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Abstract. Power system stability is quantified as the ability to regain
an equilibrium state after being subjected to perturbations. We start
by investigating the global basin stability of a single machine bus-bar
system and then extend it to two and four oscillators. We calculate
the basin stability of the stable fixed point over the whole parameter
space, in which different parameter combinations give rise to a stable
fixed point and/or a stable limit cycle depending crucially on initial
conditions. A governing equation for the limit cycle of the one-machine
infinite bus system is derived analytically and these results are found
to be in good agreement with numerical simulations.

1 Introduction

The Kuramoto-like model [1-8] has been established as a standard reduced model
describing the emergence of collective phenomenon, which are of great interest in
various physical systems, especially in power systems [4-6]. Much effort so far has
been devoted to investigating the synchronization of power systems. For example, the
stability of decentralized power grids against dynamical perturbations and topological
failures were investigated in [4], and Dorfler et al. [6] stated elegantly the synchronized
condition in terms of complex network topology and parameters.

Linear stability analysis has been applied to characterize local stability in terms
of Lyapunov exponents [9]. As modern power system components are often nonlin-
ear, their stability depends on both initial conditions and the amplitude of distur-
bance [10]. Based on the basin of attraction, Menck et al. [11,12] proposed basin sta-
bility, which is non-local and nonlinear and could also be applied to high-dimensional
dynamical systems to assess how stable a state is. This stability is quantified as the
probability to regain an equilibrium point after being subjected to an even large
disturbance [10].

This paper is organized as follows. In Sect. 2, we attempt to explain the basic
power grid dynamics using the classical model of a one-machine infinite bus system.
We investigate the parameter space of the one-machine infinite bus system using basin
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stability. A stable fixed point and a stable limit cycle coexist in the bistable area. The
governing equation of the stable limit cycle is derived analytically, and the analytical
results are found to be in good agreement with numerical simulations. The coexistence
could also be found in a four-node topology using basin stability. Thus basin stability
is used to characterize the parameter space not only in the one-machine infinite bus
system but also in a two-node and a four-node topology as shown in Sects. 3 and 4
respectively. In the final section, we summarize our results.

2 Dynamics of the one-machine infinite bus system
2.1 Model

In order to understand the underlying dynamics of the power system, we present a
mathematical derivation of the model of the one-machine infinite bus system, which
describes one machine (generator or consumer) connected to an infinite busbar via
a lossless transmission line [4,10,13,14] The state of the machine is described by its
phase angle ¢(t) = Qt + 6(t) and the angular velocity ¢(t), where Q is the aver-
age angular speed of the machine and 6(t) is the phase difference with respect to a
synchronously rotating reference frame.
The real power balance equation is represented by

Psource = Pdissipated + Pkinetic + Ptransmitedv (1)

i.e. the source energy Psource must be equal to the sum of dissipated, kinetic and
transmitted energies.
The dissipated energy is proportional to the square of the angular velocity:

Pdissipated = KD(¢)27 (2)
where Kp is the fraction coefficient.
The accumulated kinetic energy is given by

1.d .
Pkinetic = §I$(¢)27 (3)

where [ is the moment of inertia.

The energy flow between the machine and the infinite busbar is proportional to
the maximal energy transfer capacity PM4X and the sine of the phase difference
between the phase 6 of the single machine and the phase 6; of the infinite busbar.
The infinite busbar is assumed to be an ideal source of constant voltage and frequency,
neither of them is influenced by the action of the machine [10]. Thus, for the sake of
convenience, the phase disturbance 6; of the infinite busbar could be assumed to be
0. So the transmitted power follows

Piransmitted = PMAX sin (9) (4)
Substituting equations (2-4) into equation (1), one obtains
Pyource = 106 + Kp($)* + PM*% sin (0). (5)

In the limit of a small perturbation of the synchronous frequency 6 < O, 1 6 and K p6?

can be neglected compared to I 6Q and K p§? respectively. Defining P = (Psource —
Kp0?)/(IQ), a = 2Kp/I and K = PMAX /(IQ), this equation becomes

