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The study of the foraging behavior of group animals (especially
ants) is of practical ecological importance, but it also contributes to
the development of widely applicable optimization problem-solving
techniques. Biologists have discovered that single ants exhibit low-
dimensional deterministic-chaotic activities. However, the influences
of the nest, ants’ physical abilities, and ants’ knowledge (or experi-
ence) on foraging behavior have received relatively little attention in
studies of the collective behavior of ants. This paper provides new
insights into basic mechanisms of effective foraging for social insects
or group animals that have a home. We propose that the whole
foraging process of ants is controlled by three successive strategies:
hunting, homing, and path building. A mathematical model is de-
veloped to study this complex scheme. We show that the transition
from chaotic to periodic regimes observed in our model results from
an optimization scheme for group animals with a home. According
to our investigation, the behavior of such insects is not represented
by random but rather deterministic walks (as generated by deter-
ministic dynamical systems, e.g., by maps) in a random environment:
the animals use their intelligence and experience to guide them. The
more knowledge an ant has, the higher its foraging efficiency is. When
young insects join the collective to forage with old and middle-aged
ants, it benefits the whole colony in the long run. The resulting strat-
egy can even be optimal.

foraging dynamics | learning process | low-dimensional chaos |
mathematical modeling | synchronization

Both experimental data analysis and mathematical modeling
on the foraging behavior of group animals (especially ant
colonies) have recently captured much attention due to the high
level of self-organizing structures that emerge at the collective
level (1-5). Random walking is a widely discussed strategy in the
research literature on the foraging behavior of group animals
(2, 6-8). Some ecologists maintain that especially Lévy flight
schemes can appropriately be used to describe the foraging be-
havior (6, 7). However, some recent studies have raised doubts
whether this is a valid conjecture (2, 8, 9). It is even argued that
the rules of locomotion for a walker are always consistent with a
purely deterministic model, rather than with a stochastic scheme
(9, 10).

On the other hand, in the studies on the foraging behavior of
animals, the existence of homes has so far received relatively
little attention. Here we argue that the existence of a home or
nest influences the foraging process to a large extent. Animals
are due to return to their homes because of increasing exhaus-
tion of energy. Moreover each foraging process of an animal is
also a learning process. With foraging repetition, long-term mem-
ory continues to accumulate, an animal’s knowledge about the
environment of its nest gets richer, and the region that the animal is
familiar with continues to enlarge. Moreover, animals’ physical
ability and knowledge as determined by their age directly influence
their foraging strategy. All these factors deserve close attention.

There is already a rich history of research on the foraging
behavior of ant colonies (see, e.g., ref. 11). In particular foraging
strategies of ants were discussed in the context of solving dis-
tributed control and optimization problems. Already 30 y ago, it
was proposed that Lévy flights might characterize the behav-
ior of foraging ants (12). In 1990, Deneubourg et al. designed
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a well-known wide binary bridge experiment which showed that
ants could mark the path followed by a trail of pheromone and
find an optimal path between the nest and the food source (13).
Based on similar experiments, Dorigo and coworkers (3) de-
veloped ant colony optimization algorithms which have been
used for solving various difficult problems, including combina-
torial optimization, object clustering, and routing selection in
communication networks. A limited binary bridge experiment
was presented to show that ants could even form two lanes to
solve traffic flow problems on crowded branches (4).

