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This paper presents a brief overview of recent
developments in chaos synchronization in coupled
fractional differential systems, where the original
viewpoints are retained. In addition to complete
synchronization, several other extended concepts of
synchronization, such as projective synchronization,
hybrid projective synchronization, function projective
synchronization, generalized synchronization and
generalized projective synchronization in fractional
differential systems, are reviewed.

1. Introduction
Fractional calculus was formulated in 1695, shortly
after the development of classical calculus. The earliest
systematic studies were attributed to Liouville, Riemann,
Leibniz, etc. [1,2]. An outline of the simple history of
fractional calculus can be found in Machado et al. [3].

For a long time, fractional calculus was regarded as
a pure mathematical realm without real applications.
But, in recent decades, this has changed. It was found
that fractional calculus is useful, even powerful, for
modelling viscoelasticity [4], electromagnetic waves [5],
boundary layer effects in ducts [6], quantum evolution
of complex systems [7], distributed-order dynamical
systems [8] and others. That is, the fractional differential
systems are more suitable to describe physical phenomena
that have memory and genetic characteristics.

c© 2013 The Author(s) Published by the Royal Society. All rights reserved.
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On the other hand, it is known that chaos is ubiquitous in most nonlinear systems.
Owing to the various backgrounds of scientific communities, there exist several non-equivalent
mathematical definitions of chaos [9]. However, the criterion that the positivity of the largest
Lyapunov exponent implies chaos is generally accepted.

Similar to a nonlinear differential system, a nonlinear fractional differential system may also
have complex dynamics, such as chaos and bifurcation. Since 1999, the oscillatory behaviours
in fractional dynamical systems have attracted considerable attention [10–12]. These studies are
useful in the design and implementation of fractional-order oscillators. Such fractional dynamics
were observed mainly through numerical simulations. Detecting the mathematical machinery of
fractional dynamics takes a long time. To date, chaotic motions have been found in fractional
systems, for example in the fractional versions of the Chua circuit [13], Duffing system [14],
Lorenz system [15], Chen system [16,17], Rössler system [18], Arneodo system [19] and the Lü
system [20,21]. More recently, Li et al. [22] have studied the definition of Lyapunov exponents
of fractional differential systems, which are often used to detect chaos in fractional differential
systems. On the other hand, both frequency-domain methods and time-domain methods are
used for computing the fractional differential systems [16,23,24]. It was noted that ‘using the
frequency-domain approximation methods can conceal chaotic behaviour for a chaotic fractional-
order system or display chaos for a non-chaotic one’ [23]. In comparison, the time-domain
approximation method provides more effective numerical simulations to recognize chaos in
fractional differential systems [16,23].

The evolution of a chaotic system sensitively depends on its initial conditions or parameter
values, in that two identical systems starting from slightly different initial conditions or
parameter values may separate exponentially in time. For quite a long time, there was doubt
about the possibility of synchronization between two chaotic systems owing to such sensitive
dependence. But, it turned out that chaos synchronization was not only possible but also
actually not difficult. Starting with Pecora & Carroll [25], chaos synchronization has been
extensively and intensively studied [26]. The simplest form of synchronization in coupled
chaotic systems is identical synchronization, also referred to as complete synchronization
(CS) [26,27]. Yet, there are other complex forms of chaos synchronization, depending on the
coupling configurations and systems, such as projective synchronization (PS), hybrid projective
synchronization (HPS), function projective synchronization (FPS), generalized synchronization
(GS), generalized projective synchronization (GPS) and phase synchronization.

In recent years, synchronization of fractional chaotic systems has started to attract
increasing attention because of its potential applications in secure communication and control
processing [28]. It was found that some fractional differential systems with order less than 1
may behave chaotically in some way similar to their integer-order counterparts, in which chaos
can also be synchronized. Synchronization of two coupled dynamical systems is essentially the
stability of the zero solution of their error dynamical system. Therefore, some (stable and unstable)
limit sets can be synchronized, as emphasized by Li & Deng [29]. For example, the fractional
Brusselator with an effective dimension less than 1 has a limit cycle, first observed by Wang &
Li [30], and the synchronization of this limit cycle in a coupled fractional Brusselators can be
easily achieved [31].

Some remarks are given in order. On the one hand, as mentioned earlier, synchronization
of chaotic systems is actually analysed by examining the stability of the zero solution of their
error dynamical system, using for example Lyapunov functions. However, it is difficult or even
impossible to explicitly construct Lyapunov functions for fractional differential systems. That
is, not all analytical methods for synchronization of classical chaotic systems can be directly
extended to the fractional-order setting. On the other hand, the lowest system dimension
for the existence of chaos in autonomous ordinary differential equations is 3. Yet, chaos
can exist in less than 3 efficient dimensions in fractional-order systems; for example, the
smallest efficient dimension for the fractional Lorenz system to have a chaotic attractor is
1.07 [32], in which the appearance of the chaotic attractor depends on the efficient dimension
displayed. Moreover, the randomness of a chaotic motion in a fractional chaotic system
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can effectively hide information so as to significantly increase the security level in secure
communication thanks to more system parameters, including the intrinsic parameter(s) and the
order parameter(s).

It is worth mentioning that some new phenomena, such as riddled basins of attraction
[33,34], attractor bubbling [35] and on–off intermittency [36–38], have been found in the studies
of chaos synchronization problems in recent years. Here, riddled basins of attraction is the term
used to indicate that every point in an attractor’s basin has pieces of another attractor’s basin
arbitrarily nearby [39]. This discovery has attracted great interest from scientists and has inspired
them to enter the field of chaotic synchronization [40–48]. It is now known that the transition
of synchronized states is due to random or chaotic perturbations in some parameters of the
system [34]. All this is observed or investigated in the realm of ordinary differential systems.
Such phenomena appearing in classical systems possibly arise in fractional systems as well, but
no reports in this respect are available in today’s literature. Because this is a general review article,
such intriguing problems are not discussed.

The present review has collected most key references on chaos synchronization of fractional
differential systems, where the viewpoints of the original contributors are retained. The remainder
of the article is organized as follows. In §2, some basic concepts of chaos synchronization of
fractional differential systems are introduced. Section 3 reviews the developments in chaos
synchronization of coupled fractional-order chaotic systems. The last section concludes this paper.

2. Some basic concepts
Let R, R+ and Z+ be the set of real numbers, the set of positive real numbers and the set of positive
integer numbers, respectively.

Among several definitions for the fractional derivative, the Caputo derivative and the
Riemann–Liouville derivative are most familiar. Engineers like to use the former, whereas
physicists and mathematicians often choose the latter. In this paper, the involved fractional
derivatives mean the Caputo derivative or the Riemann–Liouville derivative. These two fractional
derivatives are not equivalent and have their respective applications [49–52].