6 =—abf + P — Ksin (0), (6)

which is the governing equation of the dynamics of the one-machine infinite bus
system.
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Fig. 1. Parameter space and state space of the one-machine infinite bus system. In the left
panel (a), red indicates the area of stable fixed point. In the yellow area, the oscillator either
converges to stable fixed point or rotates periodically depending crucially on initial values
of 6 and #. White area indicates the existence of stable limit cycle. (b) Basin of attraction
of the stable fixed point 8¢ is indicated in the green area with o = 0.1, P =0.5 and K = 1.
The stable fixed point and saddle are also plotted in red. The saddle is at the right side of
the stable fixed point.

2.2 Basin stability

Defining the relative size of the volume of basin of attraction as basin stability S €
[0,1], a new non-local and nonlinear measure was recently proposed to quantify how
stable the synchronous sate is against even large perturbations [11]. To estimate the
basin stability of a stable fixed point in case of single machine infinite bus system, we
randomly select 25000 initial values of (6,6) from [—m, 7] x [—10,10], integrate the
system long enough and then count the percentage of initial values reaching a stable
fixed point.

According to the stability diagram of the one-machine infinite bus system as shown
in Fig. 1a [15-18], a stable fixed point and a stable limit cycle coexist in the bistable
area (colored in yellow). Whether the system will evolve to the fixed point or to the
limit cycle depends crucially on the initial conditions. When parameter values are
located in the limit cycle area (resp. stable fixed point area) S is 0 (resp. 1). Shown in
Fig. 1b is the phase space of the one-machine infinite bus system for a set of parameter
values corresponding to the bistable area in Fig. 1a. The system has one stable fixed
point 0y = arcsin(P/K) for 0 < P < K, and one saddle 8, = m — 6. The basin of
attraction of the stable fixed point 0 is colored green and that of the stable limit
cycle is colored white. The saddle is located on the right side of the stable fixed point
at the intersection between the basin of attraction of §; and 0 = 0 line.

In Fig. 2, we project the basin stability S over the parameter space of the one-
machine infinite bus system for K = 1. As can be observed from Fig. 2, basin stability
increases with « in the bistable area, and then jumps to unity when « crosses the

homoclinic bifurcation line o = 45% [15]. It is also evident that one can use basin

stability to locate the homoclinic bifurcation line as the locus of the points where
basin stability S becomes unity for the first time when « is incremented gradually
from 0 to 1.

2.3 Limit cycle

The one-machine infinite bus system is multistable when « is within the range [0, 41)7%]

for P < K. In Fig. 1b, if we integrate the system long enough with initial parameter
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Fig. 2. Basin stability over parameter space of the one-machine infinite bus system. The
different areas same as shown the Fig. la are separated by the two lines: P/K = 1 and
the homoclinic bifurcation line. When o — 0, the bifurcation line is tangent to the line
a = Pr/(4VK). For fixed coupling strength K = 1, basin stability S is calculated over the
parameter space by varying the value of @ and P from 0 to 1 separately.

values from the white area, the system will rotate periodically. In order to deepen the
understanding of the dependency of 6 on 0, we seek to describe the phase portrait on
the 6-0 plane. Referring to the simulation curve as shown in Fig. 3, Z?:o sin (6(¢)) =0
and ZtT:o sin (6(t)) = 0, where ¢ denotes the time and T one period. Therefore, from

Eq. (6), we get the average value of frequency (f) ~ P/a. The frequency 6 as a
function of the phase # is assumed as following:

6 = Acos (0) + P/a, (7)

where A is the amplitude. Substituting equation (7) into Eq. (6) and setting cos (0) =
0, one finds

A=Ka/P, (8)

which means that the amplitude of the oscillation is proportional to K and «. With
increasing coupling strength K or dissipation coefficient «, the state of the system
changes from the stable limit cycle to the stable fixed point as shown in Fig. 1b. If the
generated or consumed power P is increased, the amplitude decreases and it becomes
more and more difficult to converge to the fixed point.

