Pinning noise-induced stochastic resonance
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This paper proposes the concept of pinning noise and then investigates the phenomenon of stochastic reso-
nance (SR) of coupled complex systems driven by pinning noise, where the noise has an a-stable distribution.
Two kinds of pinning noise are taken into account: partial noise and switching noise. In particular, we estab-
lish a connection between switching noise and global noise when Gaussian noise is considered. It is shown
that switching noise can not only achieve a stronger resonance effect, but it is also more robust to induce the

resonance effect than partial noise.

PACS numbers: 05.45.Xt, 05.40.-a

I. INTRODUCTION

Noise-induced phenomena have been a major focus in the
field of nonlinear physics and statistical physics [1-5], where
noise usually has a disordering impact but under certain con-
ditions can be employed to induce order in nonlinear systems
under certain conditions, mainly to mention, stochastic reso-
nance (SR) [1], coherence resonance (CR) [6], enhanced sta-
bility [7-9] and resonant activation phenomena [10]. SR is
a noise-induced phenomenon of signal amplification, which
has been experimentally observed in several physical and bi-
ological systems [2, 11-16]. The output of the system may
be amplified in the presence of noise at a proper level and a
weak external periodic signal [17-20]. In addition to Gaus-
sian white noise, different types of noises are used to drive the
systems to exhibit noise-induced phenomena such as colored
noise and a-stable noise [21, 22]. Due to generality and wide
observations in social, financial and biological systems [23—
25], noise having an a-stable distribution has gained increas-
ing research attention [20, 22, 26, 27].

It is to be noted that the majority of past studies about
SR have been hitherto confined to the case that noise is in-
jected in each unit and all the time. Such an assumption on
noise in coupled networks is related to various applications
but it is also convenient for both theoretical study and nu-
merical simulation. However, it is natural to ask what will
happen in coupled networks driven by pinning noise, where
only some units in the networks are driven by noise while the
others are not. Some kinds of recently reported phenomena
can be regarded as special cases of pinning mechanisms such
as partial time-delay coupling [28] and switching nonlineari-
ties [29, 30], which can be widely observed in technological
and natural systems [29-32]. The pinning noise could hap-
pen in nature and one can use it for engineering applications
like other pinning mechanisms [33, 34]. The idea of the pin-
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ning noise-induced phenomenon in this paper is quite similar
to pinning control problem [33, 35]. The major difference be-
tween pinning control and pinning noise-induced phenomena
is that usually in pinning control problem, the more nodes are
allowed to control, the better the control performance will be
yielded [33, 34]. Different from pinning control, there exists
an intermediate value of percent of units with noise to exhibit
the best response under a certain intensity of noise.

Our intention of this contribution is to elucidate effects of
partial and switching noises on SR in coupled complex sys-
tems, where the noise has an «-stable distribution. Partial
noise indicates that the units suffering from noise are fixed
along the time evolution, while the switching noise means
that the units injected by noise depend on the probabilities
of Bernoulli variables. One may intuitively conjecture that
switching noise can only have a “partial” weak effect on the
overall signal amplification like partial noise. Nevertheless,
via an analytical and numerical approach, we present in this
paper an intriguing result: switching noise facilitates SR more
than partial noise by achieving a stronger resonance behavior.
The interplays between the percent of the units subjected to
noise p (or the probability of the units subjected to noise p),
the stability parameter « and the scale parameter -y are demon-
strated to show resonance effects to an external stimulus.

The rest of this paper is structured as follows. Section II
introduces the methods and results. We investigate the prob-
lem of SR in an array of globally coupled bistable systems
under pinning noise, where pinning noise includes partial and
switching noises satisfying a Lévy a-stable distribution. Fi-
nally, the paper concludes with a summary in Section III.

II. MODEL AND PRELIMINARIES

In this section, we present some preliminaries of Lévy a-
stable distribution noises, Bernoulli variables and bistable sys-
tems.

First, we consider the following ensemble of coupled



bistable systems with pinning noise:

N
i = m —x) + i; cij(zj — @) + Fsin(Vi)

+&(t)n,i=1,2,...,N, (1)

where x;(t) is the state of the ith unit at time ¢. The system is
subjected to an external periodic forcing with amplitude F' and
frequency ¥ = 2% g > 0is the global coupling strength; d; is
the degree of unit ¢; ¢;; denotes the coupling strength between
the ith and jth unit, which is defined as ¢;; = ¢;j; = 1if two
units are coupled, otherwise ¢;; = c;; = 0; 7; is the noise
satisfying an a-stable distribution [36]. &;(¢) denote constants
for partial noise or Bernoulli variables for switching noise,
respectively. Note that our results can not only be extended
to neural systems like FitzHugh-Nagumo systems, but also be
shown under a different scale V.

