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Abstract – Many real-world complex systems are adequately represented by networks of
interacting or interdependent networks. Additionally, it is often reasonable to take into account
node weights such as surface area in climate networks, volume in brain networks, or economic
capacity in trade networks to reflect the varying size or importance of subsystems. Combining
both ideas, we derive a novel class of statistical measures for analysing the structure of networks
of interacting networks with heterogeneous node weights. Using a prototypical spatial network
model, we show that the newly introduced node-weighted interacting network measures provide
an improved representation of the underlying system’s properties as compared to their unweighted
analogues. We apply our method to study the complex network structure of cross-boundary trade
between European Union (EU) and non-EU countries finding that it provides relevant information
on trade balance and economic robustness.

editor’s  choice Copyright c© EPLA, 2013

Introduction. – Complex network theory has been
shown to be a powerful tool for analysing the structure
and function of many complex systems in nature, soci-
ety, and technology. Various kinds of measures have been
defined recently, mostly based on counting nodes, paths,
links or triangles in a network [1]. The field of application
is widespread, e.g., considering social [2], trade [3], biolog-
ical [4,5], communication [6] and climate networks [7–11].
When applying network theory to real-world networks, it
is often not sufficient to describe the underlying complex
system by an isolated network. Instead, a network of
interacting networks may provide an improved represen-
tation as was shown, e.g., in an analysis of the interde-
pendency between the Internet network and the Italian
power grid during a blackout in 2008 [12]. In general,
interdependent networks behave much differently from
isolated ones in terms of robustness to failure [13,14],
expected network properties [15,16] as well as synchroni-
sation behaviour [17]. In order to quantify the structure of

(a)E-mail: marcw@physik.hu-berlin.de
(b)E-mail: donges@pik-potsdam.de

interdependent networks, the recently introduced interact-
ing networks approach compromises a set of cross-network
measures in analogy to the canonical network measures
designed for isolated networks [10,18]. The method has
been applied successfully for analysing the dynamical
structure of the lower atmosphere by constructing coupled
climate networks from pairs of geopotential height fields
at different isobaric surfaces [10].
When applying network theory to real-world problems,

nodes need not all bear the same importance for the
network’s properties, but there may be nodes having
a strong impact on the network’s topology that is not
reflected by link properties alone. E.g., nodes can represent
vastly different surface area in climate networks [7,9–11],
volume in brain networks [4,5] or economic capacity
in trade networks [19,20]. Therefore standard network
measures treating all nodes the same may not represent
appropriately all structural properties of the underlying
complex system (in the following referred to as the domain
of interest) [21]. To take this into account, it is useful to
assign an individual weight to every node according to the
share of the whole domain of interest that is represented by
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Fig. 1: (Colour on-line) A set of three subnetworks Gi =
(Vi, Eii) (green), Gj = (Vj , Ejj) (blue) and Gk = (Vk, Ekk)
(orange) connected via both internal (solid lines) and cross-
(dashed lines) links. Each node v represents a share of the
domain of interest that is measured by the weight wv. The node
sets Vj and Vk share a common boundary in some generalised
space, while Vi remains separated.

that node. The concept of node-splitting invariance (n.s.i.)
yields a set of measures allowing for a precise estimation of
network characteristics when dealing with inhomogeneous
node weights [11].
The main aim of this work is to combine the frameworks

of n.s.i. and interacting network measures in order to
provide a general tool for investigating interaction struc-
ture within a network of networks with heterogeneous
node weights (fig. 1). Starting from the cross-network
measures [10], we introduce a general construction mecha-
nism to derive n.s.i. cross-network measures. Subsequently
we apply these measures to a global model network with a
structure prototypical of spatially embedded networks of
networks and validate the results for n.s.i. cross-degree kj∗v
and n.s.i. cross-clustering coefficient Cj∗v . To demonstrate
the potential of our approach, we carry out an analysis
of a trade network divided into two subnetworks, EU and
non-EU countries, where nodes represent individual coun-
tries weighted according to their Gross Domestic Product
(GDP) as a proxy of economic power.

