish [21]. There
have been studied time delay- and coupling strength-induced
synchronization transitions in scale-free networks of thermally
sensitive neurons [22]. The synchronous behavior of two
coupled thermally sensitive neurons has been numerically
investigated as a function of the coupling strength, exhibiting
a transition between a tonic firing to a bursting behavior [23].

Synchronization properties of complex networks have been
investigated in depth by many authors, particularly the issue
of complete synchronization, for which the coupled dynamical
units attached to the network nodes have identical dynamical
behavior [24]. In the case of spiking neurons, complete syn-
chronization would mean coincidence of spiking events [11].
Bursting synchronization, however, does not require spiking to
occur at the same times and can be more properly classified as
phase synchronization [25]. Phase synchronization in clustered
networks has been studied from the point of view of its
applications in neuronal networks, particularly the “rich club”
[10] and “random-plus-small-world” [26] models. Another
type is frequency synchronization, for which only the time
rates of the phase evolution are taken into account [27].

Networks of heterogeneous networks have been described
as communities of several distinct populations. In neuroscience
this can describe populations of excitatory and inhibitory neu-
rons and glia, for which global behavior can be observed when
the natural frequencies are randomly distributed according
to a given distribution [28]. Other dynamical behaviors have
been found when the coupling functions are asymmetric, such
as bistability and higher-order entrainment [29]. The case of
heterogeneous coupling between the subpopulation of such a
clustered network has shown to lead to quasiperiodic chimera
states [30]. The issues of local and global synchronization
have been studied in modular networks with heterogeneous
frequencies, and transitions between these states can be
observed varying the relative strength of local and global
coupling strengths [31,32].

In this paper we aim to investigate bursting synchronization
in a clustered network in which the outer level consists of
the cat cerebral cortex network, as known in the literature
[5,6], and the cortical areas (inner level) are a small world of
bursting neurons [33,34]. The coupling in the outer level is
performed among the mean field of the networks representing
each cortical area. The dynamics of the latter is described
by the Huber-Braun (HB) model of Hodgkin-Huxley-type
thermally sensitive neurons [16]. Many previous works on this
model have focused on the properties of individual neurons
or assemblies of a few neurons. Networks of coupled Huber-
Braun neurons have begun to be investigated only recently:

Phase synchronization of bursting HB neurons in small-world
networks and its control have been recently described using
chemically coupled neurons [35]. In the present work we report
a numerical investigation of HB neurons in a clustered network
structure.

One of the distinctive properties of clustered networks
is that, while subnetworks (at the inner level) may exhibit
bursting synchronization, the network as a whole (at the
outer level) may be far from being synchronized. In fact,
synchronization of the entire network is unlikely to occur,
since it would represent an undesirable collective behavior
for the brain. Hence it is worthwhile to consider partial
synchronization of the clustered network in order to understand
for which parameter intervals it may occur. Moreover, knowing
how synchronization sets in for a complex network provides
clues as how to control or even suppress it. In particular, there
is compelling empirical evidence that pathological rhythms,
like Parkinson’s disease and essential tremor, are related to
synchronized behavior in regions of the brain cortex [36–41].
Hence the control of synchronization in such conditions is
potentially important to design proper ways to apply control
strategies, like deep brain stimulation [42].

The rest of the paper is organized as follows: in Sec. II
we present the model of a clustered network based on the cat
cortical connectivity. Section III outlines the neuron bursting
dynamics model used in the numerical simulations and the
definition of a bursting phase. Section IV presents the model
of a coupled neuronal assembly with a clustered connec-
tivity. Section V deals with quantitative characterization of
synchronized bursting through the different definitions of an
order parameter and the average field of the network. Our
conclusions are presented in the last section.

II. CONNECTION ARCHITECTURE OF
THE CLUSTERED NETWORK

One of the systems for which the anatomic connectome
has been extensively studied over the past two decades
is the cat cerebral cortex, for which information from the
neuroanatomical literature reporting anatomical tract-tracing
experiments has been collected and organized by Scannell
and coworkers [5–7]. In this data set the cat cerebral cortex
has been divided into N = 53 cortical areas interconnected
by K = 826 directed links representing fibers of axons. The
overall density of links (i.e., the ratio between the number
of links L and the total number of possible directed links
connecting N nodes without self-interactions) is thus ρ =
K/N(N − 1) ≈ 0.3 [34].

The corticocortical connectivity of the cat can be summa-
rized by the weighted adjacency matrix A = ((Aij )), depicted
in Fig. 1, where the 53 cortical areas are identified by
their anatomical abbreviations and the weights are assigned
according to the axonal density of the fiber projections [8].
Hence a zero weight (Aij = 0) means that the two cortical
areas are not connected at all, otherwise they are connected in
three levels of intensity: Aij = 1,2,3. The diagonal elements
Aii vanish, since we do not consider self-interactions of
cortical areas. Because the connections are directed (even
though two areas may be connected where the weights in both
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FIG. 1. Matrix representation of the corticocortical connectivity
of the cat, according to Ref. [8]. The connections among cortical
areas are classified as null (white), weak (light gray), intermediate
(dark gray), and strong (black), with respect to the axonal density of
fiber projections.

directions may differ), the adjacency matrix A is not expected
to be symmetric at all.