For partial noise, &;(t) are constants to characterize the fol-
lowing cases: i € M C V = {1,...,N}if (t) = 1; oth-
erwise, ¢ ¢ M, if &(t) = 0. M is the set of units subjected
to noise. Since the systems are coupled, without loss of gen-
erality, we assume that the first [ units are subjected to noise.
Thatis, &(t) = 1,i=1,...,land §(t) =0,i =1+ 1,...,N.
[ = | N % p| denotes the element number of finite set M com-
posed of the units to be injected by noise. | N * p]| is the mini-
mum integer close to IV x p, where p is the percent of the units
suffering from noise. If p = 1, M = V holds. The pinning
noise here turns into global noise and the problem considered
here reduces the one considered in [20]. If p = 0, M = &
and there is no noise in coupled systems.

For switching noise, &;(t) are Bernoulli stochastic vari-
ables, which are used to define the following events: ¢ &€
N(@) €V = {1,.,N}if &(t) = 1; otherwise, i ¢
N(t). N(¢) is the time-varying set of units driven by noise.
E{&i(t)} = p, P{&(t) = 1} = pand D{&(?)} = p(1 — p),
where [E{.} is the expectation operator, P{.} is the probability
of one event and D{.} is the variance operator.

The location and relative stability of the fixed points of an
isolated ¢th unit are perturbed by the noise 7;. We assume
that the noise 7; follow a Lévy a-stable distribution whose
characteristic function is given as follows [36]:

¥(t,0,5,7,0) = exp {it& — |yt (1 — ifsgn(t) tan %)},
for a#1, &

and

2
U(t,0,8,7,8) = exp [itd ~Alt)(1 + i 2 sgn(t) log )]
for a=1, 3)

where @ € (0, 2] stands for a stability parameter; § € [—1, 1]
represents the skewness parameter for measuring asymmetry;
v € (0,00) and § € (—o0,00) are a scale parameter and a
location parameter, respectively. When 8 = 0, the distribu-
tion is symmetric around ¢ and is called as a (Lévy) symmet-
ric a-stable distribution. -y is used to measure the width of
the distribution and « indicates the exponent or index of the

distribution and specifies the asymptotic behavior of the dis-
tribution when v < 2. The normal distribution, the Cauchy
distribution, and the Lévy distribution are special cases of sta-
ble distributions [20, 36]. When o« = 2, the distribution re-
duces to a Gaussian distribution with variance 02 = 22 and
the skewness parameter § has no effect on the distribution. It
is found in [20] that the stability parameter o can be employed
to represent diversity, which is similar to the scale parameter
v. A typical probability density function of a Lévy a-stable
distribution is depicted in Fig. 1.

To study the resonance effect of the periodically driven sys-
tem, the spectral amplification factor R = 44| (e"Y' X (t))| is

used [4], where X (t) = & Zf\il x;(t) is the mean-field value
of the units. The spectral amplification factor R can well char-
acterize the amount of information in the signal transmission
with an external forcing. In what follows, we simply assume
that 5 = 0 and § = 0, which neglects the effects of skew-
ness and location. Moreover, as pointed out in [20, 23], we
generate the noise 7); according to the Lévy a-stable distribu-
tion within a predefined bound [—eq, €3] such that the gener-
ated random variables cannot be extremely large. This type
of distribution is a truncated Lévy a-stable distribution with
zero value outside the range [23]. This kind of setting is also
used in characterizing random time delays with a normal dis-
tribution [39]. In addition, the Bernoulli stochastic variables
&;(t) and noise n; are mutually independent. If without spe-
cific mentioning, the parameters are fixed as 7' = 100, F' =
0.2,9g =1, ¢4 = €2 = € = 500 and N = 200. For nu-
merical simulation, we use the Euler-Maruyama method in
[37]. If without specific mentioning, the parameters for nu-
merical simulation are chosen as follows: the simulation time
W = 100, the step size h = 0.01 and the running times
@ = 20. The simulation of Lévy a-stable distribution noise
follows the method in [23, 38]. Denote p. as the parameter

pe = log(p), i. e., p = 10Pe.

III. MAIN RESULTS

Figure 2 depicts the effect of the expectation (average) of
Bernoulli variables p (i. e., using switching noise), the sta-
bility parameter « and the scale parameter + on amplification
factor R. From Fig. 2(a), we observe that there exists a peak
when varying « for a fixed p.. As p. increases, a larger a
is necessary to reach the best resonance effect of the exter-
nal forcing. Moreover, a more pronounced resonance effect
can be seen for a larger «, i. e., the peaks become higher
for a larger . We can elucidate the observed phenomenon as
follows. The stable distribution approaches the normal distri-
bution as « increases while the stable distribution will have a
heavy tail when « decreases [36], as shown in Fig. 1. There-
fore, when « is small, a small value of p,. is needed to ensure
that large random variables do not occur frequently. With an
appropriate value of p., the best response to an external forc-
ing can be achieved. Although decreasing the stability param-
eter v can induce diversity to the unit, it will inevitably lead
to large random variables which is possible to destroy the res-
onance behavior. To summarize, the peaks become higher for
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FIG. 1: (Color online) Probability density function of noise having a stable distribution: (a) varying « when 3 = 0,y = 1, = 0; (b) varying

vywhena =1.5,8=0,§ = 0.

a larger «, since the diversity can be preserved by tuning p.
and overlarge random variables can be avoided.