Definition 2.1. The αth order Caputo derivative of a function f (t) is defined by

CDα
0,tf (t) = 1

Γ (m − α)

∫ t

0
(t − τ)m−α−1f (m)(τ ) dτ , (2.1)

where m − 1 < α ≤ m ∈ Z+ and Γ (·) is the gamma function.

Definition 2.2. The αth order Riemann–Liouville derivative of a function f (t) is defined by

RLDα
0,tf (t) = 1

Γ (m − α)

dm

dtm

∫ t

0
(t − τ)m−α−1f (τ ) dτ , (2.2)

where m − 1 ≤ α < m ∈ Z+.

Among various kinds of synchronization, CS of two coupled fractional differential systems
is the same as that of two coupled conventional differential systems, which are introduced in
the appendices A–D. In this article, the fractional partially linear system is used to define CS, PS
and HPS.

Definition 2.3. A fractional partially linear system is a set of fractional differential equations
where the state vector can be decomposed into two parts, (u, z), in which the equation for z is
nonlinear in u while that for the fractional derivative of the vector u is linear in z through a matrix
M, which depends only on z, in the form of

dαu
dtα

= M(z) · u

and
dαz
dtα

= f (u, z),

⎫⎪⎪⎬
⎪⎪⎭ (2.3)

where α is the fractional order and dα/dtα denotes either CDα
0,t or RLDα

0,t.
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Now, some basic definitions about synchronization are given.
Consider two copies of a partially linear system, which are coupled through the variable z in

the following manner:
dαum

dtα
= M(z) · um,

dαz
dtα

= f (um, z)

and
dαus

dtα
= M(z) · us,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)

where α is the fractional order, and um ∈ Rn and us ∈ Rn are the state vectors of the drive and
response systems, respectively.

Definition 2.4. The two coupled systems in (2.4) are said to reach CS if

lim
t→∞

‖um − us‖ = 0, (2.5)

where ‖ · ‖ denotes a norm (usually, the Euclidean norm) of a vector.

Here, CS is defined through the fractional partially linear system (2.4) just for simplicity and
convenience. CS has other coupled forms; see appendices A–D for more details.

Definition 2.5. The two coupled systems (2.4) are said to reach PS if, for the initial conditions,
there is a constant β such that

lim
t→∞

‖um − βus‖ = 0. (2.6)

Definition 2.6. The two coupled systems (2.4) are said to reach HPS, if there exist n constants
hi (1 ≤ i ≤ n) such that

lim
t→∞

‖um − Hus‖ = 0, (2.7)

where H = diag(h1, h2, . . . , hn) is called the scaling matrix and h1, h2, . . . , hn are the scaling factors.

Remark 2.7. Definitions 2.3 and 2.6 are generalized from the integer-order partially linear
systems defined by Mainieri & Rehacek [53] and the HPS defined by Hu et al. [54], respectively.

Now, consider the following coupled drive and response systems:

dqm x
dtqm

= f (x)

and
dqs y
dtqs

= g(y) + u(x, y),

⎫⎪⎪⎬
⎪⎪⎭ (2.8)

where qm and qs are fractional orders satisfying 0 < qm ≤ 1 and 0 < qs ≤ 1, respectively, f , g :
Rn → Rn are two continuous nonlinear vector functions, and u(x, y) : Rn × Rn → Rn is a controller
to be designed.

Definition 2.8. The two coupled systems (2.8) are said to reach FPS if there exists a controller
u(x, y) such that

lim
t→∞

‖y − K(x)x‖ = 0, (2.9)

where K(x) = diag(k1(x), k2(x), . . . , kn(x)) with ki(x) being continuous functions, i = 1, 2, . . . , n.

Next, considering the following two unidirectionally coupled fractional systems:

dpx
dtp = f (x)

and
dqy
dtq = g(y, u) = g(y, h(x)),

⎫⎪⎪⎬
⎪⎪⎭ (2.10)

where x = (x1, x2, . . . , xn)T ∈ Rn, y = (y1, y2, . . . , ym)T ∈ Rm,
dpx/dtp = (dp1 x1/dtp1 , dp2 x2/dtp2 , . . . , dpn xn/dtpn)T,
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dqy/dtq = (dq1 y1/dtq1 , dq2 y2/dtq2 , . . . , dqm ym/dtqm)T, pi, qj ∈ R+, p = (p1, . . . , pn),
q = (q1, . . . , qm), f : Rn → Rn, g : Rm × Rk → Rm

and u(t) = (u1(t), u2(t), . . . , uk(t))T with uj(t) = hj(x(t, x0)).

Definition 2.9. The two coupled systems (2.10) are said to reach GS if there exist a
transformation H : Rn → Rm, a manifold M = {(x, y) : y = H(x)}, and a subset B = Bx × By ⊂ Rn ×
Rm with M ⊂ B, such that, with any initial conditions in B, one has

(x, y) → M (t → ∞). (2.11)

Furthermore, consider the following two coupled fractional systems:

dαx
dtα

= f (x)

and
dαy
dtα

= g(y, h(x, y)),

⎫⎪⎪⎬
⎪⎪⎭ (2.12)

where α is the fractional order, x ∈ Rn, y ∈ Rn, f : Rn → Rn, h : Rn × Rn → Rn, g : Rn × Rn → Rn and
g(x, 0) ≡ f (x).

Definition 2.10. The two coupled systems (2.12) are said to reach GPS if there exists a constant
σ ∈ R − {0} such that

lim
t→∞

‖x − σy‖ = 0. (2.13)

Note that definitions 2.5–2.10 (whose original viewpoints are retained) have some relations but
their synchronizations appear in the fractional differential systems with different couplings.

3. Synchronization of fractional chaotic systems
In this section, typical methods for various synchronizations of two coupled fractional chaotic
systems are reviewed and discussed.

(a) Complete synchronization
CS can be achieved by means of different coupling schemes. In general, CS can roughly be
divided into two categories: unidirectional coupling (drive–response coupling) configuration and
bidirectional configuration. In a unidirectional coupling configuration, the evolution of one of the
coupled systems is not influenced by the other via coupling. On the contrary, in a bidirectional
coupling configuration both systems mutually influence each other [55]. CS is the simplest setting
in synchronization of chaotic systems and is easy to apply in practice.

In the following, numerical and analytical methods for CS of the fractional differential systems
are introduced.