The cortical areas are organized into four modules
with common functional roles, namely the visual, auditory,
somatosensory-motor, and frontolimbic. The four modules
are groups of cortical areas classified by their overall role
and form diagonal blocks in the matrix whose elements are
internal connections, whereas the elements of off-diagonal
blocks stand for the connections among different modules.
Figure 1 reveals that the block-diagonal matrices representing
the moduli are quite dense, whereas the off-block-diagonal
parts are rather sparse.

There is an extensive literature on the quantitative character-
ization of complex networks [43]. For the sake of our purposes
in this paper it suffices to consider two basic quantities: the
average path length L and the average clustering coefficient
C. The former is obtained by considering the minimum path
length, measured in number of links, between two nodes in
the network. L is obtained by averaging this path length
over all distinct pairs of nodes. The clustering coefficient is
given by C = 3Ntri/Ncon, where Ntri is the number of triads of
nodes completely connected among themselves and Ntri is the
number of partially connected triads [44].

A type of network for which a great deal of useful math-
ematical properties are known is the random, or Erdös-Renyi
(ER), network [45]. From a number N of initially disconnected
nodes we build links between pairs of randomly chosen
nodes with a uniform probability prand. When considering a
complex network with N nodes and K links, and without
self-interactions, we can define an equivalent random network
with the same number of nodes and links, such that prand = ρ.

For an ER network we have Lrand ∼ ln N/ ln[(K/N ) − 1],
i.e., it is small, since it increases slowly with the network size.
The corresponding clustering coefficient is Crand ∼ K/N2,
and decays very rapidly with the network size. Small-world
networks have small average path lengths, of the same order
as in random networks, L ∼ Lrand, but their average clustering
coefficients are relatively large, C � Crand [27]. From the
ratios λ = L/Lrand and γ = C/Crand it is possible to define
a merit figure σ = γ /λ [33,34]. For a small-world network it
yields σ > 1.

The cat cerebral cortex network has L = 1.81 and C =
0.55, such that the ratios are λ = 1.06, γ = 1.77, and the
merit figure is σ = 3.22, thus indicating that this network
has some small-world property [33,34]. Just for comparison,
the connectome of Caenorhabditis elegans, which is usually
given as an example of small-world network, has σ = 14
for the electric synapses, 2.78 for the chemical synapses,
and 2.38 for the combined network [46]. Other networks, of
both neuroanatomic and neurofunctional nature, have been
observed to be of small-world type. Hence, for the inner level
of the clustered network, there are good arguments to assume
that each cortical area is a small-world network of individual
neurons.

In order to get a small-world network, we have at
our disposal two basic schemes: Watts-Strogatz (WS) and
Newman-Watts (NW). WS networks are obtained from a
one-dimensional chain of nodes with 2� local connections,
i.e., between � neighbors at each side [47]. In this chain a
number of links is randomly rewired with a probability p,
such that in the limit p → 1 we obtain an ER network. Hence
the number of links in a NW network is K = (2� + p)N .

The WS procedure may lead to disconnected pieces in the
network, hence we have chosen the NW network instead, for
which the links are added, instead of rewired, with the same
probability p [48]. As long as p is small enough, the two
procedures yield similar results. However, in the limit p → 1
a NW network will result in a densely connected network.

The small-world networks for each cortical area were
obtained from the Newman-Watts procedure. We have chosen,
as a reference value, a probability p∗ = 0.0001, for which
we found that the average path length is L(p∗) = 25.7 and
the average clustering coefficient is C(p∗) = 0.31. Moreover,
each network was obtained for a shortcut probability p =
0.01: From Fig. 2 we have L(0.01) = 0.13L(p∗) = 3.34 and
C(0.01) = 0.62C(p∗) = 0.31. Since each network has N =
256 neurons, each of them in a chain with � = 2 neighbors
at each side and pN nonlocal shortcuts, the total number
of connections is K = (2� + p)N ≈ 1026. In order to check
the validity of the small-world approximation in this case
we consider an equivalent random (ER) network, with the

FIG. 2. (Color online) Normalized values of the average path
length (dashed blue) and clustering coefficient (dotted red) as a
function of the probability of nonlocal shortcuts for a Newman-Watts
network of N = 256 nodes. The dotted vertical lines indicate the
region where the small-world property is well expressed.
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same number of nodes and links, and which has Lrand = 5.04
and Crand = 0.0156 according to the expressions presented in
Sec. II. Hence the ratios are

λ = L

Lrand
= 0.663, γ = C

Crand
= 19.9,

from which we compute the merit figure σ = γ /λ ≈ 30,
which confirms our assumption of a network with the small-
world property. In principle, since the latter requirement is
rather weak (it suffices that σ > 1) we could have chosen a
smaller probability. In fact, any value of p within the interval
[0.001,0.01] could suit us well (this interval is indicated by
dotted vertical lines in Fig. 2). However, a too-low value of p

would require a correspondingly large network to yield good
statistics for the averages. On the other hand, a too-large value
of p would take us out of the interval for which the small-world
property holds. This is the reason we have chosen p = 0.01
instead of other value. However, as long as we do not stray
much apart from this value of p our results would not change
qualitatively.

The small-world network so obtained can be described
by an adjacency matrix A = ((Aij )), where Aij = 1 if two
neurons are connected and Aij = 0 otherwise. The diagonal
elements are also zero since we did not take into account
self-interactions. We did not assign weights to these inner
couplings, because each cluster will contribute through its
mean field, and thus the information about the network is
averaging out the details of the connection architecture.