Methods. – We consider a network G= (V,E) with
a given set of nodes V , links E and the number of
nodes N = |V |. As we identify every node v ∈ V with a
natural number p�N , the network G is represented by
its adjacency matrix A with Apq = 1 if {p, q} ∈E, Apq = 0
if {p, q} �∈E.
Let this network be divided into M � 2 subnetworks

Gi = (Vi, Eii), i= 1, 2, . . . ,M with subsets of nodes Vi,
such that V =

⋃
i Vi with Vi ∩Vj = ∅ for i �= j. The set

of links E then splits into two types of links. There
are sets of internal links Eii that connect nodes v ∈ Vi
within a subnetwork Gi and cross-links Eij that connect
nodes v ∈ Vi with nodes q ∈ Vj in the subnetworks Gi and
Gj , so that E =

⋃
i,j Eij (fig. 1). Notice that a network

might be divided into several subnetworks by splitting a
continuous domain of interest into smaller sub-domains,
e.g., when dividing a landmass into adjacent countries
forming subnetworks (Gi and Gj in fig. 1). However, it
might also occur that the two sub-domains are separated,

since they display different observables or layers, such as
a power grid with power plants as nodes and transmission
lines as links which show interdependency with a commu-
nication network, where servers are represented by nodes
and links indicate wires between computers (Gi is sepa-
rated from Gj and Gk in fig. 1) [12].
Assuming that every node v ∈ V represents a part of

a larger (maybe continuous [22]) domain of interest, we
assign to it a weight wv > 0 which represents its share
of the domain of interest. Therefore, when redefining
any unweighted network measure, nodes should no longer
be regarded as having a well-defined location, but their
possible locations are constrained by the boundary of
the represented area wv. This implies that hypothetically
splitting one node v ∈ Vi into two adjacent and similar
nodes v′ ∈ Vi and v

′′ ∈ Vi the former node weight wv should
split up into wv′ and wv′′ such that wv =wv′ +wv′′ . Since
we assume links in a network to represent similarity or
association between pairs of nodes, we treat v′ and v′′ as
being connected to all neighbours of the former node v and
to each other. Given that the sampling G already provides
a good approximation of the underlying complex system’s
structure, this node-splitting operation merely refines the
network representation and should not affect the network
measures much. Taking this into account yields a four-
step construction mechanism for transforming unweighted
network measures into their weighted counterparts as
suggested in [11]:

a) Sum up weights wv whenever the unweighted measure
counts nodes.

b) Treat every node v ∈ V as connected with itself.

c) Allow equality for v and q wherever the original
measure involves a sum over distinct nodes v and q.

d) “Plug in” n.s.i. versions of measures wherever they
are used in the definition of other measures.

b) and c) are derived from the fact that when splitting
one node into two similar ones, the new nodes will be
connected because of their similarity, d) can be seen as
an inductive step when applying a)–c) to an unweighted
network measure. Treating every node as connected with
itself, we additionally introduce the extended adjacency
matrix A+pq =Apq + δpq, where δpq is Kronecker’s delta.

N.s.i. cross-network measures. – Here, we derive
two informative measures for analysing networks of
networks with heterogeneous node weights: i) n.s.i. cross-
degree and ii) local n.s.i. cross-clustering coefficient.
Furthermetrics can be easily derived analogously (see [11]).

N.s.i. cross-degree. The unweighted cross-degree [10]
kjv =

∑
q∈Vj
Avq measures the number of nodes q ∈ Vj that

are connected to a node v ∈ Vi (typically i �= j). Here we
use mechanisms a) and b) to construct the n.s.i. cross-
degree as

kj∗v =
∑

q∈Vj

wqA
+
vq. (1)

28007-p2
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The n.s.i. cross-degree no longer just counts the number
of nodes that v is connected to. It rather measures the
share of the whole sub-domain of interest given by the
subnetwork Gj that the node v ∈ Vi is connected to. While
the standard cross-degree can only take integer values in
the range of 0, ..., N − 1, the n.s.i. cross-degree kj∗v can
assume real numbers in the range of 0� kj∗v �Wj , where
Wj =

∑
q∈Vj
wv is the total weight of all nodes q in Vj , e.g.,

the area on the whole sub-domain of interest represented
by the network Gj (fig. 1).

N.s.i. local cross-clustering coefficient. The un-
weighted local cross-clustering coefficient Cjv =

1
k
j
v(k

j
v−1)

∑
p,q∈Vj

AvpApqAqv quantifies the probability

that two randomly drawn neighbours p, q ∈ Vj of v ∈ Vi
are also linked [10]. Illustrating the construction mech-
anism, we convert the local cross-clustering coefficient into
an n.s.i. cross-measure step by step:

Cjv
(a)
→

1

kjv(k
j
v − 1)

∑

p�=q∈Vj

AvpwpApqwqAqv

(b)
→

1

kjv(k
j
v − 1)

∑

p�=q∈Vj

A+vpwpA
+
pqwqA

+
qv

(c)
→

1

(kjv)2

∑

p,q∈Vj

A+vpwpA
+
pqwqA

+
qv

(d)
→

1

(kj∗v )2

∑

p,q∈Vj

A+vpwpA
+
pqwqA

+
qv =C

j∗
v ∈ [0, 1]. (2)

This only works if kj∗v > 0. Otherwise one may consider
Cj∗v as undefined or set C

j∗
v = 0. The n.s.i. local cross-

clustering coefficient gives the probability that two
randomly chosen points on the continuous domain of
interest of the subnetwork Gj which are neighbours of a
point in the area represented by the node v ∈ Vi are also
neighbours.