(i) Numerical methods

There are two popular numerical methods for computing the chaotic attractors of fractional
systems and their synchronization diagrams. One is the frequency-domain method and the other
is the time-domain method. The former is mainly used to approximate the transfer function
1/sα . The latter is used to directly approximate the temporal fractional derivatives. In the study
by Li et al. [56], the frequency-domain technique was used to numerically analyse CS of two
identical fractional chaotic systems via a one-way coupling configuration (A 1) (see appendix A),
with k = cΓ , where c > 0 is the coupling strength and Γ ∈ Rn×n is a constant 0–1 matrix linking
the coupling variables. CS of many other fractional chaotic systems via one-way coupling was
studied numerically. For example, CS via one-way coupling of two electronic fractional chaotic
oscillators in a canonical structure was numerically studied by Gao & Yu [57], who pointed
out that the synchronization rate of a fractional chaotic oscillator was slower than its integer-
order counterpart. The one-way coupling technique was also applied to numerically study CS of
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chaotic fractional Lü systems [21] and of the chaotic fractional Ikeda systems with delays [58].
In the study by Ge & Jhuang [59], CS of a fractional rotational mechanical system with a
centrifugal governor was studied for both autonomous and non-autonomous cases. It was
shown that the rotational mechanical system, with its total order less than or more than the
number of state variables, exhibited chaos. In addition, it was pointed out that practical chaos
synchronization of different fractional systems needs a large coupling strength.

In the study by Tavazoei & Haeri [23], however, it was pointed out that the time-domain
method is more reliable than the frequency-domain method in detecting chaotic attractors of
fractional differential systems. One of the most used time-domain methods is the predictor–
corrector algorithm [60]. The time-domain method is more flexiable than the frequency-domain
method, since approximating the transfer function 1/sα is not so convenient if the fractional
derivative order α has a large number of digits after the decimal point.

CS of the Chua, Rössler and Chen systems with different fractional orders was investigated
numerically by using the predictor–corrector algorithm in the time domain. By selecting proper
parameters, numerical results illustrated that synchronization of the fractional Chua, Rössler and
Chen systems is slower than that of their respective integer-order systems, where the different
fractional orders lie in (0,1).

In addition to the one-way coupling configuration, a control technique was also applied to
synchronizing the fractional chaotic systems. For example, the synchronizations of two identical
generalized van der Pol systems could be achieved, which was called ‘chaos excited chaos
synchronization’ [61]. Chaos synchronization of fractional modified Duffing systems was also
studied, and was called ‘parameter excited chaos synchronization’ [62]. Moreover, the active
sliding mode controller [63] and adaptive proportional–integral–derivative controller [64] were
applied to the synchronization of fractional chaotic systems.

(ii) Laplace transformmethod

The Laplace transform theory was applied by Deng & Li [17] to theoretically study CS of fractional
Lü systems by one-way and Pecora–Carroll (PC) coupling configurations (see appendix B). And
then the Laplace transform theory was used to theoretically study CS of the Chua systems [65],
the unified chaotic systems [66] and the fractional neuron network systems with time-varying
delays [67]. In the study by Li & Deng [68], the Laplace transform method was applied to
investigating CS of the fractional Lorenz systems (x, y, z) in the PC coupling configuration, where
(x, z) were driven by y. For coupled fractional Lorenz systems, CS can also be achieved if the
driving signal is selected as x [69], i.e. CS of fractional Lorenz systems can be realized using
driving signal x or y, which is in accordance with the case of integer-order Lorenz systems [25].

Now, the Laplace transform method for synchronization is illustrated by the following
examples.

Example 3.1. Consider two identical Chua circuits in a one-way coupling form [65], in which
the drive system is described by

CDq1
0,txm(t) = p1(ym − xm − f (xm)),

CDq2
0,tym(t) = xm − ym + zm

and CDq3
0,tzm(t) = −p2ym,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

and the response system by

CDq1
0,txs(t) = p1(ys − xs − f (xs)) + k(xs − xm),

CDq2
0,tys(t) = xs − ys + zs

and CDq3
0,tzs(t) = −p2ys,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.2)
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Figure 1. The fractional Chua circuit inR3. Thediagramshows that the fractional Chua systemcanalso exhibit chaotic behaviour,
where p1 = 10, p2 = 14.87, a= −1.27, b= −0.68, q1 = 0.92, q2 = 0.92, q3 = 0.98. The time step length is 0.02, the first
100 points are removed [65].

where the fractional orders satisfy 0 < q1, q2, q3 ≤ 1, k is the coupling strength, p1 and p2 are
positive constants, f (x) = bx + 1

2 (a − b)(|x + 1| − |x − 1|) with a < b < 0.

The error dynamical system between systems (3.1) and (3.2) is

CDq1
0,te1(t) = −p1e1 + p1e2 − p1(f (xs) − f (xm)) + ke1,

CDq2
0,te2(t) = e1 − e2 + e3

and CDq3
0,te3(t) = −p2e2,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.3)

where the error variables e1 = xs − xm, e2 = ys − ym, e3 = zs − zm. Denoting Ei(s) = L {ei(t)},
i = 1, 2, 3, and applying the Laplace transform to both sides of (3.3), one obtains

sq1 E1(s) − sq1−1e1(0) = −p1E1(s) + p1L (f (xs) − f (xm)) + kE1(s),

sq2 E2(s) − sq2−1e2(0) = E1(s) − E2(s) + E3(s)

and sq3 E3(s) − sq3−1e3(0) = −p2E2(s).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.4)

With the assumption |E3(s)| ≤ N ∈ R+ and applying the final-value theorem of the Laplace
transform [70], one obtains

lim
t→∞

ei(t) = lim
s→0

sEi(s) = 0, i = 1, 2, 3, (3.5)

which implies that CS between systems (3.1) and (3.2) is realized. If q1 = q2 = q3 = 1, system (3.1)
is the usual Chua system. When the intrinsic parameters are chosen as p1 = 10, p2 = 14.87,
a = −1.27, b = −0.68, the usual Chua system has a strange attractor. Similarly, with the same
intrinsic parameter values and the order parameters chosen as q1 = 0.92, q2 = 0.92, q3 = 0.98,

 on April 2, 2013rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


8

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120155

......................................................

0 1 2 3 4 5 6 7 8 9 10
–10

–8

–6

–4

–2

0

2

4

6

t

e 1(
e 2,

 e
3)

 

Figure 2. The evolution diagram of the synchronization errors between (3.1) and (3.2), which shows that the fractional Chua
circuits (3.1) and (3.2) are asymptotically synchronized. Solid line shows e1(t) = xs − xm; dashed line shows e2(t) = ys − ym;
anddotted line shows e3(t) = zs − zm. Here,p1 = 10,p2 = 14.87,a= −1.27,b= −0.68,q1 = 0.92,q2 = 0.92,q3 = 0.98,
k = 16 [65].

a chaotic attractor is produced in the uncoupled fractional Chua circuit (3.1) (figure 1). With these
chosen parameters and k = 16, the numerical simulation of CS between systems (3.1) and (3.2) is
illustrated in figure 2.

From figure 2, one can see that the fractional Chua circuit (3.1) and its slave system (3.2) with
one-way coupling can also reach CS with the same parameter values as the integer-order forms
of (3.1) and (3.2) by choosing a suitable coupling parameter k.