However, all these experiments were conducted in special
man-designed environments, which were not identical to natural
ones, so the ants’ free crawling was restricted. It was argued
that unrestricted foraging ants might not perform Lévy flights.
Moreover, through an experimental study on the dynamical
behaviors of an isolated ant and a whole ant colony, Cole (14)
discovered that the activity of an ant colony exhibited periodic
behavior, whereas the behavior of a single ant showed a low-
dimensional deterministic chaotic pattern. In 1993, Solé et al.
(15) constructed a 1D chaotic map following Cole to describe the
foraging process of an isolated ant. Nemes and Roska (16)
designed a cellular neural network model to describe the syn-
chronized oscillating pattern of activity as a result of an array of
chaotic dynamic elements placed in a regular 2D grid. In 2006, Li
and coworkers (17, 18) developed a chaotic ant swarm model
building on Cole’s research to describe the phenomenon that the
chaotic behavior of a single ant contributes to the self-organi-
zation behavior of a whole ant colony. These models have
explained some relationships between the chaotic (or random)
strategy, individual dynamics, and group dynamics. However,
these studies ignored the possibility that the ants also use their
own experience and intelligence to guide their foraging. Hence,
further studies on the influences of physical ability, age, and
knowledge on foraging behavior are needed to explain the bi-
ological behavior of ants in nature.

Significance

We have studied the foraging behavior of group animals that
live in fixed colonies (especially ants) as an important problem
in ecology. Building on former findings on deterministic chaotic
activities of single ants, we uncovered that the transition from
chaotic to periodic regimes results from an optimization scheme
of the self-organization of such an animal colony. We found
that an effective foraging of ants mainly depends on their nest
as well as their physical abilities and knowledge due to expe-
rience. As an important outcome, the foraging behavior of ants
is not represented by random, but rather by deterministic
walks, in a random environment: Ants use their intelligence and
experience to navigate.
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The aim of this paper is to provide a novel perspective on
mechanisms of effective foraging of ant colonies. We assume that
the foraging process of these animals is entirely controlled by
three successive strategies: hunting, homing, and path building. A
mathematical model is developed to understand the whole for-
aging process. We discuss the influences of the special region
around the nest, the size of the food source, the search range, the
limitation of ants’ physical ability, and ants’ learning process with
respect to foraging behavior. Our analysis suggests that group
animals that have a home do not perform random walks, but rather
deterministic walks in a random environment. They use their
knowledge to guide them and their behavior is also influenced by
their physical abilities, their age, and the existence of homes.

Foraging Strategies of Ants

To survive, ants need to leave their nest and forage for food. The
survival-of-the-fittest mechanism entails that ants do not only
find food, but also an optimal path between their nest and the
food source (19, 20). This reflects the collective intelligence of the
insects. Nest and food source indeed play important roles in ants’
foraging behavior. The whole foraging process of ants may be de-
scribed by three strategies: hunting, homing, and path building.

Hunting Strategy. During the first phase in foraging, some ants of
the colony leave the nest to search for food; we call these “scout
ants” (21). We assume that there is a food source located in
some random environment. We consider the search for food as
the search for an unknown point (or region). Thus, initially, no
ant knows where the food is or in which direction it should go. In
particular, there is no pheromone on the path before the food
source is found. From Cole’s observational results on the be-
havior of individual ants, we know that ants search chaotically
around their nest and initially have no impacts on their neigh-
bors. For the details of chaotic and self-organizing ant behavior,
see SI Text.

Suppose that initially » ants go out to look for food. These ants
forage in a continuous search space S, often denoted R/, the I-
dimensional continuous space of real numbers, i.e., § = RZ Each
ant with a position vector §;=Z;=(Zy,... ,Z,;) attempts to
search for the location wad = (Ppod1, - - - » Ppooar) of a food source
by minimizing an object function (cost function) f:S—R,
where S =R and f> 0, is a map from / dimensions real number
to real number, and when Z; Pfood, f(Z) f(Pfood) =0. In
the search space S = R/, the food possesses a small region (ie., the
neighborhood of the pomt Pfood) The bigger the food is, the larger
the region is. The values of the function f corresponding to different
points in the neighborhood of the food source have an upper
bound /\, where A is a relatlvely small positive number. Here,
larger /\ means larger region around the point Pf(,(,d So the value
of /\ represents the size of the food source. f(Z;) < /\ means the
point Z; locates in a small neighborhood of the food source, i.c., the
ant finds the food.