III. BURSTING NEURON DYNAMICS

In this section we describe briefly the equations and
parameters of the HB model for thermally sensitive neurons
[16,17,21]. The dynamics of the membrane potential V of the
neuron is governed by the membrane equation (V is measured
in mV and time in ms),

CM

dV

dt
= −INa − IK − Isd − Isa − IL + Iext, (1)

where CM is the membrane capacitance (measured in
μF/cm2). The current densities due to the sodium, potassium,
and leak channels are denoted respectively by INa, IK , and
IL (measured in μA/cm2). The external current density Iext

is either injected or due to the synaptic coupling with other
neurons.

The fast currents INa, IK , and IL are essentially the same as
in the Hodgkin-Huxley (HH) model and are responsible for the
production of action potentials. The key difference between
the HB and HH models is the presence of two additional
currents: Isd, which refers to intrinsic subthreshold oscillations,
and Isa, related to hyperpolarization oscillations. Both Isd

and Isa are slow currents responsible for the subthreshold
activation, i.e., they activate the neurons more slowly when
the membrane potentials are lower than the spiking threshold,
and the interplay between fast and slow dynamics ultimately
leads to a bursting [16].

It is possible to draw a parallelism between the HB model
and those models using calcium SK channels (the so-called
small conductance Ca2+-activated K channels) [49,50]. The
latter allow the passage of K ions through the neuron

membrane and are activated by an increase of the intracellular
Ca2+ concentration. In this parallelism the combination of
the currents Isd and Isa play the role of Ca2+ channels
sensitive to the membrane potential. The difference is that
SK channels are activated by the presence of Ca2+ ions,
whereas Isd and Isa are activated by the membrane potential.
This procedure of replacing an ion-sensitive to a voltage-gated
channel is common in biophysical models of neurons, e.g., the
inactivation of fast Na+ channels is not really voltage gated, but
it is modeled this way in many models of neuronal dynamics.

We associate a given ohmic conductance to each ion current,
as

INa = ρḡNaaNa(V − ENa), (2)

IK = ρḡKaK (V − EK ), (3)

Isd = ρḡsdasd(V − Esd), (4)

Isa = ρḡsaasa(V − Esa), (5)

IL = ρḡL(V − EL), (6)

where ḡNa, ḡK , ḡsd, ḡsa, and ḡL are the maximum specific
conductances (measured in mS/cm2) and the reversal (Nernst)
potentials for each ionic current are denoted by ENa, EK , Esd,
Esa, and EL. The parameter ρ is a scale factor depending on
the temperature T , given by

ρ = ρ

(T −T0)
τ0

0 , (7)

where ρ0, T0, and τ0 are constants.
The time evolution of the activation currents aNa, aK , asd,

and asa are governed by the following equations:

daNa

dt
= φ

τNa
(aNa,∞ − aNa), (8)

daK

dt
= φ

τK

(aK,∞ − aK ), (9)

dasd

dt
= φ

τsd
(asd,∞ − asd), (10)

dasa

dt
= φ

τsa
(−ηIisd − γ asa), (11)

where τNa, τK , τsd, and τsa are characteristic times. The
parameter η serves for increasing calcium ion concentration
following Isa, while γ accounts for active elimination of
intracellular Ca2+. A second temperature-dependent scale
factor is defined as

φ = φ

(T −T0)
τ0

0 . (12)

The activation functions aNa,∞, aK,∞, and asd,∞ depend on
the membrane potential by the relations

aNa,∞ = 1

1 + exp[−sNa(Vi − V0Na)]
, (13)

aK,∞ = 1

1 + exp[−sK (Vi − V0K )]
, (14)

asd,∞ = 1

1 + exp[−ssd(Vi − V0sd)]
, (15)
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TABLE I. Parameter values of the neuronal dynamics model according to Ref. [21].

Membrane capacitance CM = 1.0 μF/cm2

Maximum conductances (mS/cm2)
ḡNa = 1.5 ḡK = 2.0 ḡsd = 0.25 ḡsa = 0.4 ḡL = 0.1
Characteristic times (ms)
τNa = 0.05 τK = 2.0 τsd = 10 τsa = 20
Reversal potentials (mV)
ENa = 50 Esd = 50 EK = −90 Esa = −90 EL = −60
V0Na = −25 V0K = −25 V0sd = −40
Other parameters
ρ0 = 1.3 φ0 = 3.0 T0 = 50 ◦C τ0 = 10 η = 0.012 μA
γ = 0.17 sNa = 0.25 sK = 0.25 ssd = 0.09

where sNa, sK , and ssd are constants and V0Na, V0K , and V0sd

are activation voltages.
The parameter values used in our computer simulations are

listed in Table I. The dynamics of an isolated neuron whose
membrane potential follows the above system of equations
[V̇ = fT (V )] depends on the temperature and, generally
speaking, consists of a sequence of spikes which may or may
not exhibit bursting behavior. We can identify the latter by
computing, for a given temperature T , the interspike interval
ISI. Figure 3 shows a bifurcation diagram for the interspike
interval as a function of T .

Bursting behavior is characterized by the existence of two
time scales: a fast time scale related to rapid spiking activity,
followed by quiescent periods, or a slow time scale which
we associate with bursts [50–55]. In terms of the bifurcation
diagram, this means the existence of two bands with widely
different average values of the ISI [21]. This happens for
temperatures in the interval 37◦–39 ◦C (the interval is indicated
by dashed lines in Fig. 3). The original work of Huber and
Braun has considered temperatures around 8 ◦C, which is
a value compatible with the kind of species it described
(namely freshwater catfish and crayfish). We have altered the
temperature constant T0 to adapt the temperature range to the
prevailing conditions in cat’s brain [56].