Application 1: spatial network model. – Assume
a global model network G= (V,E) consisting of two
subnetworks G1 = (V1, E11) and G2 = (V2, E22) represent-
ing layers parallel to the Earth’s surface with a distance
d≪R, where R is the Earth’s mean radius, as a typi-
cal representative of coupled climate networks [10] and
other spatial networks [23] (fig. 2). The node distribution
in each layer is chosen to be identical and nodes are distrib-
uted globally with angular distance of 2.5◦ in latitude and
5.0◦ in longitude yielding a total number of N = 10658
nodes. Links between nodes are considered to display a
certain degree of similarity meaning that geographically
close nodes are more likely to be linked than those at a
larger distance. However, a small number of long-distance
links such as teleconnections in climate networks [7] or
intercontinental flights in airline networks [23] may also
be present. Therefore, in our model, links between all
pairs of nodes v and q are introduced with a probability
P (svq)∝ exp (−svq/λ), where svq is the geodesic distance
between v and q. The typical length scale λ= 1000 km

N

Fig. 2: (Colour on-line) Model of a spatial network G= (V,E)
consisting of two subnetworks G1 = (V1, E11) (filled circles)
and G2 = (V2, E22) (open circles) representing layers parallel
to the Earth’s surface and links between nodes put randomly
according to the distance between them. Only cross-links (red
solid lines) emerging from two nodes in the upper layer are
shown.

was chosen to yield a link density of ρ≈ 0.05. Regions
close to the poles are expected to display larger local link
density due to the increased node density in these areas
(fig. 2). The given setting provides an idealisation of typi-
cal spatially embedded networks [23], where the nodes are
located on a geographical grid having not necessarily a
homogeneous node density. In this case, nodes v at differ-
ent latitudes θv represent a different share of the Earth’s
surface. We assign an individual weight wv = cos(θv) to
every node v so that nodes close to the poles have less
weight than nodes near the equator. This choice of weight
approximates the area actually represented by a node in
an angularly regular spherical grid [7,11].
In analogy to studies showing that the geometrical

structure of a spatially embedded network strongly influ-
ences the distribution of network measures [24], we expect
that local network properties, which are mainly based
on counting adjacent nodes, should show remarkably
increased values in regions with high node density. We
compute zonal averages for the standard cross-degree
k2v(θ) and the n.s.i. cross-degree k

2∗
v (θ) for all nodes at

latitude θ (only the results forG1 are shown due to symme-
try). The values of k2v(θ) rapidly increase towards the poles
(fig. 3(A)), while due to the inhomogeneous node density,
values are low at the equator. In comparison, k2∗v (θ) which
measures the area on the surface of G2 that is connected
to v exhibits a constant value even close to the poles
(fig. 3(A)). Here, the increased node density in this area
compensates with the comparatively small node weight.
Since we have considered a homogeneous network with
no nodes having any outstanding properties, but pairs
of nodes being randomly connected according to their
distance, k2∗v (θ) represents the network’s topology much
better than k2v(θ).

28007-p3
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Fig. 3: (Colour on-line) Zonal averages of local standard cross-
network measures and the corresponding n.s.i. cross-network
measures for a spatial network model. (A) N.s.i. cross-degree
k2∗v (θ) and (B) n.s.i. local cross-clustering coefficient C

2∗
v (θ)

provide an improved representation of the underling model
system’s properties when approaching the poles (θ→±90◦).
Symbols represent means, error bars standard deviations based
on an ensemble of 100 realisations of the network model.

The standard local cross-clustering coefficient C2v (θ)
also increases rapidly towards the poles (fig. 3(B)). Due
to the increasing node and local link density at the
poles nodes in this area have far more neighbours which
themselves also tend to be neighbours. This property
yields an increased probability to form an cluster and
hence higher values of C2v (θ). C

2∗
v (θ) is more robust to this

effect showing an almost constant distribution over the
whole globe. However, C2v (θ) and C

2∗
v (θ) do not converge

in the equatorial region. This disparity can be dealt with
by adjusting the measures with a typical weight ω [11] if
the values of the n.s.i. version and the unweighted version
need to be compared directly for some reason.