Fig. 14 provides a schematic diagram of ants crawling in the
search space where the black solid point represents the nest and
the green triangle the nearest food source. When food is scarce,
ants need to go out to forage many times because they must
return to the nest to access the stored energy supply. We have
developed a map of the nest-food source—nest motion against
time. This is sketched in Fig. 1B where the solid dot again rep-
resents the nest and the green triangle the food source. The
length of the optimal path from the nest to the food source is
denoted by L. In this map, ants forage chaotically, setting out at
the origin. If they do not find food, then the curve does not pass
through the green triangle. Because n ants conduct concurrent
searches, there is likely some ant i that quickly finds the food
source (Fig. 1B). This hunting strategy, whereby ants leave the
nest and return to it, is used throughout the foraging process.
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Fig. 1. Stylized presentation of the ant foraging process. The optimized

path between the nest (black dot) and the food source (green triangle) has
length L. (A) Characteristic search behavior of scout ants distinguished
by different path colors. S is the overall foraging space and M the nest'’s
neighborhood, which the ants are quite familiar with. (B) The foraging
motion in S can be mapped onto a simplified trajectory, i.e., a relationship of
position vs. time. As detailed in S/ Text, time t is normalized in a way that
highlights periodicity and is represented by the abscissa in B-D. In the same
charts, the ordinate d represents the nearest distance of the respective ant
position from the set L. Thus, each foraging excursion appears as a curve
segment between two consecutive black dots (home-to-home tour). B
describes the situation where n scouts search chaotically in parallel. The ith
ant happens to find the food source during its kth tour (as indicated by the
passing of the trajectory through the green triangle). (C and D) m-recruited
insects are guided by the pheromone traces left by the successful ant i. (C)
Initially, the pheromone intensity is rather low, thus its guiding influence on
the chaotic ant motion is very small. To find the optimal path, the recruited
insects pursue various chaotically selected paths around the route marked by
the pheromone from the scout ant i. However, all those paths hit the green
triangle because the followers “know" the position of the food source from
the pioneer. (D) With increasing pheromone concentration around the op-
timal path, the chaotic foraging regime is gradually overcome. Eventually
the new regime emerges where all ants pursue L to convey food from source
to nest. Thus, all trajectories become straight lines.

Homing Strategy. The existence of a nest has an important in-
fluence on the behavior of the ants during the whole search for
food. The homing strategy is triggered when a foraging ant
makes a decision to return to the nest. The aim of that strategy is
to find the home most efficiently. The nest of the ants is denoted
by Pm, = (P,,em7 e P,,estl) Different ants have different knowl-
edge about the environment of the nest, i.e., each ant considers
different domains M; as nest neighborhoods (22). If ant i moves
into its nest neighborhood M; = {Z- : ||Z —ﬁth <c,}, then we
assume that it has found the nest (Fig. 14), where the neigh-
borhood range is determined by the positive constant ¢;, and a
larger ¢; indicates that the ant has more knowledge about the
nest environment. Obviously, older ants have larger ¢; because
they have more knowledge about their nest. Foraging can be
considered as searching for an unknown point (or small region),
whereas searching for the nest is considered as searching for
a special region with which an ant is very familiar. In the homing
process, the ants use chaos and pheromone in combination with
their own knowledge to search for the nest.

Different ants have different search ranges, different continuing
search times, and different search paths. The starting time of the
homing strategy is very important. If it is triggered very early, then
the probability of ants finding food will be minute; if it happens
very late, however, then the ants may not be able to return to the
nest because their energy is exhausted. That is, each ant has its own
searching time threshold, i.e., the tiring time #;,.4. When #,.4 is
reached, the ant should start its homing strategy, independent of
having found food or not.
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Path-Building Strategy. When a scout ant finds a food source, it
begins returning to the nest and leaving pheromone on its return
path as a means of communicating to fellow ants the location of
the food and appropriate paths (3, 4). Once the scout ant has
returned to the nest, it will gather recruited ants to follow its path
marked with pheromone. We assume there are m recruits. In
addition, there are still some freely walking scout ants looking for
food in the search space.