A typical bursting event starts when a neuron fires a
large number of fast spikes and ends with the ensuing

FIG. 3. (Color online) Bifurcation diagram for the interspike
interval as a function of the temperature, for the Huber-Braun model,
with numerical parameters as listed in Table I. The red dashed lines
indicate the temperature range for which the neuron displays bursting
behavior.

quiescent period. This is illustrated by the time evolution
of the membrane potential of a single neuron, depicted in
Fig. 4(a). The beginning of each burst has been found to be a
local maximum of the recovery variable U ≡ 1/Iisa [35]. It is
possible to define a geometric bursting phase, which increases
by 2π after each burst, even though the dynamics in each
time scale is actually chaotic, as suggested by the bifurcation
diagram of Fig. 3. Let tk the time at which the kth bursting
cycle begins [Fig. 4(b)]. The phase is obtained by a simple
linear interpolation as [25]

ϕ(t) = 2πk + 2π
t − tk

tk+1 − tk
, (tk < t < tk+1), (16)

and increases monotonically with time. However, due to the
chaotic evolution of the membrane potential V related to
repetitive spiking, the interval tk+1 − tk differs for each burst.
Hence we define an average bursting frequency,

� = dϕ

dt

.= lim
t→∞

ϕ(t) − ϕ(0)

t
, (17)

as the mean time rate of the phase evolution.

IV. DYNAMICS OF THE NEURONAL NETWORK

The neuronal network to be studied in this work consists
of two levels: in the outer level the nodes are cortical areas
and the links are the respective connections (axonal fibers).
The architecture of these links is given by the corticocortical
connectivity of the cat, represented by its weighted adjacency
matrix Aij , whose elements are depicted in Fig. 1. Each cortical
area is a small-world network of neurons, obtained from the
NW scheme with a given probability p.

Hence we consider S cortical areas, each of them with
N neurons, i.e., the whole network has SN nodes (note that
in Sec. II we denoted the number of neurons of the whole
network by N ). Each neuron will be identified by two labels
V

(j )
i : the area j to which it belongs (j = 1,2, . . . S) and its

index i within the j th area (i = 1,2, . . . N). The dynamics of
the coupled neurons is described by the HB model, whose
membrane equation is

CM

dV
(j )
i

dt
= − I

(j )
i,Na − I

(j )
i,K − I

(j )
i,sd − I

(j )
i,sa − I

(j )
i,L + I

(j )
i,ext, (18)

where the ionic currents for the j th neuron are given by
Eqs. (2)–(6) and (8)–(15).
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FIG. 4. (Color online) Time evolution of the (a) membrane potential V and (b) recovery variable U = 1/Iisa indicating the times tk at which
it has a local maximum (for the definition of the bursting phase).

The coupling term for the j th neuron, denoted by I
(j )
i,ext,

is represented by two synaptic currents of different nature:
(i) an inner coupling, which stands for chemical synapses with
a small-world connectivity within each area, and (ii) an outer
coupling, by which the areas connect to each other through
their corresponding mean potentials. The contribution of the
inner coupling can be modelled as [56]

I
(j )
i,IN = gIN

N∑
k=1

A
(j )
ik r

(j )
k (t)

(
Vsyn − V

(j )
k

)
, (19)

where gIN is the inner coupling strength, or the maximal
conductance of the synapse, A

(j )
ik are the elements of the

adjacency matrix for the j th area, Vsyn is the synaptic reverse
potential, and r

(j )
k is the fraction of bound receptors of the kth

neuron belonging to the j th area.
The latter variable undergoes a time evolution which can

be described through a kinetic model devised by Destexhe and
coworkers [56]. In a chemical synapse, after the arrival of an
action potential at the presynaptic terminal, there is a release of
neurotransmitter molecules (indicated by T ) into the synaptic
cleft, and these molecules bind to postsynaptic receptors.

Let R
(j )
k and T R

(j )
k denote the unbound and bound states of

the postsynaptic receptors: the chemical synapse thus can be
modelled by a kinetic process [56],

R
(j )
k + T

(j )
k

α
�
[β]

T R
(j )
k ,

where α and β are the corresponding process rates, related
to the characteristic rise and decay times, denoted as τr and
τd , respectively. Moreover, let r

(j )
k denote the fraction of

bound receptors. The binding of the neurotransmitters to the
postsynaptic receptor gates the opening of a ion channel, hence
the total conductance of the synapse is r

(j )
k times the maximal

synapse conductance gIN, in accordance with (19). As r
(j )
k

approaches unity, all channels reach the open state.
The time evolution of r

(j )
k , in a kinetic model, can

be described by a master equation of the following

form [57]

dr
(j )
k

dt
= α[T ](j )

k

(
1 − r

(j )
k

) − βr
(j )
k . (20)