Selecting a random set of initial values for @ and 6 from the white area of Fig. 1b,
and integrating the system for a long time, we obtain the stable limit cycle as plotted
in Fig. 3. The analytic curve from Eq. (7) is plotted in red. The analytic and simulation
curves match very well.
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Fig. 3. Stable limit cycle is shown. The green curve is plotted from simulation for o = 0.1,
P = 0.5 and K = 1. The system oscillates around P/a. The red curve is obtained from
Eq. (7).

2.4 Maximum Lyapunov exponent

Eigenvalues A of the Jacobian matrix J of the one-machine infinite bus system at
(0,0) are given by the characteristic equation det(A — A\I) = 0, that is:

-A 1

—Kcos () —a— X — 0.

Solving the determinant we obtain

—a++va? —4K cosf
Al = 7 . 9)

The maximum Lyapunov exponent of the stable fixed point 6 is equal to ReA [11].
For the parameter values corresponding to Fig. 1b, if # converges to the stable fixed
point 6, cos (#) ~ cos (fy) = 0.86 and the maximum Lyapunov exponent should be
close to —a/2 = —0.05. Shown in Fig. 4 is the maximum Lyapunov exponent of the
one-machine infinite bus system with the same parameter values as used in Fig. 1b
to compare the two methods of calculating the basin of attraction of the stable fixed
point. The points with the maximum Lyapunov exponent close to —0.05 are shown
in blue color. The area of blue points also shows the state space of the one-machine
infinite bus system.

3 Dynamics of two oscillators

What happens if the network is a set of two or more nodes? Consider first two
oscillators, out of which one is a generator with P, = +P and one consumer with
P, = —P, the dynamics is governed by

f,=—ab, + P+ Ksin (6, — 0,), (10)

.= —af. — P+ Ksin (0, — 0.). (11)
The phase difference §6 = 0, — 0. satisfies

60 = —adf + 2P + 2K sin (—66), (12)
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Fig. 4. The maximum Lyapunov exponent of the one-machine infinite bus system for o =
0.1, P = 0.5 and K = 1. If the maximum Lyapunov exponent is smaller than 0, the oscillator
converges to the stable fixed point. We can also use the maximum Lyapunov exponent to
reproduce the basin of attraction of the stable fixed point.

which is the same as the equation of motion of the one-machine infinite bus system.
Following the same process as in Sect. 2, we investigate the dynamics of the two oscil-
lators. For P > K, the oscillators converge to one stable limit cycle which oscillates

around P/a. For % < P < K, there could be one stable limit cycle and one stable
fixed point at

060 = arcsin (P/K), (13)

which depends on initial conditions of 60 and é6. Figure 1 illustrates the coexistence
of the stable limit cycle and the stable fixed point. Also basin stability S decreases

with increasing K from % to K for fixed o and K. For K < %7 only one
stable fixed point exists with basin stability S = 1.

4 Dynamics of a medium-dimensional dynamical system
4.1 Basin stability with 4 oscillators

In the Sects. 2 and 3, we have shown the coexistence of a stable limit cycle and
a stable fixed point in a one-machine infinite bus system and in the two-oscillators
topology respectively. Further, basin stability has been used to quantify how stable
the fixed point is. What happens when the number of the nodes is increased by 27 Here
we focus on the nonlinear stability of four-node topology ranging from a basic ring
network with two generators separated by two consumers of Fig. 5a to the network
of globally-coupled phase oscillators of Fig. 5d.
The power grid model takes the following form in the simplest case:

N
6; = —af; + P, + K > Ayjsin (0 — 0;),
j=1

(14)

where N = 4 and A;; is an element of the network’s adjacency matrix A. When
oscillators ¢ and j are connected, A;; = 1 and A;; = 0 otherwise. For the sake of
simplicity, we assume that the damping coefficient « is the same for all oscillators.
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Fig. 5. Connection of 2 generators (G1 and G2) and 2 consumers (C1 and C2). Squares
denote consumers and circles represent generators. (a) Two generators fully connect to 2
consumers, but the two generators or the two consumers are not connected directly. In
configuration (b) (resp. (c)), the two generators (resp. consumers) are also connected with one
additional dashed blue diagonal line. (d) Both generators and consumers are fully connected
with two additional dashed diagonal lines.