Remark 3.2. It follows from the above example that the fractional orders chosen are close to 1 in
the numerical simulations. In our opinion, according to the conclusion limα→1− CDα

0,tx(t) = x(1)(t),
the fractional system can produce a chaotic attractor similar to its integer-order counterpart with
the same parameters.

In the following, this issue is further discussed. For a fractional differential system with a
derivative order α lying in (0, 1), the smaller the α is taken, the less likely this fractional differential
system is to display chaotic behaviour. The reason is possibly that, as α gets smaller and smaller,
the stable region becomes larger and larger. For simplicity, take the chaotic fractional Chua
circuit [65] as an example. When q1 = q2 = q3 = 0.95, other parameters are the same as those in
example 3.1. Figure 3 shows the phase portrait. It can be seen that system (3.1) is stable. Then,
with q1 = q2 = q3 = 0.96, the system generates a limit cycle, as shown in figure 4. As q1 = q2 = q3
becomes bigger, chaos appears (figure 5) where q1 = q2 = q3 = 0.965. When q1 = q2 = q3 = 0.97 and
0.99, chaotic attractors are found again, and the phase portraits are shown in figures 6 and 7,
respectively. With the increase of q1 = q2 = q3, the chaotic attractors are more and more similar to
those of the ordinary Chua system. Moreover, q1 = q2 = q3 = 0.96 is the critical value of transition
from stable equilibrium dynamics over self-sustained oscillations to chaos in the fractional
Chua system (3.1), which is also demonstrated by a one-dimensional bifurcation diagram
in figure 8.

Remark 3.3. From example 3.1, the stability analysis of CS between (3.1) and (3.2) discusses
the stability of the zero solution of the error dynamic system of systems (3.1) and (3.2). Here,
the Laplace transform is used. By fixing the parameter values as those in example 3.1 and
approximately computing them from the predictor–corrector approach [71], one can find that the
set of initial conditions leading to synchronization between systems (3.1) and (3.2) is not arbitrary.
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Given the drive initial conditions (xm(0), ym(0), zm(0)) = (0.1, −0.2, 0.1), the set of response initial
conditions leading to synchronization between systems (3.1) and (3.2) lies in

W = {(xs(0), ys(0), zs(0)) | xs(0) ≥ 1.6 or xs(0) ≤ −1.3; ys(0) ≥ 0.4

or ys(0) ≤ −0.8; zs(0) ≥ 1.6 or zs(0) ≤ −1.4},
which can be approximately located by numerical calculation.

In the study by Zhu et al. [72], the Laplace transform method was also applied to investigating
CS of the following fractional Chua systems with the coupled matrix (k1, k2, k3), where the drive
system is given by

CDq1
0,txm(t) = p1(ym − xm − f (xm)),

CDq2
0,tym(t) = xm − ym + zm

and CDq3
0,tzm(t) = −p2ym − p3zm,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.6)
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and the response system by

CDq1
0,txs(t) = p1(ys − xs − f (xs)) − k1(xs − xm),

CDq2
0,tys(t) = xs − ys + zs − k2(ys − ym)

and CDq3
0,tzs(t) = −p2ys − p3zs − k3(zs − zm),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.7)

in which f (x) is the same as that in example 3.1. Taking p1 = 10.725, p2 = 10.593, p3 = 0.268, a =
−1.1726, b = −0.7872, q1 = 0.93, q2 = 0.99, q3 = 0.92, the fractional Chua system (3.6) also has a
chaotic attractor. And, for systems (3.6) and (3.7), the synchronization thresholds were determined
by using bifurcation graphs. Set the coupled matrix (k1, k2, k3) to be (k, 0, 0). Then, the transition
diagrams can be obtained as shown in figure 9.
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From figure 9, it can be seen that the coupled system (3.6) and (3.7) with the coupled matrix
(k, 0, 0) is synchronized when the parameter k is greater than 4. Similarly, set the coupled matrix
(k1, k2, k3) to be (k, k, 0) and (k, k, 0) in system (3.7), respectively. Then, the synchronization can be
realized when the parameter k is greater than approximately 1.0 and 0.5, respectively. Thus, it can
be seen that the synchronization rate of the coupled matrix (k, k, k) is the fastest one [72].

Example 3.4. Consider a PC drive–response configuration with the drive system given by the
fractional Lü system (with three state variables denoted by the subscript m) and the response
system given by its subsystem containing the (x, z) variables [17].

The drive system is described by

CDq1
0,txm(t) = a(ym − xm),

CDq2
0,tym(t) = −xmzm + cym

and CDq3
0,tzm(t) = xmym − bzm,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.8)
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and the response system by

CDq1
0,txs(t) = a(ym − xs)

and CDq3
0,tzs(t) = xsym − bzs,

⎫⎬
⎭ (3.9)

where 0 < q1, q2, q3 ≤ 1, the response subsystem’s variables are denoted by subscript s, and the
chaotic signal ym is used to drive the response subsystem.

Subtracting system (3.9) from system (3.8) leads to the following error dynamical system:

CDq1
0,te1(t) = −ae1

and CDq3
0,te3(t) = yme1 − be3,

⎫⎬
⎭ (3.10)

where e1 = xs − xm and e3 = zs − zm. Then, applying the Laplace transform to (3.10) as in
example 3.1, one can achieve CS of systems (3.8) and (3.9) in the y-drive configuration. This result
is illustrated by Deng & Li [17], with (a, b, c) = (36, 3, 20) and q1 = 0.985, q2 = 0.99, q3 = 0.98.
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When a = 36, b = 3, c = 20, the usual Lü system, i.e. q1 = q2 = q3 = 1, has a chaotic attractor. Its
counterpart also behaves chaotically. Systems (3.8) and (3.9) can be asymptotically synchronized
through a PC drive–response configuration. The diagram of the synchronization errors is
provided in Deng & Li [17].

Remark 3.5. The analysis method in example 3.4 is almost the same as that in example 3.1.

Example 3.6. Consider applying the Laplace transform method to the fractional Chua
circuit [65] via the active–passive decomposition (APD) configuration (see appendix C),

CDq1
0,tx(t) = p1(y − x − s(t)),

CDq2
0,ty(t) = x − y + z

and CDq3
0,tz(t) = −p2y,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.11)

driven by signal s(t) = f (x) = bx + 1
2 (a − b)(|x + 1| − |x − 1|) with a < b < 0, where qi (i = 1, 2, 3) are

positive constants in (0, 1].

By the final-value theorem of the Laplace transform, CS between the response system and its
replica is implemented. When the coupling configuration is changed to the APD one, the coupled
fractional Chua systems can be asymptotically synchronized with the parameter values p1 = 10,
p2 = 14.87, a = −1.27, b = −0.68, q1 = 0.92, q2 = 0.92, q3 = 0.98.

