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Generalizing the transition from amplitude to oscillation death in coupled oscillators
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Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching types
in coupled nonlinear oscillators. The transition from AD to OD has been recently realized due to the interplay
between heterogeneity and coupling strength [A. Koseska et al., Phys. Rev. Lett. 111, 024103 (2013)]. We identify
here the transition from AD to OD in nonlinear oscillators with couplings of distinct natures. It is demonstrated
that the presence of time delay in the coupling cannot induce such a transition in identical oscillators, but it can
indeed facilitate its occurrence with a low degree of heterogeneity. Moreover, it is further shown that the AD to
OD transition is reliably observed in identical oscillators with dynamic and conjugate couplings. The coexistence
of AD and OD and rich stable OD configurations after the transition are revealed, which are of great significance
for potential applications in physics, biology, and control studies.
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A broad class of collective behavior in real-life systems
can be characterized both qualitatively and quantitatively by
studying the dynamics of an assembly of coupled nonlinear
oscillators [1,2]. Systems of coupled oscillators may often
respond nontrivially as a result of the nature of interactions
among them and thus produce many interesting and novel
self-organized behaviors. One striking emergent phenomenon
is oscillation quenching [3,4], which refers to suppression of
oscillation under coupling and hence it can serve as an efficient
mechanism to control the system’s dynamics. Two main
manifestations of oscillation quenching, namely, amplitude
and oscillation death, can be clearly distinguished based on
their different dynamical and emergent nature [4,5].

Amplitude death (AD) denotes the suppression of os-
cillations manifested through the existence of a single sta-
ble homogeneous steady state (HSS). To induce AD, it
has been shown that at least one of the following condi-
tions is required: (a) sufficiently disparate frequencies [6],
(b) time-delayed coupling [7–9], (c) dynamic coupling [10],
or (d) conjugate coupling [11] (for a recent review on AD,
see Ref. [3]). In contrast, oscillation death (OD) manifests
due to the appearance of a stable inhomogeneous steady state
(IHSS) as a result of a symmetry breaking of the system.
Two separate branches of the unstable IHSS are stabilized,
rendering the oscillators spatially distributed on the upper
and the lower levels of the IHSS in the limiting case of two
coupled oscillators. The mathematical formulation of OD has
been initially given by Prigogine and Lefever for a system
of two identical Brusselators coupled via a slow recovery
variable [12]. Later, OD was found and analyzed in various
chemical and biological systems [13–15] (for a recent review
on OD, see Ref. [4]). These two manifestations of oscillation
quenching differ from each other significantly: Generally,
OD induces heterogeneity in a homogeneous medium due
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to its manifestation as an IHSS, whereas AD results in
a homogenous behavior, forcing all of the oscillators to
populate the same HSS of the system [4,5]. Apart from their
distinct emergent and dynamical nature, AD and OD have
completely different applications: AD is mainly used as a
control mechanism in physical or chemical systems [16,17],
whereas the main implications of OD lie in biological systems,
since it has been interpreted as a background mechanism of
cellular differentiation [18–20] and related to neurological
conditions [21,22].

Very recently, it was established that the transition from AD
to OD occurs via a Turing-type bifurcation as a result of the
interplay between the heterogeneity of the coupled oscillators
and the coupling strength [5] or repulsive interaction [23].
This finding is quite interesting as the diffusive coupling
renders the system inhomogeneous rather than uniform, in
contrast to the intuitive understandings of its effects [24]. Such
diffusion-induced inhomogeneity is perfectly corroborated in
the phenomenon of chimera states [25], which surprisingly
exist in systems of identical oscillators with homogeneous
symmetric coupling.

In this Rapid Communication, we examine the generic
nature of the transition between AD and OD in nonlinear
oscillators with different coupling schemes, namely, time-
delayed, dynamic, and conjugate couplings, which have
already been shown to induce AD [3]. The generic model
of concern in this work is the paradigmatic Stuart-Landau
limit-cycle oscillator [1] Ż(t) = [1 + iw − |Z(t)|2]Z(t). It
has an unstable origin and a stable limit-cycle motion Z =
x + iy = eiwt , where w defines the intrinsic frequency of the
limit-cycle oscillation.