Both the chaotic walking and the pheromone have important
impacts on the foraging process of recruited ants. Pheromone
influences their choice of path making. Ants encountering a path
previously laid with heavy amounts of pheromone are more likely
to decide to follow it. Pheromone is an evaporative substance,
though. An autocatalytic collective behavior of recruited ants
emerges, where the shorter the path, the higher its pheromone
density becomes (23). During the initial construction phase of
the optimal path, the orchestration between ants is weak, and
chaotic movement dominates their behavior because of the very
low density of pheromone. Fig. 1C depicts the initial foraging
behavior of m recruited ants. This figure illustrates how the ants
initially foraged chaotically around the route marked by the
pheromone of the scout ant, while leaving more pheromone on
their wandering paths. This means that chaotic walking and
pheromone interact in the optimization process.

We use the pheromone field concept to help us understand
the behavior of the recruited ants. The pheromone field is the
cause of self-organization among ants and is used to direct their
movements. As time passes, the pheromone left by the recruited
ants on their paths increases gradually, and a distinct pheromone
field is constructed between the food source and the nest. The
reinforcement of pheromone continues to weaken the chaotic
behavior of the ants. The evaporation of the pheromone causes
the density of pheromone on the shorter path to increase more
quickly than on the longer one, which in turn causes more ants to
choose the shorter path. The increment of pheromone density on
the paths is equivalent to a decrement in the chaotic crawling of
insects (SI Text). During the formation of the pheromone field
and the finding of the optimal route, the ants still possess some
chaotic crawling, which is eventually superseded by the phero-
mone signals.

Fig. 1D shows the final foraging phase of the m recruited ants.
The ants gradually enter a state of ordered periodic motion
through self-organization in the colony. Obviously, the chaotic
behavior causes the ants to conduct a global search, whereas the
pheromone field causes the ants to conduct a local search until
they finally converge to periodic movements. In this process, the
transformation of dynamical behavior of an ant colony causes the
emergence of something that may be called “swarm intelligence.”

Thus, we consider the process by which ants begin their for-
aging and form their optimal path to be an intelligent process,
whereby the status of ants is transformed from an asynchronous
chaotic regime into a collective synchronous periodic act. Ants
use their intelligence and experience to guide their foraging
process. We regard a foraging cycle of ants as the process in
which ants leave their nest to find a food source until an optimal
path is found and then convey all of the food to their nest. After
one foraging cycle is completed, the ants initiate another one to
survive, searching for a new food source.

Results

Now we show how the basic principles sketched above are
applied. For simplicity, we assume that there is only one food
source in the search space and that there is only one optimal
route between the food source and the nest. The chaotic model
Z'(t+1)=2'(1)e*1-2'0)  constructed in ref. 15, is introduced to
mimic the random activity of a single ant at the beginning of the
foraging process, where Z’' € R* is a continuous variable and u
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a positive constant. When p =3, the system is in a chaotic state
(15, 18).

Next, we take into account the influence of the nest and the
food source on the ants’ motion. Here, the organization of ants
sets in under the competing influences of the pheromone and
the ants’ chaotic crawling. The characteristic variable of chaotic
crawling represented by y;(¢) is introduced, where 0 < y;(¢) <1,
and the value indicates the degree of chaotic crawling. A larger y
means a higher degree of chaotic crawling. Based on the mecha-
nism of chaotic annealing (24), the continual decrement dynamics
of y;(¢) is represented by y;(¢) =y;(t — 1)*7 which depends on
the self-organization factor r; (see Methods for details on r;). The
movement adjustment of each ant is executed as follows:

Zi(t+1)= (Zu(t) + Vk)e(l“’fw‘m) (v (Zu+V)

~Vie+e 250 (Isin(f)| (Proodk — Prest) = (Zi(£) = Pres) )
[1]

where y;, can adjust the search range, V' determines the search
region of ant i and accounts for the option that ants can roam
diverse realms, w is used to adjust the frequency of ants’ periodic
oscillation between the nest and the food source, a is a suffi-
ciently large positive constant such that the variable y;(f) could
have a large enough impact on the position vector Zj, and b is
the local search factor which controls the local optimal path
strategy. When y; approaches 0, b begins to work, where 0 <
b < In(2). If b > In(2), the system is unstable. When b = 0, the
system is in a periodic oscillatory regime between the nest and
the food source without undergoing the process of a local search.
When 0 < b < In(2), the system starts from a transient chaos state
and finally converges to a periodic behavior.