Application 2: international trade network. –

Relationships between actors in world trade have recently
been intensively studied [19,20,25] and provide a partic-
ularly interesting example of a complex spatial network
of interacting networks. Among other applications, link-
weighted trade networks have been used to study patterns
of dominant trade flow [26], the spread of economic

Fig. 4: (Colour on-line) A trade network consisting of 142
countries that divides into two subnetworks, one representing
the 27 members of the EU (blue) and one representing all non-
EU countries (orange). The node size is proportional to the
node weight wv: the countries’ GDP in 2008.

crises [27], economic scaling properties [28], or community
structure [29]. The following analysis illustrates the poten-
tial for applications of interacting network measures point-
ing out the importance of taking into account properly
chosen node weights wv. In contrast to the above applica-
tion, where node weights reflected the surface area repre-
sented by nodes, here we are interested in node weights
indicating the national economic power that is involved in
trade relationships.
In particular, we perform an analysis of the trading

structure across the border of the common market of the
European Union (EU) by studying a network of networks
consisting of two subnetworks: G1 representing all 27 EU
countries and G2 containing 115 non-EU countries (fig. 4).
Nodes v represent countries and links indicate a signifi-
cant amount of trade between countries (as in [3]). Specif-
ically, a link is created if the total value of the mutual
reported trade in 2009 between two countries according
to the United Nations Commodity Trade Statistics Data-
base (COMTRADE, http://comtrade.un.org) accounts
for at least 5% of the total trade of any of the two coun-
tries. Visualising this trade network indicates that defin-
ing EU and non-EU countries as two subnetworks is justi-
fied from the data by the fact that the nodes representing
EU countries tend to form a tight cluster [10,29] (fig. 4).
Additionally, we assign a weight wv to every node accord-
ing to the 2008 Gross Domestic Product (GDP in USD).
The GDP data is provided by the International Mone-
tary Fund (IMF, http://www.imf.org). By doing so we
do not only consider the total number of countries partici-
pating in trading but also the strength of different national
economies.
We compute the n.s.i. cross-degree k2∗v as well as the

n.s.i. cross-clustering coefficient C2∗v for v ∈ V1 and vice
versa (fig. 5). The dashed line indicates the expected
values if wv would not correct the examined network
measure at all. For the cross-degree as well as the local

28007-p4
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Fig. 5: (Colour on-line) Scatter plots of (A) normalised
n.s.i. cross-degree kj∗v /Wj and (B) n.s.i. local cross-clustering
coefficient Cj∗v with their unweighted counterparts for the
network of significant trade relations in 2009. Cj∗v is shown
for all nodes with kjv > 1. The symbol size is proportional to
the node weight wv: the countries’ GDP in 2008. For reference,
dashed lines indicate the equality of normalised weighted and
unweighted measures.

cross-clustering coefficient, we observe no linear depen-
dency between the weighted and the unweighted network
measures. However, for almost every node the values of
n.s.i. cross-network measures are significantly larger than
their unweighted analogues. This observation indicates
that the unweighted measures underestimate the corre-
sponding properties of the underlying trade structure (the
domain of interest).
The cross-degree kjv counts the number of significant

trading partners of a country v across the border of
the common market. In contrast, kj∗v takes into account
each country’s GDP, meaning its value displays the total
economic strength that v is trading with (fig. 5(A)).
This way we identify the two countries with the highest
deviation from the equality kj∗v /Wj = k

j
v/Nj as Great

Britain (GBR) for the EU countries and Brazil (BRA) for

the non-EU countries. For both countries, kj∗v /Wj is much
larger than kjv/Nj , implying that both have comparatively
few trading partners across the border of the EU common
market, but the GDP of those partners sums up to a large
economic strength that BRA and GBR are trading with.
This can indicate both, an either positive or negative trade
balance, of the country with its partners across the EU
boundary. BRA exports comparatively many goods to the
EU countries with strong economies, whereas GBR mainly
imports goods from strong economies across the boundary
of the common market. In order to obtain a broad insight
into the trading behaviour of a country it is therefore
necessary to evaluate both versions of cross-degree as they
may be interpreted as different properties.
The local cross-clustering coefficient Cjv gives the proba-