In Ref. [56] it was supposed that the neurotransmitter concen-
tration in the cleft ([T ](j )

k ) rises and falls so rapidly that it could
be modelled by a square pulse, which enables one to solve (20)
exactly. More complex models can be devised that take into
account a dependence of [T ](j )

k with the membrane potential
of the postsynaptic neurons V

(j )
k , such as [58]

dr
(j )
k

dt
=

(
1

τr

− 1

τd

)
1 − r

(j )
k

1 + exp
( − V

(j )
k + V0

) − r
(j )
k

τd

, (21)

where τr and τd are characteristic times and V0 is a charac-
teristic potential. The numerical values of the parameters used
here are given in Table II. We suppose that their values are
the same for each area. However, each cluster has a different
adjacency matrix A

(j )
ik , since it describes a different realization

of a small-world network obtained (from the NW scheme [48]).
The contribution of the outer coupling can also be described

by a current density in the form

I
(j )
OUT = gOUT

S

S∑
�=1

A
(j )
j,�M(j ), (22)

with gIN is the outer coupling strength (conductance), Aj,�

are the elements of the adjacency matrix of the cat cortex

TABLE II. Parameter values for the synaptic dynamics according
to Ref. [22].

Characteristic times (ms)
τr = 0.5 τd = 8

Reversal potentials (mV)
Vsyn = 20 V0 = −20
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FIG. 5. (Color online) Time evolution of the membrane potential of two selected neurons for (a) uncoupled and (b) coupled cases.

connectivity, and

M(j ) = 1

N

N∑
i=1

V
(j )
i (23)

is the mean field of the j th cluster, i.e., the cat matrix connects
two cortical areas characterized collectively by their mean
potentials. The total coupling current acting on the ith neuron
belonging to the j th area is thus

I
(j )
i,ext = I

(j )
i,IN + I

(j )
OUT. (24)

Moreover, the values of the inner and outer coupling strengths,
denoted by gIN and gOUT, respectively, are varied over an
interval chosen as to always preserve a bursting behavior of the
coupled neurons (a too-large coupling may drive the neuron
off the bursting regime into an irregular spiking one).

The 6 × S × N = 82, 408 coupled differential equations
were numerically integrated through a predictor-corrector
scheme (fourth-order Adams method with a fixed step size of
0.01 and a tolerance less than 10−8 [59]) using GPU computing
(a cluster of eight K10 and eight 2075 Tesla graphic cards)
and CUDA [60]. As a result of the numerical integration we
obtained V

(j )
i (t) for each neuron, allowing the determination

of the times tk at which the bursting cycles occur for all
of them. After a (very long) time interval we retrace the
time series and compute, using Eq. (16), the time evolution
of the corresponding phase, denoted ϕij , for the ith neuron
(i = 1,2, . . . N) belonging to the j th area (j = 1,2, . . . S).

V. BURSTING SYNCHRONIZATION

When, in an assembly of neurons, bursting begins at the
same time, we have bursting synchronization irrespective of
their spiking behavior within a given burst event. This is
illustrated in Figs. 5(a) and 5(b), when we plot the time
evolution of the membrane potential for two uncoupled and
coupled neurons, respectively. This is obviously a weaker form
of synchronization than complete synchronization, since the
latter demands strict equality of potentials for all times. From a

dynamical point of view, since we assign a phase that increases
by 2π at each burst event, we regard bursting synchronization
as a kind of (chaotic) phase synchronization [25].

A. Order parameter

An assembly of neurons is said to exhibit bursting syn-
chronization if their phases coincide for all times. This
assembly can be, for example, a whole cluster or the entire
network. Since bursting synchronization is an instance of phase
synchronization, a useful quantitative diagnostic is provided
by Kuramoto’s order parameter z [61]. Let N be the number
of neurons in a given cluster j . The complex order-parameter
magnitude for the j th cluster is then defined as

Rj (t) =
∣∣∣∣∣

1

N

N∑
i=1

eiϕij

∣∣∣∣∣ , (j = 1,2, . . . S). (25)

If all neurons in a cluster are completely synchronized,
then all the corresponding bursting phases coincide and thus
the terms in (25) add coherently such that Rj → 1. If, on the
other hand, the neurons are completely nonsynchronized, then
their bursting phases are totally uncorrelated and Rj → 0.
We may estimate that, in this case, R ∼ 1/

√
N for a finite

network, since there will be a number of chance coincidences
that eventually yield a nonzero sum. We choose the value of
Rj at time t = 3 × 104 ms, for which the transients have died
out.

We can take the whole network into account in two ways:
either we compute the (ensemble) average over all clusters,

Rmean = 1

S

S∑
j=1

Rj , (26)

or we calculate the order-parameter magnitude for the whole
network,

Rglobal =
∣∣∣∣∣∣

1

NS

N∑
i=1

S∑
j=1

eiϕij

∣∣∣∣∣∣ . (27)
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FIG. 6. (Color online) Cluster-averaged order parameter as a
function of the two coupling parameters gIN and gOUT for a network
of S = 53 clusters and N = 256 neurons per cluster. Each cluster is a
small-world network obtained from the Newman-Watts scheme with
probability p = 0.01. The clusters are connected through their mean
fields using the cat cortical connectivity matrix.

In Fig. 6 we plot the values of the clustered-averaged
order parameter Rmean as a function of the two coupling
parameters gIN (inside each cluster) and gOUT (connections
among clusters). Considering, first, small values of gOUT,
say, between 1 × 10−3 and 4 × 10−3 mS/cm2, such that
the clusters are weakly connected among themselves, we
find that the variation of Rmean with gIN has the typical
shape of a continuous phase transition: For small gIN the
clusters do not display phase synchronization, and so Rmean is
correspondingly small. After a critical value of gIN,cr, however,
the order parameter for each cluster (and their average) begins
to increase according to a scaling law Rmean ∼ (gIN − gIN,cr)� ,
where � = 1/2 for the Kuramoto model of phase oscillators.
Since we have for each cluster a small-world network, the
exponent � is expected to differ, though.