Considering two such oscillators coupled via the x com-
ponent (vector-type coupling) with time delay, the dynamical
equations in Cartesian coordinates are expressed as

ẋj = pjxj − wjyj + K[xk(t − τ ) − xj (t)],
(1)

ẏj = wjxj + pjyj ,
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where j,k = 1,2; j �= k; pj = 1 − |Zj |2 = 1 − x2
j − y2

j ; K is
the strength of coupling; and τ is the propagation time delay.
Very recently, AD and OD in the coupled system (1) with τ = 0
were reported in [5], where a transition from AD to OD occurs
due to the interplay between the strength of interaction and
the heterogeneity in the frequencies of the coupled oscillators.
Generally, the presence of τ > 0 in the coupling does not
change the steady-state solutions of the coupled system (1), but
may switch their stability. Here we are interested in exploring
whether such a transition from AD to OD can occur in coupled
identical oscillators with time delay.

Obviously, the coupled system (1) has only one HSS
solution located at the origin (0,0,0,0), which exists
in the whole parameter space. For two identical os-
cillators w1 = w2 = w, the IHSS solution is given by
P (x∗

1 ,y∗
1 , − x∗

1 , − y∗
1 ), with x∗

1 = −wy∗
1/(w2 + 2Ky∗2

1 ) and

y∗
1 = ±

√
(K − w2 + √

K2 − w2)/2K , which arise at K =
(w2 + 1)/2 via a pitchfork bifurcation. Nevertheless, the IHSS
for nonidentical oscillators w1 �= w2 for a given frequency
mismatch � = w2/w1 cannot be derived analytically, however
they can be traced numerically. The stable regimes of HSSs and
IHSSs of the coupled system (1) are delineated using a MATLAB

TRACEDDE package, which employs pseudospectral differen-
tiation techniques and enables one to compute characteristic
roots and produce stability charts of linear autonomous delayed
systems [26,27]. The onset of AD (a stable HSS) and OD (a
stable IHSS) is also confirmed numerically by integrating the
coupled system (1) with the fourth-order Runge-Kutta method.
Random initial conditions can be adopted when the coupled
system (1) experiences AD, as AD is a unique attractor in the
phase space. However, initial conditions near the IHSS are
needed for OD because OD is always accompanied by stable
limit cycles [4,5].

In the absence of the time delay in the coupling (τ = 0),
it has been shown in [5] that, for w1 = 2, the HSS can be
stabilized for K > 4.25 if � = 1 [see also Fig. 1(a)]. For
1 � � � 1.95, OD appears if K exceeds a certain threshold,

FIG. 1. (Color online) Comparison of the evolution from AD to
OD in the coupled system (1). Thin dashed lines denote unstable
steady states, whereas solid red (light gray) and black (dark gray)
lines denote stable IHSSs (OD) and stable HSSs (AD), respectively.
See text for further details.

where AD is impossible for any K . In the range of 1.95 <

� < 3.1, the coupled oscillators no longer suffer either OD
or AD. Only AD is stable in a certain interval of K if 3.1 �
� < 3.45. The transition from AD to OD can be observed
if � � �C = 3.45 as K is increased. Figure 2(a) shows the
systematic characterization of such a transition.

In contrast to this, time-delayed coupling can stabilize both
OD and AD, even for the case where no stable IHSS and HSS
solutions can be found without time delay. To highlight the
effects of time delay, Fig. 1 compares the solution diagrams
of steady states for the coupled system (1) with τ = 0 (left
column) and τ = 0.2 (right column) and � = 1, 2, 2.4,
and 3 (from top to bottom), respectively. w1 = 2 is fixed.
Figure 1(e) shows that the IHSS is stabilized for K > 3.75,
which implies that time-delayed coupling can stabilize OD
at a smaller coupling strength in coupled identical oscillators
(� = 1). Even both AD and OD are unstable for the coupled
system (1) with τ = 0 [Figs. 1(b)–1(d)], the presence of time
delay in the coupling can induce stabilization of both regimes
[Figs. 1(f)–1(h)]. Increasing the frequency mismatch � results
first in the appearance of a stable OD region [Fig. 1(f)] and
then both stable AD and OD in disconnected intervals of
K [Fig. 1(g)]. Finally, a direct transition from AD to OD
occurs [Fig. 1(h)] when � is beyond a certain threshold. Thus
time-delayed coupling stabilizes not only a HSS (AD) but also
an IHSS (OD) and can facilitate the occurrence of the transition
from AD to OD in coupled oscillators even at a low degree of
heterogeneity compared to the instantaneous coupling.