It is worth noting that the PC scheme for synchronization is a special case of the more general
APD method. The freedom to choose the driving signal makes the APD scheme flexible in
applications. For this reason, the APD scheme is usually combined with the simple one-way
method to study CS by using the Laplace transform [20,67,68].

Example 3.7. Consider applying the Laplace transform method to studying synchronization
of the fractional Duffing systems by using a combination of the APD method and the one-way
coupling method [68]. The drive system is

CDq1
0,txm(t) = ym

and CDq2
0,tym(t) = − 1

25 ym + 1
5 xm − 8

15 s(t) + 2
5 cos(0.2t),

⎫⎬
⎭ (3.12)

and the response system is

CDq1
0,txs(t) = ys + u(xs − xm)

and CDq2
0,tys(t) = − 1

25 ys + 1
5 xs − 8

15 s(t) + 2
5 cos(0.2t),

⎫⎬
⎭ (3.13)

where 0 < q1, q2 ≤ 1, u is a control parameter, and s(t) = x3
m is regarded as the driving signal.

If u = 0, then this drive–response configuration corresponds to the APD method. If s(t) = x3
m in

the drive system and s(t) = x3
s in the response system, then it corresponds to the one-way coupling

method. Applying the Laplace transform to the corresponding final-value theorem, the CS state
can be realized as long as u �= −5. By comparing the diagrams of the synchronization errors, it is
found that this synchronization method is more effective for the Duffing system, since reaching
synchronization takes longer than using only the APD scheme [68].

Apart from the aforementioned unidirectional coupling configuration, there is a more effective
bidirectional coupling method (see appendix D) for CS of fractional chaotic systems. By applying
the bidirectional coupling scheme to a pair of coupled fractional Rössler systems [68],

CDq1
0,txm = −ym − zm + c1(xs − xm)

CDq2
0,tym = xm + aym + c2(ys − ym)

CDq3
0,tzm = 0.2 + zm(xm − 10) + c3(zs − zm)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

drive (3.14)
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Figure 10. Synchronization error evolution of the drive–response systems (3.14) and (3.15) with the bidirectional coupling
method, where the phase curves of synchronization errors show that the synchronized chaotic state is realized, where c1 = 0.8,
c2 = c3 = 0.6 and q1 = q2 = q3 = 0.9. Here, solid line shows e1(t) = xs − xm; dotted line shows e2(t) = ys − ym; and
dashed line shows e3(t) = zs − zm [68].

and

CDq1
0,txs = −ys − zs + c1(xm − xs)

CDq2
0,tys = xs + ays + c2(ym − ys)

CDq3
0,tzs = 0.2 + zs(xs − 10) + c3(zm − zs),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

response (3.15)

one has the following error dynamical system:

CDq1
0,te1 = −e2 − e3 − 2c1 · e1,

CDq2
0,te2 = e1 + ae2 − 2c2 · e2

and CDq3
0,te3 = zse1 + xme3 − 10e3 − 2c3 · e3,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.16)

where 0 < q1, q2, q3 ≤ 1, e1 = xs − xm, e2 = ys − ym and e3 = zs − zm. By using the Laplace transform
and the final-value theorem, CS between systems (3.14) and (3.15) can be achieved under some
prior assumptions. Select a = 0.4 and q1 = q2 = q3 = 0.9, so as to produce chaotic dynamics in the
uncoupled fractional Rössler system. With these parameters and c1 = 0.8, c2 = c3 = 0.6, all the
synchronization errors ei (i = 1, 2, 3) soon converge to zero. The synchronization error evolution
of the bidirectional coupling method is shown in figure 10.

(iii) Stability analysis

In this section, the stability theory of fractional systems is applied to studying CS of fractional
chaotic systems with various kinds of couplings. It is well known that the stability region of the
fractional case is greater than the stability region of the corresponding integer-order case if the
fractional order lies in (0, 1). Based on this fact, CS of fractional modified autonomous Van der
Pol–Duffing (MAVPD) circuits was studied by a one-way coupling scheme as follows [73].

The drive system is

dαx1

dtα
= −ν(x3

1 − μx1 − y1),
dαy1

dtα
= x1 − γ y1 − z1 and

dαz1

dtα
= βy1, (3.17)
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and the response system is

dαx2

dtα
= −ν(x3

2 − μx2 − y2) − k1(x2 − x1),

dαy2

dtα
= x2 − γ y2 − z2 − k2(y2 − y1)

and
dαz2

dtα
= βy2 − k3(z2 − z1).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.18)

When α = 1, the two coupled integer-order MAVPD systems can be asymptotically synchronized,
if the feedback control gains k1, k2 and k3 satisfy the following inequalities [74]:

k1 > 1
2 (2ν(μ − kx1,x2) + |ν + 1|), k2 > 1

2 (−2γ + |ν + 1| + |β − 1|) and k3 > 1
2 (|β − 1|), (3.19)

where kx1,x2 = x2
2 + x1x2 + x2

2 ≥ 0. Furthermore, for α ∈ (0, 1], CS of the coupled fractional MAVPD
systems (3.17) and (3.18) can be achieved if ki (i = 1, 2, 3) satisfy the conditions (3.19).
This can be verified (see fig. 6 in [73]) by selecting the parameter values β = 200, μ = 0.1,
ν = 100, γ = 1.6, α = 0.98 and the feedback control gains k1 = 280, k2 = 250, k3 = 100, which satisfy
the inequalities (3.19).

In addition, one can apply the stability theory to studying CS of fractional chaotic systems by
one-way coupling [75]. Especially, based on the stability theory of delayed fractional differential
systems, CS of delayed fractional chaotic systems by one-way coupling was investigated by Deng
et al. [76], who simulated CS of the coupled Duffing oscillators.

Next, the stability theory of fractional differential systems is employed to investigate CS of
fractional chaotic systems with the PC drive–response configuration. Consider the PC drive–
response configuration with the drive system given by the fractional Chen system (with
subscript m)

CDα1
0,txm = a(ym − xm),

CDα2
0,tym = (c − a)xm − xmzm + cym

and CDα3
0,tzm = xmym − bzm,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.20)

and the response system chosen as the subsystem of (x, z) [77]

CDα1
0,txs = a(ym − xs)

and CDα3
0,tzs = xsym − bzs.

⎫⎬
⎭ (3.21)

For the error dynamical system of systems (3.20) and (3.21), by applying the stability theorem
of multi-rational-order fractional differential systems [76], CS is achieved for the parameters
(a, b, c) = (35, 3, 28), (α1, α2, α3) = (0.9, 0.95, 0.95).

For the fractional Lorenz system, several PC drive–response configurations were studied with
the drive system given by the same order fractional Lorenz system and the response system given
by its subsystems containing one state variable and two state variables [78]. The stability theorem
of fractional differential systems was applied to discuss all possible drive–response subsystems,
which can divide the Lorenz system. With the drive system containing one state variable, only two
choices can induce CS, which agrees with the integer-order Lorenz system case. Yet, all possible
choices can induce the appearance of CS when the drive system contains two state variables
(table 1).