All transmission lines have also been assumed to have identical capacity, and therefore
the coupling constant K is the same. The most important feature of a power system is
that huge amounts of electricity cannot easily and conveniently be stored [10], which
means at any instant of time the net energy consumption has to be met by generation
>, Pi=0.

In order to compare the parameter space of a medium-dimensional dynamical
system with that of the one-machine infinite bus system, we vary the values of «
and P for fixed coupling strength K = 1. In Fig. 6, we show basin stability over
the parameter space of o and P for the networks combining two generators with
Pg1 = Pgo = P and two consumers with Poy = Pos = —P as shown in Fig. 5.

Instead of perturbing only one oscillator [11], in this paper, we perturb all oscilla-
tors and then calculate basin stability. In order to assess basin stability, we randomly
select for each pair of o and p initial values of (6,0) from [—, 7] x [~15, 15], integrate
the system long enough and then find the percentage of initial values reaching the
synchronized state. For every pair of a varying from 0 to 2 with 0.05 interval and P
varying from 0 to 2 with the same gap, we repeat the same process to calculate the
basin stability and then sketch the parameter space as shown in Fig. 6. This way we
find that there are three different regions namely a stable limit cycle, bistability and
a stable fixed point. Comparing the parameter space of Fig. 6a and d, we see that
the volume of the bistable area decreases as the network becomes more connected.

4.2 Finite-time maximum transverse Lyapunov exponent

In nonlinear dynamics, the convergence/divergence properties of nearby trajectories
are quantified by the positive/negative maximum Lyapunov exponent [9]. A stable
limit cycle has a zero maximum Lyapunov exponent: it neither grows nor decays in
time [9].

To investigate the linear stability, we analyze properties of trajectories converg-
ing to the fixed point by calculating the finite-time maximum transverse Lyapunov
exponent for P =1, K =1 and increasing « from 0. Next, we randomly draw initial
values of @ and 6 close to equilibrium points, and integrate the system for a long time.
If the oscillators are synchronized, for example at time ¢, then we calculate the finite-
time maximum transverse Lyapunov exponent from ¢ to ¢t + 7. In the synchronization
region, the maximum Lyapunov exponent should be negative. In simulations, we set
T = 10* and compare the rate of convergence for different .

In Fig. 7, high convergence ratios are corresponding to high dissipating values a.
Also there is a constant in the value of maximum Lyapunov exponent with increasing
«. Comparing basin stability as shown in Fig. 6 and linear stability as shown in Fig. 7,
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Fig. 6. The panels show basin stability over the parameter space of a and P for K =1 for
the networks corresponding to Fig. 5. Comparing the parameter space of (a) and (d), we can
see that the volume of the bistable area decreases as the network becomes more connected.
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Fig. 7. Finite-time maximum transverse Lyapunov exponent in the networks for Fig. 5.
Here K =1 and P =1.

we can get that linear stability is not suitable to evaluate the stability against large
perturbations.

5 Conclusions

Parameter values and the size of a disturbance are two crucial factors to determine
the stability of a nonlinear power system. Motivated by the question of how stable a
state is, basin stability was proposed based on the volume of the basin of attraction.
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In this paper, we have evaluated the basin stability for a one-machine infinite bus sys-
tem and a four-node network. Basin stability has been projected over the parameter
space not only for the 2 dimensional system but also for medium dimensional dy-
namical system. We analytically derived the governing equation of the limit cycle for
the one machine infinite bus system and analytical and numerical results match very
well. It is instructive to characterize the state space and parameter space in terms by
means of Lyapunov exponent. This study illustrates a new way of investigating the
stability even for high dimensional systems.
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