As we increase the coupling among clusters (gOUT �= 0), the
transition to synchronized behavior in the clusters continue to
exist but with smaller values of the critical parameter gIN,cr,
which is an effect of the increasing coupling strength caused
by the outer network. Roughly speaking, the same scenario
happens if we switch off the inner coupling and increase the
outer coupling. In this case, however, the coupling between
neurons is mediated by the mean fields of the clusters they
belong to, and thus the effect is not so pronounced as before.
Nevertheless, we have a transition scenario but with bumps and
fluctuations that come from the indirect nature of the coupling.

For values of gOUT between 1 × 10−3 and 4 × 10−3

mS/cm2 the different cortical areas are weakly connected
and, as we increase gIN, we have a transition from a
nonsynchronized to an almost synchronized state for each
cluster. However, as long as gIN is small enough there is
no synchronization among different clusters. Moreover, small
values of gOUT favor the existence of a unique synchronized
state as gIN increases. This behavior can be observed in both
Figs. 6 and 7, i.e., Rmean and Rglobal have similar behavior when
gOUT is relatively small.

The situation differs completely for gOUT > 14 ×
10−3 mS/cm2: Due to the heterogeneity of the cat cortico-
cortical connectivity matrix the synchronization of each area
can be partially destroyed for some combinations of gIN and

FIG. 7. (Color online) Global order parameter as a function of
the two coupling parameters gIN and gOUT for a network of S =
53 clusters and N = 256 neurons per cluster. Each cluster is a
small-world network obtained from the Newman-Watts scheme with
probability p = 0.01. The clusters are connected through their mean
fields using the cat cortical connectivity matrix.

gOUT. For example, fixing gOUT at a constant value, say,
1.8 × 10−4 mS/cm2, and increasing gIN, it happens that Rglobal

initially increases (fast synchronization of all clusters) but a
further increase of gIN partially destroys this synchronized
state. This cannot be readily observed in Fig. 7 because of the
perspective of the figure, but there is a valley of low Rglobal for
some combinations of gIN and gOUT. This point will be better
clarified in the following discussion.

The difference between Rmean and Rglobal is particularly
important when the bursting phases for the neurons in each cor-
tical area synchronize at a given value, which differs for each
area. Let us consider that the neurons at area 1 synchronize
their bursting phases at a value, ϕ11 = ϕ21 = . . . = ϕN1 = �1.
It follows that the order parameter corresponding to this
area is R1 = 1. Say that for area 2 the same happens, i.e.,
ϕ12 = ϕ22 = . . . = ϕN2 = �2, hence R2 = 1, and so on. We
thus have Rmean = (1/S)

∑
Rj = 1.

On the other hand, the global order parameter reads, in this
case,

Rglobal =
∣∣∣∣∣∣
1

S

S∑
j=1

ei�j

∣∣∣∣∣∣ . (28)

If �1 = �2 = . . . = �S , then Rglobal = 1, as expected. How-
ever, let us suppose that �1, �2, etc., are randomly and inde-
pendently distributed. Then we get Rglobal = 0. In general, for
a given distribution of �j , we have Rglobal �= Rmean = 1, and
the difference δR = Rmean − Rglobal reflects the distribution.

Figure 8 exhibits the difference δR for the same parameters
as considered in Figs. 6 and 7. Small values of δR occur for
small gOUT, irrespective of the values taken by gIN. Hence
when clusters are weakly coupled, both averages of the order
parameter are similar (Rmean ≈ Rglobal). The region where this
difference is the most pronounced lies in an intermediate range
of gOUT and large gIN. This coincides with the valley observed
in Figs. 6 and 7 and is probably an effect of the dynamics of
the coupled system.

The behavior of both Rmean and Rglobal as a function of
gIN within the above-mentioned valley can be observed in
Figs. 9(a) and 9(b) for small and large values of gOUT,
respectively. In the former case, the behaviors of Rmean and
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FIG. 8. (Color online) Difference (δR) between the cluster-
averaged and the global order parameter as a function of the two
coupling parameters gIN and gOUT for a network of S = 53 clusters
and N = 256 neurons per cluster. Each cluster is a small-world
network obtained from the Newman-Watts scheme with probability
p = 0.01. The clusters are connected through their mean fields using
the cat cortical connectivity matrix.

Rglobal are nearly the same, indicating that the entire network
starts to synchronize at a unique state. In the latter (for strong
gOUT) the behaviors of Rmean and Rglobal differ and there is no
longer a continuous transition. The vertical lines indicate the
valley of nonsynchronized behavior among cortical areas.

Essentially what we have here is that, when a community
of units display different averages of a certain quantity, the
average of the averages differs from the overall average, as is
well known from elementary statistics. The difference between
both are basically due to the heterogeneity of the averages
taken for all units (in our case, cortical areas).