The APD scheme is usually combined with the one-way scheme to study CS of fractional
chaotic systems by using the stability theorem of fractional differential systems [77,78]. In
addition, the APD configuration combined with a linear or nonlinear controller is also commonly
used to study synchronization of fractional chaotic systems [19,79,80].

In addition, the bidirectional coupling method can be used to achieve CS of two
different fractional chaotic systems. From a system point of view, the bidirectional coupling
method for identical chaotic systems can be regarded as a special case. In the study by
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Table 1. The arguments of Jacobian eigenvalues of the fractional Lorenz system for different PC coupling configurations [78].

system drive response argument

Lorenz system (y, z) x π
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α = 0.993, b= 8
3 (x, z) y π

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ = 10, γ = 28 (x, y) z π
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wu & Lu [81], the bidirectional coupling scheme of two different fractional systems was
applied to two fractional networks with identical topological structures and different topological
structures.

Compared with the unidirectional coupling configuration, this bidirectional coupling method
is more effective in completely synchronizing the dynamical variables of coupled fractional
chaotic systems because of the additional dissipation introduced. However, their synchronization
manifold no longer follows the state variables of the uncoupled fractional chaotic systems.

Remark 3.8. Chaos synchronization of coupled systems has potential applications in secure
communication. Hence, various kinds of techniques have been developed with the aim of
hiding information in chaotic attractors. Compared with the classical chaotic systems, the chaotic
fractional different systems possibly provide more efficient secure communication since the
derivative order(s) can be regarded as parameter(s) in addition to the intrinsic parameter(s). Apart
from the above popular coupling schemes, there are several unidirectional coupling methods for
constructing drive–response configurations, such as the linear control method [82,83] and the
nonlinear control method [73,81,83–86]. In fact, the procedure for analysing CS of two identical
(different) fractional chaotic systems is the same as that which uses linear or nonlinear controllers.

(b) Projective synchronization
In the study by Mainieri & Rehacek [53], a new phenomenon was observed in coupled partially
linear chaotic systems, called PS. PS is a dynamical behaviour in which the responses of two
identical systems synchronize up to a constant scaling factor. This PS phenomenon was then
studied widely in coupled integer-order chaotic systems. For fractional chaotic systems, PS was
achieved to synchronize up to a scaling factor, i.e. the two variable vectors become proportional
to each other [87].

As an example, consider PS of coupled fractional Chen systems [87], which is partially linear
with u = (x, y) and

M(z) =
(

−a a
c − a − z c

)
.

Specifically, the coupled fractional partially linear chaotic systems are

RLDα
0,txm = a(ym − xm),

RLDα
0,tym = (c − a)xm − xmz + cym,

RLDα
0,tz = xmym − bz,

RLDα
0,txs = a(ys − xs)

and RLDα
0,tys = (c − a)xs − xsz + cys.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.22)

Taking the fractional order α = 0.9 and selecting the parameters (a, b, c) = (35, 3, 28), the fractional
Chen system is chaotic. Numerical results for PS of the coupled fractional Chen systems are shown
in figure 11 [87], where the projections of the master and the slave system onto the x–y plane are
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Figure 11. The projection diagramof the drive and response systems (3.22), which outlines the projections of themaster system
(thick line) and slave system (thin line with dots) onto the x–y plane. The structure of the two attractors indicates the PS of the
coupled fractional Chen systems. Here,α = 0.9 and (a, b, c) = (35, 3, 28) [87].

provided. It follows from figure 8 that the two attractors corresponding to the master and slave
systems are the same in structure except for size, which demonstrates that the coupled fractional
Chen systems realize PS.

PS was further extended to general nonlinear systems by using a controller to the response
system. In the study by Shao et al. [88], based on the stability theory of fractional systems, PS of
coupled fractional chaotic Rössler systems was investigated. Also, PS of a new fractional chaotic
system was investigated by Wu & Wang [89] through designing a suitable nonlinear controller,
based on the stability of the fractional systems.

Finally, it is worth noting that a linear separation method was proposed by Wang & He [90] to
achieve PS of coupled fractional unified systems according to the proportionality of the PS states.
This linear separation method deals with a fractional chaotic system of the form

CDq
0,tx(t) = f (x(t)), (3.23)

where x = (x1, x2, . . . , xn)T ∈ Rn, f : Rn → Rn is a continuous vector function, 0 < q ≤ 1. Assume that
the function f (x(t)) can be decomposed as f (x(t)) = Âx(t) + ĥ(x(t)), where Âx(t) is the linear part
and ĥ(x(t)) is the nonlinear part of f (x(t)). Then, Âx(t) is suitably decomposed as Âx(t) = Ax(t) +
Āx(t), where A is a full-rank constant matrix and all of its eigenvalues have negative real parts.
Let h(x(t)) = Āx(t) + ĥ(x(t)). Then, system (3.23) can be rewritten as

CDq
0,tx(t) = Ax(t) + h(x(t)). (3.24)

Now, construct a new system as follows:

CDq
0,ty(t) = Ay(t) + h(x(t))

α
, (3.25)

where y(t) ∈ Rn is the state vector of system (3.25), and α is a desired scaling factor. Then, the error
dynamical system between systems (3.23) and (3.25) is obtained as

CDq
0,te(t) = Ae(t), (3.26)

where e(t) = x(t) − αy(t). It was shown [90] that the state vectors x(t) and y(t) of the fractional
systems (3.24) and (3.25) will reach PS, since all eigenvalues of the matrix A have negative
real parts.
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(c) Hybrid projective synchronization
Recently, the concept of PS has been generalized to HPS [54]. Similarly, this type of
synchronization was studied by Chang & Chen [91], through considering two general coupled
fractional chaotic systems,

CDq
0,tx(t) = f (x) (drive system) (3.27)

and
CDq

0,ty(t) = g(y) + U(x, y) (response system), (3.28)

where x ∈ Rn, f , g : Rn → Rn are continuous vector functions, y ∈ Rn, and U : Rn × Rn → Rn is a
controller. Then, HPS means that there exists a constant matrix H = diag(h1, h2, . . . , hn) ∈ Rn×n

such that limt→∞ ‖x − Hy‖ = 0.

Remark 3.9. In fact, HPS means that different state variables can synchronize up to some
different scaling factors, where the scaling factors can be arbitrarily designed for different state
variables by designing a suitable controller. Clearly, in secure communications, this feature could
be used to enhance security.

Meanwhile, based on the stability of fractional differential systems, HPS of commensurate
and incommensurate fractional Chen–Lee chaotic systems was studied by Chang & Chen [91],
by designing a nonlinear controller. Using a specific state variable and its time derivatives, a
new HPS scheme was also presented and applied to three-dimensional fractional unified chaotic
systems by Chang & Chen [91].