To characterize systematically the AD to OD transition
for τ > 0, we traced the stability regions of both solutions
in the (K,�) plane for distinct time delays as depicted in
Figs. 2(a)–2(d). For a small value of time delay, i.e., τ = 0.1
[Fig. 2(b)], the distribution of stable AD and OD islets in the
(K,�) plane retains a structure that is similar to but larger
than that for τ = 0 in Fig. 2(a) and the AD to OD transition
occurs at a smaller value of �C = 2.78. For large values of

FIG. 2. (Color online) The AD and OD regimes for the coupled
system (1) in (K,�) parameter space for (a) τ = 0, (b) τ = 0.1,
(c) τ = 0.2, (d) τ = 0.3, and w1 = 2. The black (dark gray) and
red (light gray) regions denote the stable homogeneous (AD) and
inhomogeneous (OD) steady states, respectively. The dashed blue
line represents the critical coupling Kc for the birth of the IHSS if
K > Kc.
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FIG. 3. (Color online) The AD and OD regimes for the coupled
system (1) with w1 = 10 in the parameter space of (K,�) for
(a) τ = 0, (b) τ = 0.005, (c) τ = 0.01, and (d) τ = 0.16.

time delay, the two separate stable OD islets merge into a
single connected one and the value of �C for the occurrence
of the AD to OD transition is further decreased to �C = 2.56
for τ = 0.2 [Fig. 2(c)] and �C = 2.52 for τ = 0.3 [Fig. 2(d)].

The above analysis reveals that the interplay between the
heterogeneity (� > 1) and the coupling strength (K > 0) is
a necessary ingredient to facilitate the AD to OD transition
in systems of coupled oscillators, even if the coupling is time
delayed. However, the degree of heterogeneity necessary to
induce such a transition can be strongly reduced when τ > 0.
Now it is natural to ask the following question: Can time
delay facilitate the AD to OD transition in a system of coupled
identical (�C = 1) oscillators as well? If possible, it would
mean that a transition between a HSS and a symmetry-breaking
IHSS can be realized in a homogeneous medium, which may
be of significant importance for control studies and also have
potential applications in biological systems.

It is not difficult to numerically find that the minimum
intrinsic frequency wmin ≈ 6.25 is the threshold for the
occurrence of delay-induced AD in the system of coupled
identical units (1). Thus w > wmin is a necessary condition
to induce a possible AD to OD transition in coupled identical
oscillators with time delay. To understand whether it is possible
to realize this scenario, now, we investigate the implications
of time-delayed coupling when wj > wmin.

Figures 3(a)–3(d) depict the stable regimes of AD and OD
of the coupled system (1) with w1 = 10 in the (K,�) parameter
space for different τ . By taking into consideration a time delay
in the coupling, effects on the stable AD and OD regimes
similar to those in the case of lower intrinsic frequencies
(Fig. 2) can be observed [Figs. 3(a)–3(c)]. However, a
characteristic time delay τ = 0.16 in Fig. 3(d) facilitates the
stable AD islet to extend to the � = 1 axis for a finite range of
K , where initially only a stable OD region existed for larger
coupling strengths. Note that the stable AD and OD islets do
not merge with each other and thus the direct transition from
AD to OD does not occur at � = 1.

To obtain the complete picture of the role of time delay
in the transition scenario between both dynamical regimes,
we further plot the AD and OD stability regions in the

FIG. 4. (Color online) The AD and OD regions for the coupled
system (1) in the parameter space of (τ,K) for (a) � = 1, (b) � = 1.4,
(c) � = 1.5, and (d) � = 1.6 with w1 = 10.

(τ,K) parameter space for various � in Figs. 4(a)–4(d) for
w1 = 10. The AD and OD islets are clearly separated for
� = 1 [Fig. 4(a)]. The stability regions merge with each
other, allowing for a direct AD to OD transition only if � >

�C = 1.5 [comparing Figs. 4(b)–4(d)]. Note that there is a
pronounced interval of time delay for which the stable AD and
OD regions are connected when � > 1.5; e.g., see Fig. 4(d)
with � = 1.6. Hence we can conclude that the AD to OD
transition occurs due to the interplay of both the heterogeneity
and the coupling strength of the system even in the presence
of time delay in the coupling. Thus time-delayed coupling
cannot induce such a transition in identical oscillators, but it
can facilitate its appearance for small values of �.

We ask the next question whether other coupling schemes
exist that would allow for an AD to OD transition in a
system of coupled identical oscillators. Recent investigations
have revealed that AD can be induced in identical oscillators
with dynamic [10] and conjugate couplings [11], even in
the absence of time delay. However, OD has not been
observed in both coupling types so far, which may serve as
candidates to induce the AD to OD transition in identical
oscillators.

Coupling two Stuart-Landau oscillators with dynamic
coupling [10] results in

ẋj = pjxj − wyj + K(uj − xj ),
(2)

ẏj = wxj + pjyj , u̇j = −uj + xk.