B. Average field of the network

Another useful diagnostic of bursting synchronization is
the average field of the network, which is the membrane

potential after averaging over all the networks at a given time.
If the neurons display synchronized bursting, it turns out that
the network average field exhibits large-amplitude oscillations
similar to those exhibited by the neurons themselves, due to the
“constructive interference” of the potentials of each neuron. On
the other hand, if the network is nonsynchronized at all, the
average field experiences only low-amplitude and noisylike
fluctuations, since there is a “destructive interference” among
the neuron potentials [62].

In our model system, i.e., a clustered network with S cortical
areas, each of them having N neurons, we define the average
field in the j th area as

〈V (j )〉(t) = 1

N

N∑
i=1

V
(j )
i (t), (j = 1,2, . . . S). (29)

The corresponding variance (with respect to the spatial average
at a particular time) is

Var(V (j )(t)) = 1

N

N∑
i=1

(
V

(j )
i (t) − 〈V (j )〉(t))2

. (30)

Since this variance depends on time, we can make a
temporal mean within a time interval after transients have
decayed

Var(V (j )) = lim
T →∞

1

T − T ′

∫ T

T ′
dt Var(V (j )(t)) (31)

where we choose T ′ = 24s and T = 30s

In the same way as we distinguished before between
the average of averages taken for each cluster and the overall
average of the network, we can also compute the overall
average of the membrane potential,

〈Vall〉(t) = 1

NS

N∑
i=1

S∑
j=1

V
(j )
i , (32)

FIG. 9. (Color online) Dependence of Rglobal and Rmean with gIN for (a) gOUT = 3 × 10−3 mS/cm2 and (b) 14 × 10−3 mS/cm2. The
remaining parameters are the same as in the previous figures.
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FIG. 10. (Color online) Variances of the average membrane potential as a function of the coupling parameters gIN and gOUT for a network
of S = 53 clusters and N = 256 neurons per cluster. Each cluster is a small-world network obtained from the Newman-Watts scheme with
probability p = 0.01. The clusters are connected through their mean fields using the cat cortical connectivity matrix. (a) Overall variance and
variances for cluster numbers 1 (b), 5 (c), and 46 (d).

where V
(j )
i denotes the membrane potential of the ith neuron

belonging to the j th cluster. The variance with respect to this
average (at a given time) can be used to quantify the amount
of bursting synchronization taken the network as a whole,

Var(Vall)(t) = 1

NS

N∑
i=1

S∑
j=1

(
V

(j )
i (t) − 〈Vall〉(t)

)2
. (33)

The corresponding temporal mean of this quantity is

Var(Vall) = lim
T →∞

1

T − T ′

∫ T

T ′
dt Var(Vall)(t). (34)

The dependence of the latter quantity with the internal and
external coupling strengths is depicted in Fig. 10(a). We find
that if the areas are not coupled (gOUT = 0), then we still see a
passage from a nonsynchronized to a synchronized bursting as
the internal coupling gIN increases. However, it is not possible
to infer from the increase of the variance that this is actually
a transition-like phenomenon that would justify the use of the
order parameter, which is a more accurate way to determine
the loss of synchronization. The same increase of variance
is observed for coupled areas (gOUT �= 0), and the shape of
the surface in the parameter space is quite smooth due to the
overall character of the average taken from Eq. (32).

The variances for each cluster, taken separately from the
other ones and obtained from (30), are depicted in Figs. 10(b) to
10(d) for the areas numbered as j = 1, 5, and 46, respectively,
picked up to display examples of how the behavior in each
cluster can differ markedly from the network as a whole. For
example, area 1 apparently does not change its synchronized
transition for different values of gOUT, i.e., this area is barely
affected by the external coupling of the community. On the
other hand, area j = 46 has a widely different behavior,
indicating that it is strongly affected by the interaction among
areas.

In Figure 11(b) we plot the time evolution of the average for
each cluster, 〈V (j )〉(t), where j = 1,2, . . . S for gIN = 0.0015
mS/cm2 and gOUT = 0.003 mS/cm2. This case corresponds to
weak coupling, both internally and externally to the clusters,
and has been indicated by the letter (a) in Fig. 8. Although
in the figure we show results for time intervals up to 2000
ms, such states are stationary since we have extended the
numerical simulations for much longer time intervals without
finding major changes. We see that for nearly all clusters
the average potential displays low-amplitude oscillations,
indicating nonsynchronized behavior. A noteworthy point is
the increase of the variance from cluster number 35 to 53,
suggesting that for these clusters the interactions are stronger
such that there is a slight reduction of the overall effect of
suppression of synchronization. In fact, if we inspect the
corticocortical connectivity map in Fig. 1, we see that the
density of connections is larger for these clusters.

FIG. 11. (Color online) (a) Histogram of the bursting phases ϕij

of the ith neuron belonging to the j th cluster at a fixed time and
(b) variance of the j th cluster as function of time. The coupling
parameters are gIN = 0.0015 mS/cm2 and gOUT = 0.003 mS/cm2.
Other parameters are the same as in the previous figures.
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FIG. 12. (Color online) (a) Histogram of the bursting phases ϕij

of the ith neuron belonging to the j th cluster at a fixed time and
(b) variance of the j th cluster as function of time. The coupling
parameters are gIN = 0.008 mS/cm2 and gOUT = 0.003 mS/cm2.
Other parameters are the same as in the previous figures.

Nonsynchronized behavior, in this case, means that practi-
cally all values of the phase ϕij ∈ [0,2π ) would be visited
by the bursting neurons. This is confirmed by Fig. 11(a),
where we plot a histogram of the number of neurons with
a given value of the phase at fixed time, which is a numerical
approximation for a probability distribution function P (ϕ),
which is broadly distributed in the interval [0,2π ), as expected
for weakly correlated clusters.