Now we analyze and examine the nonlinear dynamics of the
proposed chaotic ant foraging model. We use it to solve a con-
crete optimization problem whose objective function is defined
by flx1,x2)=(x—0.7)> % (0.1+ (0.6 +x2)%) + (x2 — 0.5)* x (0.15 +
(0.4+x,)%), where (0.7,0.5) is the global minimum of the energy
function f. To simulate the foraging cycle, we assume that the
point (0.7,0.5) is the position of the food source, and (0.4,0.4) is
the position of the nest. All of the figures in this section are the
results of numerical simulations for Eq. 1.

Food Hunting and Homing Processes. Ants of different ages have
different physical abilities and different knowledge about their
nest. The age of the ants thus has a significant impact on their
foraging behavior. Fig. S1 displays the foraging probability curves
of ants with different ages as /\ changes, where /\ is the size of
food source. We find that when A is fixed, old and middle-aged
ants hit the food source much more easily than the young ones.
From Fig. S1, we also see that on the whole, the probability of
finding food for an ant increases as /\ increases, which is not
very surprising.

Obviously, the tiring time #;.; and the nest neighborhood
range constant ¢ play crucial roles in the search process, which
shows that the physical ability and the knowledge the ants have
have an important impact on their foraging behavior. Fig. 2 4
and B shows the influence of #;., on the probability an ant
finding food for different /\. We see first that for a given group
size, the foraging success increases as #;;.4 grows. The greater
the physical ability of an ant, the larger its ¢4, i.€., the greater the
physical ability, the easier the foraging. Second, the higher the
number of foraging ants, the larger the probability of finding
food. This agrees with traditional views reported in existing
studies on optimization (3, 17). Third, when the value of #., is
fixed, the larger the size of the food source, the greater the
probability of finding food.
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The search range has an important influence on the proba-
bility of finding food. We show that the increment of foraging
probability for the ants is related to the increment of y in a
nonlinear way. Fig. 2 C and D depicts the influence of y on the
probability of an ant finding food. From Fig. 2 C and D, we
conclude first that the larger the value of y, the smaller the
foraging range—when y is very large (e.g., w >13), the search
range is so small that the food source is outside, and the prob-
ability of finding food is negligible. Second, when y is very small
(for example, w =5), the probability of finding food is small
because the foraging range is rather large. Third, when y is
within an optimal range (for example, 5 <y <12), the probability
of finding food initially increases, then decreases and finally
increases gain with varying y; that is, an optimal choice of the
search space is needed for the ants to forage effectively.

Fig. 3 shows the influence of ¢ on the average time of finding
food for middle-aged ants with different y, where #;,., = 1,000
and /\ = 107, The results of Fig. 3 are averaged over 100 cycles.
As seen from Fig. 3, we conclude first that the larger the value of
¢, the smaller the average foraging time and the smaller the
average homing time. A larger value of the neighborhood range
constant ¢ indicates that the ant has more knowledge about the
nest environment, which helps the whole ant colony find the food
faster. Second, the larger the value of ¢, the smaller the ratio
between average homing time and average foraging time; i.e., the
average homing time decreases with increasing knowledge, which
helps to raise the foraging efficiency of the ants. This is indeed
an appropriate optimization strategy for animals with a home,
whereas for other animals other optimization strategies are more
appropriate.