Note that, interestingly, the coupled system (2) has the same
steady states as those of the two delay-coupled identical
oscillators in (1). Here, however, the HSS (origin) is stable
for a certain interval of K if w > 2

√
2 [10]. Further, without

loss of generality, we adopt w = 5 and AD occurs for
1
2 (w2 − w

√
w2 − 8) < K < 1

2 (1 + w2). At K = 1
2 (1 + w2),

a pitchfork bifurcation gives rise to two additional stable
branches of the IHSS [Fig. 5(a)], i.e., OD appears. Thus we
can state that an AD to OD transition can be indeed realized
in identical oscillators with dynamic coupling.
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FIG. 5. (Color online) Transition from AD to OD in two coupled
identical Stuart-Landau oscillators for w = 5 with (a) and (b)
dynamic and conjugate couplings, respectively, and (c) and (d) three
Stuart-Landau oscillators with dynamic coupling for the ααβ and
αβγ OD patterns after the transition.

For two Stuart-Landau oscillators with conjugate coupling
[11]

ẋj = pjxj − wyj + K(yk − xj ),
(3)

ẏj = wxj + pjyj + K(xk − yj ),

apart from the HSS at the origin x∗
1 = y∗

1 = x∗
2 = y∗

2 = 0, other
steady states are given by the condition x∗

1 + y∗
1 = x∗

2 + y∗
2 =

K(y∗
1y∗

2 − x∗
1x∗

2 )/w, from which both HSS and IHSS solutions
may be newly created by the coupling. In particular, the
HSS at the origin is stabilized for 1 < K < 1

2 (1 + w2) if
w > 1. Figure 5(b) illustrates steady states for w = 5 as
a function of K . In this case, the origin is destabilized at
K = (1 + w2)/2 and besides the two separate stable branches
of the IHSS solution (OD), we have also found the existence
of an additional stable HSS. Thus the conjugate coupling can
induce not only an AD to OD transition in a system of coupled
identical oscillators, but after the transition, a new stable HSS
(AD) is found to coexist with the stable IHSS (OD).

Furthermore, the transition from AD to OD can be observed
for the general case of N (N > 2) identical oscillators. We
illustrate this with N = 3 identical Stuart-Landau oscillators
with dynamical coupling. The evolution equations are similar
to the coupled system (2) with the coupling term replaced by
u̇j = −uj + (xk + xl)/2, where j,k,l = 1,2,3 and i �= j �= l.
Now, for the case of the IHSS, two different configurations
ααβ and αβγ are possible. In the first case, two oscillators
populate the same branch, while the third oscillator occupies
the opposite branch of the IHSS (ααβ distribution), whereas in

the second case, all oscillators populate different branches of
the IHSS (αβγ distribution). We note here that the observation
of such a three-branch manifestation of OD is lacking in
the literature to the best of our knowledge. It should be
noted that the patterns form any circular permutations for
the above two configurations due to the symmetry of the
coupling architecture. Figures 5(c) and 5(d) depict the AD to
OD transition for these two OD configurations as a function of
K . The transition occurs at K = 17.33 for both cases, i.e., the
IHSS is created and stabilized. Increasing the coupling strength
further, the stable IHSS becomes unstable at K = 17.36 and
40.41 for the ααβ and αβγ patterns, respectively. For more
than N = 3 identical oscillators, the AD to OD transition
is generically produced, but the OD configurations after the
transition are much more complex.

In conclusion, the AD to OD transition phenomenon has
been systematically identified in nonlinear oscillators with
time-delayed, dynamic, and conjugate couplings, which are
so far understood as having the tendency to induce AD alone.
We have shown that both AD and OD can be stabilized by a
time delay in the same system of coupled oscillators that does
not experience either AD or OD in the absence of time delay.
However, for this coupling scenario, the AD to OD transition
cannot occur if the coupled oscillators are identical. Instead,
time-delayed coupling can facilitate its occurrence for a low
degree of heterogeneity present in the system. Interestingly, we
have also shown that the AD to OD transition can be clearly
established in systems of identical oscillators with dynamic
and conjugate couplings. Furthermore, we have found the
occurrence of a stable HSS (AD) coexisting with a stable
IHSS (OD) for conjugate coupling after the transition. In
the general case for N > 2 identical oscillators, the transition
between the AD and OD regimes is sustained, however, a rich
manifestation of stable OD configurations has been revealed.
A detailed characterization of these IHSS solutions awaits
further investigations. Even though here we have studied
the AD to OD transition for the paradigmatic model of
coupled Stuart-Landau oscillators, we firmly expect that the
transition scenario described here will essentially characterize
the general features of such a transition in various physical
and biological systems. Our study of the AD to OD transition
should gain significant implications in diverse applications
not only in real-world systems, but also for control studies and
engineering problems [28,29].
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