Now we increase the value of gIN and keep gOUT unchanged
(Fig. 12), which corresponds to a strong internal and weak
external coupling (it has been indicated by letter (b) in
Fig. 8). In Fig. 12(b) we observe that essentially all clusters
exhibit large-amplitude oscillations of the average potential.
Moreover, these oscillations are mutually correlated (they have
nearly the same phase and period), meaning that the clusters
are strongly synchronized. In fact, the histogram of Fig. 12(a)
indicates a clear preference of the neurons for bursting phases
belonging to an interval between 240◦ and 360◦.

A different scenario is observed in Fig. 13, for which
gIN is small but gOUT is large (indicated by letter (c) in
Fig. 8). The time evolution of the averages 〈V (j )〉 varies
widely according to the cluster [Fig. 13(b)], and we observe
tendencies to both complete phase synchronization and partial

FIG. 13. (Color online) (a) Histogram of the bursting phases ϕij

of the ith neuron belonging to the j th cluster at a fixed time and
(b) variance of the j th cluster as function of time. The coupling
parameters are gIN = 0.0015 mS/cm2 and gOUT = 0.014 mS/cm2.
Other parameters are the same as in the previous figures.

FIG. 14. (Color online) (a) Histogram of the bursting phases
ϕij of the ith neuron belonging to the j th cluster at a fixed
time and (b) variance of the j th cluster as function of time. The
coupling parameters are gIN = 0.008 mS/cm2 and gOUT = 0.014
mS/cm2. Other parameters are the same as in the previous figures.
(a) Histogram and (b) variance.

synchronization. This is confirmed by the histogram shown
in Fig. 13(a), which has sharp peaks at some angles (for
a complete synchronization) and broader peaks indicating
partial synchronization.

Finally, the case when both gIN and gOUT take large values
[indicated by letter (d) in Fig. 8] is depicted in Fig. 14. From
the time evolution of the cluster averages [Fig. 14(a)] and
the histogram of the phases [Fig. 14(b)] we conclude that
many (but not all) clusters are mutually partially synchronized,
presenting a wide bell-shaped probability distribution of
phases but without narrow peaks at some angles, as in the
previous case.

VI. CONCLUSIONS

Complex networks are often organized as assemblies of
smaller communities. These communities interact with each
other in a weaker fashion, when compared with a strong
interaction within those communities. This clustered structure
is found in neuronal networks in both anatomic and functional
levels. One example of a clustered neuronal network is the
cat corticocortical connectivity map, in which the units—the
cortical areas—are in fact clusters with a large number of
individual neurons. We have used in this paper small-world
networks to describe these clusters, obtained from a regular
chain by randomly adding shortcuts with a given probability.
These clusters interact with each other according to the
corticocortical connectivity map described in the literature
from experimental data.

Clustered networks are expected to contribute to complex
dynamics, especially when the neurons themselves undergo a
chaotic time evolution. We choose a mathematical model of
bursting neurons to emulate this situation and study effects of
synaptic (chemical) coupling on the dynamics of the entire
network as well as of its constituent clusters. One of the
dynamical features displayed by coupled bursting neurons is
synchronization of their bursting activity: Even though the
neuronal spiking may be uncorrelated, neuron bursts begin
approximately at the same time.

We assign a phase to each bursting cycle, such that bursting
synchronization is essentially an example of chaotic phase
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synchronization of nonlinear oscillators. Synchronization of
bursting neurons of a given brain region is thought to be
related to some neurological disorders (pathological rhythms
like essential tremor, epilepsy, and Parkinson’s disease). Once
this synchronization happens in a limited number of neurons,
say, in a given cluster, is it possible that a larger portion of
the brain also becomes synchronized? If a number of areas
are synchronized at different levels, what could be the overall
effect in terms of the entire network?

Such questions can be addressed in the context of the
numerical solution of the mathematical model we considered
in this work. We choose the parameters to be varied the
synaptic conductances within each area (gIN) and among
different clusters (gOUT). As a general trend, the larger the
values of both the more synchronized the entire network. In
fact, the effect of gIN is more pronounced than gOUT to achieve
the same effect. Hence the internal cluster dynamics influences
the overall result more than the intercluster coupling.

It may well happen that a number of clusters are synchro-
nized at different levels, which results in a nonsynchronized
behavior, when considered from a global point of view. This
clearly differs, however, from a situation when all clusters are
themselves nonsynchronized. We have defined, to distinguish
between these situations, suitable quantities based on the order
parameters computed for both the entire network and for the
average taken over various cortical areas. We have found that

large values of this quantity are observed for intermediate
values of gIN and large values of gOUT. The reason for this
is still unclear but probably results from the dynamics of the
coupled system.

The same observations can be made from the analysis of
the variance of the mean field related to the whole network
and the mean over the various clusters belonging to it.
However, the dynamical mechanism leading to these partial
synchronization phenomena is still to be described. In our
system the complexity of the model equations prevent such an
analytical treatment, but we hope that this may be feasible in
simpler systems like the Kuramoto model of globally coupled
oscillators. A bursting neuron can be reduced to an autonomous
phase oscillator in such a way that the Kuramoto model is a toy
model to investigate the partial synchronization phenomena
existing in clustered neuronal networks.
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