To summarize, we find that the physical ability and the knowl-
edge about the environment of the nest strongly influence the
foraging behavior of ants. We define an integrated search
ability I'(age) = (1 — Dtyea(age) + Ac(age) to represent the syn-
thesized capability of ants searching for food and nest, where
“age” evidently denotes the age and A is a scale factor which
determines the proportion of #,.4 and c in I', where 0<1<1.
Thus, we derive a critical value I'': When I' >1", an ant is suitable
to forage over long distances. Specifically, we obtain an age
range in which ants are suitable to search over long distances.
Middle-aged ants have a greater physical ability than young and
old ones. However, with increasing age, ants have more knowl-
edge of the nest, and the familiar neighborhood range c of a nest
increases, i.e., old ants are very familiar with the environment
around the nest. Thus, middle-aged and old ants have greater I'
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than young ants, so they are suitable to forage over long distances.
As for young ants, their foraging success is relatively small. Their
main objective is not to find food but to learn, and the learning
process is important for the long-term foraging ability of the
whole colony.

Finding the Optimal Path. When a scout ant finds a food source, it
returns to the nest and gathers the recruited ants to find an
optimal path between the food source and the nest. Fig. 4 A-D
describes the discovery of the optimal path as time passes. Fig. 4
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Fig. 3. The influence of ¢ on the foraging behavior of middle-aged ants
with different y. (A) Green and magenta curves show the average times t¢
that ants need in one foraging process when w =5 and y =7, respectively.
The yellow and blue curves show the average times t, at which ants start to
use the homing strategy to return to the nest when y=5 and y=7, re-
spectively. (B) The percentages of t, and tr. The green curve represents the
percentage t,/t; when y =5 and the magenta line represents the ratio t, /tf
when y=7.
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E and F shows the evolution of the variables y(¢) and ||Z(¢)||. We
see that the ant colony passes from an initially unsynchronized
transient chaotic state into a synchronized periodic state under
the influence of the variable y(f). We also see from Fig. 4E that

y(t) determines the length of the chaotic search. The impact of

the pheromone on the foraging behavior of ants is represented
by a decrement in the variable y(f). With a continuous decrease
of the variable y(¢) with time, the influence of the collective on
the behavior of an individual ant becomes stronger. When the
effect of the social organization is sufficiently large, the chaotic
behavior of the individual ant disappears. From Fig. 4F we find
that the construction of the optimal path for the whole ant colony
is similar to that of chaotic annealing, which is an effective op-
timization mechanism (24, 25). Fig. S2 shows the evolution of
|Z(7)]| for different w. From Fig. S2, we infer that the value of »
has a strong impact on the periodic behavior of the whole ant
colony, i.e., the larger the value of w, the faster the periodic
oscillation (or the speed at which ants convey food).

Now we consider the influence of different local search
factors b. Here all of the ants have the parameters r; =0.2 and
0=0.1. Fig S3 shows the convergence of the angle ¢, where

= | nesr (ﬁfood nest (H nest H || Pfood Pnest)”) |

represents the angle between the system’s evolution vector Zl- - 13,185[

and the vector f’food —f’,,,m. It shows first that when b = In(2), the
angle ¢ cannot converge, implying that the foraging process is un-
stable. Second, when b < In(2), the angle ¢ converges to 1 which
implies that the ants start from a transient chaotic state and finally
converge to a periodic behavior, and they walk directly between the
nest and the food source. Third, the closer to In(2) the value of b,
the longer the transient process. And the closer b is to 0, the faster
the convergence speed of a local search.

In the above, we make the important assumption that there is
only one food source in the search space. Additionally, when two
food sources exist with a symmetrical setup, symmetry breaking
is more likely to occur. In this condition, the positive feedback
drives the transition from the chaotic to the periodic foraging
(ST Text).