The HPS idea was also extended to the fractional chaotic systems in different dimensions by
Wang et al. [92] by considering the m-dimensional system (3.27) and the n-dimensional system
(3.28), i.e. x ∈ Rm, f : Rm → Rm is a continuous vector function, y ∈ Rn, g : Rn → Rn is a continuous
vector function and U : Rm × Rn → Rn is a controller. Decompose the fractional drive–response
systems (3.27) and (3.28) as

CDq
0,tx(t) = Ax + F(x) (3.29)

and
CDq

0,ty(t) = By + G(y) + U(x, y), (3.30)

where A ∈ Rm×m, B ∈ Rn×n are the linear parts, and F : Rm → Rm and G : Rn → Rn are the nonlinear
parts. Then, HPS means that there exists a real matrix C ∈ Rn×m such that limt→∞ ‖y − Cx‖ = 0.
Based on the stability theory of fractional linear systems, the effectiveness of the above proposed
scheme for HPS between systems (3.27) and (3.28) was shown by Wang et al. [92], including
two cases: reduced-order synchronization with m > n and increased-order synchronization
with m < n.

(d) Function projective synchronization
Among all kinds of chaos synchronizations, PS has been most extensively studied in recent
years because it can obtain faster communication speeds with its proportional feature. Apart
from HPS, PS has also been extended to a more general synchronization setting, i.e. FPS. FPS
means that the drive and response systems can be synchronized up to a scaling function, not just
a constant. Clearly, the unpredictability of the scaling function in FPS can further enhance the
security of communication.

In the study by Zhou & Zhu [93], a detailed account of FPS of fractional chaotic systems was
considered. More generally, in Zhou & Cao [94], FPS between fractional chaotic systems and
integer-order chaotic systems was discussed, based on the stability theory of linear fractional
systems. Moreover, this FPS scheme was applied to synchronizing the integer-order Lorenz
chaotic system and the fractional Chen chaotic system.

Remark 3.10. From the generalized definitions of PS for fractional chaotic systems, it is obvious
that FPS covers all the others. In other words, if K(x) = αI, α ∈ R, the FPS problem reduces to PS,
where I is the identity matrix with proper dimension. In particular, if α = 1, FPS reduces to CS.
Moreover, if K(x) = diag(α1, α2, . . . , αn), FPS becomes HPS.
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(e) Generalized synchronization
GS means that the states of two coupled systems satisfy a functional relation or asymptotically
satisfy a functional relation as time goes to infinity. GS has many potential applications in secure
communications, chemical reactions and modelling brain activity, etc.

The definition of GS was extrapolated from classical systems to fractional systems.

Theorem 3.11. GS is achieved in systems (2.10) with the Caputo derivative if and only if, for all
(x0, y0) ∈ B, the response system dqy/dtq = g(y, u) = g(y, h(x)) is asymptotically stable about zero, i.e.
∀y10, y20 ∈ By, limt→∞ ‖y(t, x0, y10 − y(t, x0, y20))‖ = 0, where f, g and h are continuous functions in
systems (2.10).

In the study by Deng [95], three methods for achieving GS of fractional systems were discussed
from the so-called auxiliary system approach [96], where theorem 3.11 above was specifically used
to realize GS.

From then on, several GS schemes for some special types of coupled fractional chaotic systems
were developed based on the stability theory of fractional systems. In the study by Zhou et al. [97],
the following fractional chaotic system was considered:

dqx1

dtq =
3∑

i=1

aixi,

dqx2

dtq =
3∑

i=1

bixi

and
dqx3

dtq = f3(x1, x2, x3),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.31)

where ai, bi (i = 1, 2, 3) are real numbers satisfying a3 �= 0, b3 �= 0 or a3 = 0, a2 �= 0, b3 �= 0 or b3 = 0,
b1 �= 0, a3 �= 0, 0 < q ≤ 1 is the fractional order, x = (x1, x2, x3)

T are state variables, and f3(x1, x2, x3)

is a nonlinear function. The following response system, which is different from system (3.31), was
used:

dqx′
1

dtq =
3∑

i=1

a′
ix

′
i,

dqx′
2

dtq =
3∑

i=1

b′
ix

′
i

and
dqx′

3
dtq = φ + g3(x′

1, x′
2, x′

3),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.32)

where a′
i, b′

i (i = 1, 2, 3) are real numbers satisfying a′
3 �= 0, b′

3 �= 0 or a′
3 = 0, a′

2 �= 0, b′
3 �= 0 or b′

3 = 0,
b′

1 �= 0, a′
3 �= 0, 0 < q ≤ 1 is the fractional order, and φ is a scalar controller. When the controller φ

satisfies some suitable conditions [97], GS between systems (3.31) and (3.32) can be realized.
Based on the stability theory of linear fractional differential systems, another GS method for

the fractional chaotic systems was presented by Zhang et al. [98], as follows.

Theorem 3.12. Let A, M, K ∈ Rn×n, where M is an invertible matrix. If every eigenvalue λ of the matrix
(MAM−1 + K) satisfies | arg(λ)| > απ/2, then the following coupled systems (3.33) and (3.34) can reach
GS via a linear transform y = Mx:

dαx
dtα

= Ax + ϕ(x) (3.33)

and
dαy
dtα

= MAM−1y + Mϕ(x) + Ky − KMx, (3.34)

where 0 < α ≤ 1.
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Remark 3.13. In theorem 3.12, the GS scheme is easy to understand, because it is constructed
by the linear transform y = Mx. In this case, the GS problem is converted to the stability problem
of a fractional system.

(f) Generalized projective synchronization
Recall that PS means that the drive and response state vectors synchronize up to a scaling factor.
Chen & Sun [99] studied PS for a general class of chaotic systems including non-partially linear
systems, which is known as GPS.

In the study by Peng & Jiang [100], GPS of fractional chaotic systems was introduced (see
definition 2.10). GPS may be achieved through properly adjusting the controller. Moreover, the
transmitted synchronizing signal used to drive the fractional response system can be in a scalar
form [100] or a nonlinear vector form [101]. Based on a partially linear decomposition and the
stability theory of integer-order systems, a GPS scheme for coupled fractional Rössler systems
was developed by Shao [102]. Especially, the Laplace transform method was applied to discussing
GPS of fractional Chen hyperchaotic systems by Wu & Lu [103], and GPS of time-delay fractional
chaotic systems was investigated by Zhou et al. [67] by using the stability theory of linear
fractional systems with time delays.