A similar phenomenon can be observed from Fig. 2(b) by
tuning . It can be seen that a smaller p. is required to ex-
hibit the best resonance effect when increasing ~. Increasing
~ means that the width of the distribution turns wider, i. e.,
the diversity of the generated noise becomes richer. There-
fore, a smaller p, is necessary such that the diversity can be
kept at a proper level to enhance the resonance behavior when
~ increases. In addition, we find that when p, turns smaller,
a large set of « can be allowed to show resonance behaviors,
i. e., the smaller p. will broaden the area of ~ for showing
resonance behaviors. From the above observations, the prob-
ability p, the stability parameter o and the scale parameter ~y
play constructive roles in enhancing resonance effects of an
array of coupled complex systems.

In order to show the properties of switching noise, stochas-
tic resonance with partial noise and switching noise are com-
pared. In switching noise, E{Zil &)} = px N holds,
which means that there exists the same number of units (in ex-
pectation sense) subjected to noise as the case of partial noise.

Figure 3(a) depicts the comparison of partial noise and
switching noise in globally coupled networks (GCNs) and
nearest neighbor networks (NNNs). By employing switching
noise in both GCNs and NNNs, as p increases, the amplifica-
tion factor R first increases and the best resonance behavior
can be reached. When p further increases, the amplification
factor R decreases slowly, i. e., there exists a peak by varying
p. In addition, GCNs can present more pronounced SR than
NNNs in that NNNs cannot efficiently transmit the signal of
noise through networks, when partial noise is applied. Figure
3(a) shows that partial noise has a “partial” weak effect on the
signal amplification R. One can also observe that, with the
same variance of noise, switching noise can deliver a more
pronounced resonance effect than partial noise, even with a
smaller p. Moreover, in either GCNs or NNNs, the best reso-

nance effect of switching noise is closer to each other than that
of partial noise, i. e., switching noise is more robust to induce
resonance behaviors for different types of networks than par-
tial noise. This can be explained as follows. In partial noise,
the effects of noise have to be spread all over the network by
connection between the units. Hence, the diversity will be
weakened due to the transmission in the network. Neverthe-
less, in switching noise, all the units can be injected by noise
frequently according to probability p. Therefore, the diver-
sity of the units can be maintained to enhance the resonance
behavior.

Next, we will show stochastic resonance of partial noise and
switching noise for different network sizes of networks and
simulation time W. We consider networks under N = 50,
N = 100 and N = 800 with a global coupling structure. It
can be observed from Fig. 4 that the results are robust under
different scale, since the injection of noise in the nodes is ac-
cording to the probability p. Figure 5 depicts the effects of
simulation time W on SR. It is shown that the results are also
robust for different W.

In the following, we will establish a connection between
switching noise and usual global noise. Denote

Following the way of Ref. [40], if two variables z and y are
independent, one has:

zy —E(2)E(y) = E(2)E(y)[(A(z) +1)(Ay) +1) 1]
= E(2)E(y)[Mz) + Ay)
+A@)A(y)]- S

Note that D(z) = E[(x)?] — [E(z)]? and by considering (4),
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FIG. 2: (Color online) The spectral amplification factor R of globally coupled bistable systems is plotted as a function of «, 7y and p., when
switching noise is considered. (a) R as a function of v and p. when 8 = 0,7 = 5v/2,6 = 0 and W = 100; (b) R as a function of ~ and p.

whena =2,84=0,§ =0and W = 100.

—=switching noise in NNNs | |

30/

—e—partial noise in NNNs
—-switching noise in GCNs | |

20

v —partial noise in GCNs

10/

0 0.5 1
p

(a)

30

—+switching noise

20

—e—global noise

A

0 05 1
D

(b)

FIG. 3: (Color online) Properties of SR of coupled bistable systems with partial noise and switching noise: (a) comparison of SR of coupled
bistable systems with partial noise and switching noise when e = 2, 8 = 0, = 10'-?,§ = 0 and W = 100; (b) comparison of SR of globally
coupled bistable systems with global noise and switching noise when o = 2,3 = 0,y = 10*%,6 = 0,5 = /D * 10"? and W = 100.