Discussion

We emphasize the generic character of our analysis because a
homing strategy in foraging is used by other animals with fixed
basis, such as bumblebees, albatrosses, etc. Our model is readily
applicable to these situations. For instance, in the foraging pro-
cess of albatrosses, an optimal fish-searching strategy will not
be optimal for home searching. Therefore, if the entire foraging
process is assessed, the birds’ knowledge about the environment
of their home should also be considered. However, this impor-
tant aspect has received little attention in the existing studies. A
homing strategy is not limited to the foraging process of animals,
but is also relevant to many aspects of human behavior such as
the daily return from work (trivial) and the recurrent accessing of
the Internet (less trivial). The impact of human homing behavior
on Internet use could be studied, for example, by analyzing how
individuals search and roam in cyberspace around their home page.

Learning processes are evidently important for the lives of
humans and animals. As demonstrated above, the multitime
learning process of young animals benefits the sustainability of
the whole group. Continuous learning about changes to the en-
vironment is also necessary for the group’s adaptation. Storms
and heavy wind, for instance, might change the environment with
which an animal is familiar. For humans, knowledge that has
been proven to be useful has an important influence on behav-
ioral patterns. Young individuals carry on learning about the
environment in which they live for several years or even decades.
This ability is the basis on which humans have evolved and de-
veloped. The views about learning processes expressed in this
paper represent a significant departure from current notions
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Fig. 4. The evolution of the different variables. (A-D) Finding the optimal
path as time passes, where the point (0.4,0.4) is the position of the nest,
point (0.7,0.5) is the position of the food source, and different symbols with
different colors represent different ants. (E and F) The evolution of the
variables y(t) and HZ V|| =1/Z3(t) + Z3(t), respectively, where different colors
refer to different ants.

about animals foraging strategies, which use either probabilistic
distribution schemes or deterministic models. Our findings pro-
vide a new perspective on the behavior patterns of certain ani-
mals, and of humans, which is of importance in areas as diverse
as the spread of diseases, the formation of groups (or networks),
the patterns of many social activities, and the evolution of short
message (or Web) services.

Conclusion

We have developed a model which can be used to explain not
only how a single ant uses chaotic behavior to find a food source
and its nest in the hunting and homing processes, but also
describes how an ant colony organizes itself to find the optimal
path between a food source and the nest. Here the transition of
ant foraging from chaotic to periodic regimes is explained as a
three-stage process. (i) An uncoordinated search occurs, which
is characterized by the chaotic wandering of scout ants. When
a scout finds a food source, it will return to the nest and recruit
ants to find the optimal path between the nest and the food
source. (if) A cooperative search occurs, which is characterized
by a phase during which the recruited ants find the optimal path
under the combined influences of chaotic walking and phero-
mone detection. Individual ants, while still moving chaotically,
often deposit pheromone as a form of indirect communication to
help other ants find the food source. The collective organization
power of the ants increases and their chaotic crawling decreases
with the accumulation of pheromone on the paths. This phase
lasts until the individual behavior is superseded. (iii) Finally,
a synchronized periodic motion sets in. All recruited ants are
busy conveying the food back and forth along the optimal path
between the nest and the food source. In our model, the tran-
sition from chaotic to synchronized regimes results from solving
an optimization problem (see Table S1). Moreover, according to
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our analysis, physical ability, experience, and the existence of
a nest have important impacts on the foraging behavior of
ant colonies.

Through numerical experiments, we reach the following main
conclusions. (i) The age of the ants is crucial. Old and middle-
aged ants find a food source much more easily than the young
ones. However, pursuing a strategy whereby young ants forage
together with old and middle-aged ants can be optimal because it
benefits the long-term foraging prospects of the whole colony.
(i) The physical ability of a single ant is also crucial. The greater
the physical performance, the better the foraging. Therefore, it is
easier for a middle-aged ant to find a food source than younger
and older ants. (iii) The search range has an important influence
on the probability of finding food. In order for ants to forage
effectively, the range of the search space should lie within an
optimal realm. (iv) The foraging efficiency of group animals with
homes is clearly different from those without. For group animals,
more knowledge about the neighborhood of the nest increases
foraging efficiency, i.e., the more knowledge of its home an an-
imal has, the shorter its homing time. Based on these insights, we
suggest that for group animals that have a home, their foraging
behavior should not be characterized by random walking but
rather by deterministic walking in random environments.