bility for a country v ∈ Vi to form a triangle with countries
p, q ∈ Vj . In terms of trading this implies that a considered
economy v ∈ Vi has, besides trading directly with an econ-
omy q ∈ Vj , a probability of C

j
v for trading with q ∈ Vj

via p∈ Vj , where p might serve as a middleman. Again
Cjv only counts the total number of nodes, e.g., triangles,
that a node v ∈ Vi is connected to, whereas C

j∗
v corrects

the estimation by taking the total GDP of each country
into account. We obtain further corrections away from
linear dependency with the majority of countries show-
ing a n.s.i. local cross-clustering coefficient of Cj∗v > 0.9
(fig. 5(B)). This result can be understood by the fact that
the value of Cj∗v is dominated by nodes with large node
weights (eq. (2)). Furthermore, in terms of trading it is
plausible that a country with a large GDP, i.e., high wv,
tends to trade with a lot of other countries around the
globe. Therefore, the probability to form a cluster includ-
ing at least one country of strong GDP is comparatively
high, but only those clusters significantly affect Cj∗v . Clus-
ters including two partners p, q ∈ Vj with small wp and wq
do not significantly contribute to the value of Cj∗v as both
weights are multiplied under the sum (eq. (2)). Further-
more, as we treat a link not only as a single trade rela-
tion between countries but rather as an approximation
of a bundle of links connecting distinct actors in trad-
ing within the countries, it is clear that the properties of
the whole bundle are hardly affected by the failure of a
single trade connection. Since Cj∗v mirrors this property,
we again consider Cj∗v an improved representation of the
underlying trade system’s properties as compared to Cjv .
We conclude that the EU–non-EU cross-boundary trade
network can be considered as being robust against the
failure of links in the network as all nodes tend to cluster
strongly with their neighbours. Again, the analysis can be
refined by introducing a typical weight in the definition of
Cj∗v [11].

Conclusion. – In this work, we have used a general
method for transforming standard network measures into
their weighted counterparts in order to develop node-
splitting–invariant cross-network measures. The latter
provide an efficient and universal tool for analysing the
interaction structure between subnetworks in a network

28007-p5
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of networks with inhomogeneous node weights rendering
those measures more appropriate to study real-world
problems.
We have proceeded in three steps: i) We have carried

out the derivations for two local cross-network measures,
n.s.i. cross-degree and n.s.i. local cross-clustering coef-
ficient. It is important to emphasise that all network
measures (local and global) can be transformed into their
node-weighted correspondents as well [10,11]. ii) Consider-
ing a prototypical spatial model network consisting of two
interdependent subnetworks embedded on surfaces paral-
lel to the Earth’s surface, we have validated the behaviour
of our two measures of choice. Both n.s.i. cross-degree as
well as n.s.i. local cross-clustering coefficient have been
shown to provide an improved representation of the model
system’s underlying network topology as compared to
their unweighted analogues. iii) In order to illustrate the
variety of possible applications of our approach, we have
carried out an analysis of the complex network structure
of EU–non-EU cross-boundary trade. It was shown that
the node-weighted cross-degree yields additional insights
into the trade relations as it identifies countries showing
strong economic dependences on overseas trade such as
Great Britain as well as countries driving the economy of
the EU by exporting to countries with a strong economy
such as Brazil. In addition, we suggest that the n.s.i. local
cross-clustering coefficient has the potential to indicate the
robustness of the trade network (cf. [13]), e.g., with respect
to the breaking of single trade relationships between actors
in different countries.
Both applications point out that the n.s.i. cross-network

measures provide a general tool for analysing networks
of networks with heterogeneously distributed node
importance, size or weight that appear in research fields
as diverse as climatology, neuroscience, engineering or
economics. These network measures enable us to provide
an improved understanding of the underlying complex
system as long as weights are chosen appropriately
to reflect the share of the domain of interest that is
represented by the nodes.
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[23] Barthélemy M., Phys. Rep., 499 (2011) 1.
[24] Rheinwalt A., Marwan N., Kurths J., Werner P.

and Gerstengarbe F.-W., EPL, 100 (2012) 28002.
[25] Goswami B., Ambika G., Marwan N. and Kurths J.,

Physica A, 391 (2012) 4364.
[26] Serrano M., Boguna M. and Vespignani A., J. Econ.

Interact. Coord., 2 (2007) 111.
[27] Garas A., Argyrakis P., Rozenblat C., Tomassini

M. and Havlin S., New. J. Phys., 12 (2010) 113043.
[28] Bhattacharya K., Mukherjee G., Saramäki J.,
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