we have
D(zy) = E[zy — E(zy)]
= [E(@)E(y)*[h(z) + h(y) + h(z)h(y)]
= [E(2)]’D(y) + [E(y)]*D(z) + D(x)D(y). (5)

For switching noise with a normal distribution, i. e., noise
7; having a stable distribution with o = 2,3 = 0,§ = 0
characterized by Bernoulli stochastic variables &;(t), we get
from (5) that

D(zy) = p? % 292 +p(1—p)x* 22
= 2p7°. (6)

Therefore, when o = 2, 6 = 0, = 0, one can write (1) into
the one without Bernoulli stochastic variables as an equivalent
version:
. g
T, = x; — —i—d—z; i) + Fsin(P¢)
+LPZ’Z_1’27 N? (7)
where D(¢;) = 2py2. The scale parameter ¥ is § = VY-

In Fig. 3(b), we show the equivalence of systems (1) and
(7). It can be seen that the values of the amplification factor
R of (1) subjected to switching noise fit well with R of (7)
driven by global noise. However, although we can develop (7)
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FIG. 5: (Color online) Results of SR of coupled bistable systems with
partial noise and switching noise under different simulation time W,
when o = 2,3 =0,y = 10"2,§ = 0 and N = 200.

by selecting appropriate variance to amplify R like (1), there
exists a major difference here. System (1) should be injected
with noise by a large variance such that it can compensate the
effect of random switching of noise. The noise acts like a
“pinning controller” in [33], in which the noise is not neces-
sary to work at each unit all the time and thus can reduce the
implementation burden and the noise under random switch-
ing can also enhance the occurrence of resonance behaviors
like global noise [20]. The maximum value of R reached by
system (1) with switching noise is also close to that of (7),
different from that of system (1) with partial noise.

In the following, to quantify the response of the coupled
bistable systems to the external forcing, we utilize the approx-
imate theory to conduct an analytical analysis [18]. X (¢) is
the mean-field value of the units and thus (1) with global cou-
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FIG. 6: (Color online) The approximating theory for the spectral
amplification factor R when o = 2,8 = 0,7 = 10426 = 0,
W =100 and N = 200. R is an approximation of R.

pling can be rewritten as follows:

. A gN 3
YT N1 +( N — 1)”31 T+ &t
+F sin(Pt). (3)

By averaging (8), one yields
: 1 & 1 &
X=X-+ ;xS + 5 ;&(t)m + Fsin(Wt).  (9)

Let 6; be §; = z; — X and % Zfil 62 = V(t). It yields from
(9) that

N
X =X(1-3V() - X*+ > &(t)n; + Fsin(¥t). (10)
=1

Note that E{Zf\;l & (t)n;} = 0, we obtain
X = X(1-3V(t) — X3 + Fsin(¥t). (11)

The amplification factor obtained by (11) is denoted by R.
Figure 6 illustrates the approximating results. It can be seen
that the method is in good agreement with the results by a
direct simulation of the original system (1).

IV. CONCLUSION

To summarize, in this paper, we have investigated the prob-
lem of SR in coupled complex systems under pinning noise,
in which the pinning noise satisfies a Lévy a-stable distribu-
tion. It is shown that the pinning noise in the forms of switch-
ing noise and partial noise make the system to deliver a res-
onance behavior in response to an external periodic stimulus.
We demonstrate the crucial roles of the percent of the units



subjected to noise p (or the probability of the units subjected
to noise p), the stability parameter o and the scale parameter
~ in showing SR. Adjusting p can efficiently control the width
of v to generate SR, where a smaller p will broaden the inter-
val of ~ to exhibit resonance behavior. The interplay of these
three parameters induces a proper diversity to exhibit the best
resonance effect.

We have found that the system with switching noise can not
only lead to a more pronounced resonance effect, but it is also
more robust to exhibit the resonance effect than partial noise
in different types of networks, due to the existence of blink-
ing mechanisms in switching noise. The relationship between
(switching) pinning control and (switching) pinning noise is
discussed. Different from global noise, the switching noise
acts like a “pinning controller”, i. e., the noise is not required
to work at each unit all the time and thus is more flexible than
global noise. We have also developed a mathematical rela-
tionship between the global noise-induced phenomenon and
the switching noise-induced phenomenon.

The results about switching noise seem to have strong po-
tential applications to control pathological activities in neuro-
science, ecology and in engineering problems [41]. We expect
that our findings could be of importance for providing valu-

able guidelines not only in bistable systems but also in neural
and other excitable media [42]. The theoretical findings will
also stimulate experimental works to verify SR with pinning
noise in real physical systems such as nonlinear electronic cir-
cuits [14] and robots coordination. One direction for future re-
search is to study SR with nonidentical units. Another one is
to utilize switching noise to investigate other kinds of pinning
noise-induced phenomena such as synchronization [35, 43—
45] and coherence [6].
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