Methods

In the foraging process, the movement strategy of a single ant i depends on
the current position of the ant Z,(t), the best position found by itself or any
one of its neighbors, the position of the nest Prest, the position of the food
source P04, the characteristic variable of chaotic crawling yi(t), and the self-
organization factor r;. Generally, the following function is used to describe
the whole foraging process of ants:

2i(t+ 1) :g<2i(t)rﬁfood:ﬁnestr)/i(t):ri>: [2]

where t means the current time step and g is a nonlinear function.

To mimic an initially chaotic search, we introduce the chaotic model
Z'(t+1)=2'(t)e""-Z) described by Solé et al. in ref. 15. Let Z'=(1/u)yZ,
then we get Z(t+1)=2Z(t)e*¥ %%, and the search center is approximately
7.5/(2y).

Here, the organization of ants sets in under the influences of the pher-
omone and the chaotic crawling of ants. As time evolves, the pheromone
intensity increases and the chaotic crawling of ants is gradually reduced.
Based on the annealing mechanism (24, 25), the adjustment of the chaotic
behavior of individual ant i is achieved by introducing a successively decreasing
dynamical equation represented by y;(t) =y;(t— 1)“*”'). The self-organization
factor r; is used to control the time of the chaotic search. If r; is very large, the
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chaotic search is short, and vice versa. Because small changes are desired as time
evolves, r; is chosen typically in the range [0,0.5].

Moreover, the term ‘Sin(wt)l(Pfoodk - Pnestk) - (zik(t) _Pnestk) is introduced
to achieve periodic oscillating behavior of an individual ant between the
nest and the food source, where k is the kth dimension of the position vector.

The length of the optimal path is L= Z,'(=1 (Pfoodk —P,,estk)z. Adjustment of

the position of each ant obeys Eq. 1.

In the food searching process, because there is no organization initially, the
position of the food source could be found by setting r; =0. The foraging strategy
of ants is to search Z; such that f(Z;) <A. When r; = 0, e=i(t), and e~2ai(t)+b;
approximate to 0, and Eq. 1 applies, we get the following chaotlc model:

Zig (f+ 1) = (Z,'k(t) + Vk)e(sﬂyk (Z'k(tHVk)) — V. [3]

That is, the ants walk chaotically throughout the foraging process. Here,
Vi =7.5/(2y) — Ppestk- The ants center around the nest and search for food.
The search diameter ¢, depends on y, and ¢, ~7.5/y,. Because all the n
ants conduct a parallel search in the search space, the ant colony quickly
finds the food source Prooq-

In searching for the nest, the main aim of ant i is to use its homlng strategy
to find the neighborhood of its nest such that M, = {Z HZ P,,estH <c%
Here, older ants have larger ¢; because they have more knowledge about
their nest.

During the optimal path finding process, self-organization in the ant
colony gradually occurs, where r; >0. Under the influence of self-organiza-
tion, the variable y;(t) of ants is gradually attenuated to 0. Eq. 1 is then a
transient chaotic convergence process. The larger r;, the faster the alteration
of y;(t), and the faster the self-organization process of the system is formed.
When y;(t) approaches 0, both e /() and e~2¥i() approach 1, and param-
eter b begins to work. Here, the search model becomes

Zik (t+ 1) =Zik(t) + eb(‘Sin(wt)KPfoodk - Pnestk) - (Zik(t) _Pnestk))'
When 0 < b < In(2), the system starts from a transient chaos state and finally
converges to a periodic behavior, and the ants walk between the nest and
the food source to convey food. That is, the angle ¢ converges from ¢ <1 to
¢=1,wherei=1,.,n

Because the chaotic search belongs to a global search and the search
caused by pheromone belongs to a local one, the self-organization process is
the one that transfers from the global search to the local one. In this process,
the ants finally find the optimal path along which they carry the food
periodically.
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