In the study by Zhou et al. [104], a GPS scheme was constructed, which has different scaling
factors, as follows: the fractional chaotic drive system is

dqx
dtq = Ax + F(x), (3.35)

for which the following fractional response system is constructed:

dqy
dtq = C−1[ACy + F(Cy) + (K − DF(x))(Cy − x)], (3.36)

where 0 < q ≤ 1, x, y ∈ Rm, DF(x) ∈ Rm×m is the Jacobian matrix of F(x); A ∈ Rm×m, C ∈ Rm×m is a
real invertible matrix, and K ∈ Rm×m is a real matrix to be determined. Moreover, based on the
stability theory of fractional differential systems, it was proved that there exists a matrix K such
that limt→∞ ‖Cy − x‖ = 0.

Remark 3.14. Taking into account uncertainties, robust synchronization of two perturbed
fractional Chen systems was studied by Asheghan et al. [105]. And anticipated synchronization
was also investigated by Zhou & Zhu [106].

Normally speaking, compared with other synchronizations, phase synchronization in classical
systems most approximately reflects the real world so attracts much more attention, although
there is no suitable analytical method available. For the fractional case, phase synchronization of
coupled fractional differential systems in memory processes is a challenging topic that needs far
more attention in future research.

4. Conclusions and comments
This paper presents an overview of chaos synchronization of coupled fractional differential
systems. A list of coupling schemes is presented, including one-way coupling, PC coupling,
APD coupling, bidirectional coupling and other unidirectional coupling configurations. Also,
several extended concepts of synchronization are introduced, namely, PS, HPS, FPS, GS and
GPS. Corresponding to different kinds of synchronization schemes, various analysis methods are
presented and discussed.

It should be mentioned that this review covers most contributions in the area. Although
great efforts have been made to prepare a comprehensive review, it is literally impossible to
be complete. Nevertheless, it is the authors’ hope that the present review can serve as a good
starting point for future advanced research work in studying chaos synchronization of fractional
differential systems. On the other hand, similar to the classical dynamics, some interesting but
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somewhat knotty problems have not been investigated in this review article, such as the attractive
basin of the fractional attractor, the transverse stability of the synchronized state, the so-called
weak stability in which any neighbourhood to the synchronized state is ‘riddled’ with a dense set
of initial conditions that produce divergence, the effect of a mismatch between the two oscillators
that cannot be compensated, etc. The new dynamical phenomena in coupled fractional systems,
together with the dynamical ones observed in the classical systems, should attract attention and
be further explored. This paper is just a review article where the existing studies are collected and
commented upon. The authors do hope such topics will stimulate future research interests.

The authors thank two anonymous reviewers for their careful reading and providing pertinent correction
suggestions, which have contributed to the present version. The present work was partially supported by the
National Natural Science Foundation of China under grant nos. 10872119 and 10832006, the Key Disciplines
of Shanghai Municipality under grant no. S30104, and the Hong Kong Research Grants Council under GRF
grant CityU1114/11.

Appendices
In general, CS can be roughly divided into two categories: unidirectional coupling (drive–
response coupling) configuration and bidirectional coupling configuration.

Appendix A. One-way coupling configuration
Consider two identical fractional chaotic systems: dαx/dtα = f (x) and dαy/dtα = f (y), where α =
(α1, . . . , αn)T (αi > 0, i = 1, 2, . . . , n), x = (x1, . . . , xn)T, y = (y1, . . . , yn)T with f : Rn → Rn defining a
vector field, dαx/dtα = (dα1 x1/dtα1 , dα2 x2/dtα2 , . . . , dαn xn/dtαn)T.

The one-way coupling technique employs a coupling term k(x − y) in the second equation,
which leads to a coupled system as follows [17]:

dαx
dtα

= f (x)

and
dαy
dtα

= f (y) + k(x − y),

⎫⎪⎪⎬
⎪⎪⎭ (A 1)

where the diagonal matrix k = diag(k1, . . . , kn) controls the strength of the feedback into the
coupling system, ki ≥ 0, i = 1, 2, . . . , n. This type of coupling does not change the solution to the
autonomous uncoupled system dαx/dtα = f (x), and CS is realized by designing the coupling
strength such that ‖x − y‖ → 0 as t → ∞.

Appendix B. Pecora–Carroll configuration
This scheme was proposed by Pecora & Carroll [25]. Consider an autonomous n-dimensional
chaotic dynamical system of fractional differential equations [17]

dqu
dtq = F(u), (B 1)

where q = (q1, q2, . . . , qn)T, u = (u1, u2, . . . , un)T, with F = (f1, f2, . . . , fn)T : Rn → Rn defining a vector
field. The PC scheme decomposes the fractional dynamical system (B 1) into two subsystems,

dαv

dtα
= g(v, w) (B 2)

and
dβw
dtβ

= h(v, w), (B 3)
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where u = (v, w)T, α = (α1, α2, . . . , αm)T, β = (βm+1, βm+2, . . . , βn)T, v = (v1, v2, . . . , vm)T,
w = (wm+1, wm+2, . . . , wn)T. The first subsystem (B 2) defines the drive system, whereas the second
one (B 3) represents the response system, whose evolution is guided by the drive trajectory
through the driving signal v.

Now, create a new subsystem w′ with the same chaotic driving signal v = (v1, v2, . . . , vm)T,
which is the replica of subsystem w, as follows:

dβw′

dtβ
= h(v, w′). (B 4)

In this situation, CS means that the trajectories of the response system w will converge to the
trajectories of the replica w′ and they will remain together with each other. That is, CS implies
w → w′ as t → ∞.

Appendix C. Active–passive decomposition configuration
The APD method for achieving identical chaotic synchronization systems was proposed by
Boccaletti et al. [55] and Kocarev & Parlitz [107] and is more general than the PC configuration.
The APD method starts from a chaotic autonomous system,

dqz
dtq = F(z), (C 1)

and rewrites it as a non-autonomous system,

dqx
dtq = f (x, s(t)), (C 2)

where q = (q1, q2, . . . , qn)T, f : Rn → Rn, and s(t) is the driving signal: s(t) = h(x) or dqs/dtq = h(x, s).
Let

dqy
dtq = f (y, s(t)) (C 3)

be a copy of the non-autonomous system that is driven by the same signal s(t). The CS error
dynamical state between the system (C 2) and system (C 3) will approach zero asymptotically as
t → ∞.

Appendix D. Bidirectional coupling configuration
In the study by Li et al. [68] and that by Li & Deng [65], a bidirectional coupling scheme was
introduced between two identical fractional chaotic systems. It amounts to introducing additional
dissipation in the dynamics,

dqX
dtq = f (X) + Ĉ · (Y − X)T

and
dqY
dtq = f (Y) + Ĉ · (X − Y)T,

⎫⎪⎪⎬
⎪⎪⎭ (D 1)

where q = (q1, q2, . . . , qn)T, X and Y represent the n-dimensional state vectors of the chaotic
systems, f is a vector field from Rn to Rn, and Ĉ is an n × n matrix whose elements rule the
dissipative coupling.
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