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Multiobjective Identification of Controlling
Areas in Neuronal Networks

Yang Tang, Member, IEEE, Huijun Gao, Senior Member, IEEE, and Jürgen Kurths

Abstract—In this paper, we investigate the multiobjective identification of controlling areas in the neuronal network of cats’ brain
by considering two measures of controllability simultaneously. By utilizing nondominated sorting mechanisms and composite
differential evolution (CoDE), a reference point based nondominated sorting composite differential evolution (RP-NSCDE) is
developed to tackle the multiobjective identification of controlling areas in the neuronal network. The proposed RP-NSCDE
shows its promising performance in terms of accuracy and convergence speed, in comparison to nondominated sorting genetic
algorithms II. The proposed method is also compared with other representative statistical methods in complex network theory,
single objective and constraint optimization methods to illustrate its effectiveness and reliability. It is shown that there exists a
trade-off between minimizing two objectives, and therefore pareto fronts (PFs) can be plotted. The developed approaches and
findings can also be applied to coordination control of various kinds of real-world complex networks including biological networks
and social networks, etc.

Index Terms—Synchronization, Neuronal networks, Controlling areas, Multiobjective optimization.
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1 INTRODUCTION

Most biological, social, and technological networks
display complex topological features and dynamics,
which can be modeled as complex networks [1]–
[3]. Ideas originating from network science, have
been successfully applied to the analysis of genetic
regulatory networks [4]–[7], the study of high-level
information processing of neuronal networks [8]–[12],
and other kinds of practical biological networks. In
particular, by employing the information of structural
and functional MRI, diffusion tensor imaging, magne-
toencephalography and electroencephalography and
recent methods of complex network theory, the brain’s
structural and functional systems have been shown
a spatial topology and typical features of complex
networks, such as the existence of highly connected
hubs, small-world topology, and modularity-both at
a whole-brain and a cellular scale [10]. It was also
shown that the organization of brain networks dis-
play an economical trade-off between the physical
cost of brain networks and the adaptive value of
their topological patterns of anatomical or functional
connectivity [8].

• Yang Tang is with the Institute of Physics, Humboldt University of
Berlin, Berlin 12489, Germany and the Department of Transdisci-
plinary Concepts and Methods, Potsdam Institute for Climate Impact
Research, Potsdam 14415, Germany. E-mail: tangtany@gmail.com.

• Huijun Gao is with the Research Institute of Intelligent Control
and Systems, Harbin Institute of Technology, Harbin 150080, China,
China. E-mail: hjgao@hit.edu.cn.

• Jürgen Kurths is with the Potsdam Institute for Climate Impact
Research, Potsdam, Germany and Institute of Physics, Humboldt
University of Berlin, Berlin, Germany and Institute for Complex
Systems and Mathematical Biology, University of Aberdeen, Aberdeen
AB24 3UE, United Kingdom. E-mail: Juergen.Kurths@pik-potsdam.de.

Synchronization is an important collective motion
in nature, which can be widely seen in neuroscience,
computer science and telecommunication [13]–[20].
It has been demonstrated that synchronization of
distributed brain activity plays an intriguing role
in neural information processing [21]–[25]. In [21],
it was revealed that inter-areal phase synchrony in
the different frequency bands among frontoparietal
and visual regions of a brain shows a systems level
mechanism for coordinating and regulating the main-
tenance of neuronal object representations in visual
working memory. Additionally, in [23], it was found
experimentally that certain chaos in the brain, such as
schizophrenia, epilepsy, autism, Alzheimer’s disease,
and Parkinson’s disease, are closely related to abnor-
mal neural synchronization.

Controllability of complex networks is an important
problem in the area of physics and control theory,
aiming at reducing the cost of regulating or coordi-
nating the states of the network to a desired state.
The driver nodes can also be referred as leaders or
controlling areas, by injecting feedback information
to some key nodes [26]–[32]. As demonstrated in
[29], control the behaviors of a complex network is a
common requirement in different kinds of networks,
such as physical, transportation, and neuronal net-
works [21]. Up to now, various kinds of approaches
have been developed to investigate the problem of
controllability (pinning control) of complex networks.
In [33], based on the results of [34], the problem
of pinning controllability of complex networks was
investigated in terms of the spectral properties of
an extended network topology. Ref. [18] examined
the distributed pinning synchronization of stochastic
coupled neural networks via randomly occurring con-
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trol. An optimization method to find the minimum
number of pinned nodes was presented for ensuring a
distributed mean square synchronization by utilizing
semi-definite programming. In [35], the pinning im-
pulsive controllers were presented to drive the whole
state-coupled dynamical network to some desired
trajectory. In [29], the controllability of an arbitrary
complex directed network was investigated and the
set of driver nodes was identified. When analyzing
real networks, it was found that the number of driver
nodes is determined mainly by the network’s degree
distribution. In [36], pinning control of undirected
complex networks was investigated by some novel
particle swarm optimization algorithms.

As shown in [21], [29], [37]–[39], it remains of great
significance to study the controllability of a neuronal
network, which can not only provide deep insights
into understanding how to control real weighted and
directed networks, but also help to understand how
to avoid abnormal synchronization to inhibit neu-
ral diseases such as schizophrenia, epilepsy, autism,
Alzheimer’s disease, and Parkinson’s disease [23],
[40]. Based on single-objective evolutionary computa-
tion strategies, the identification of controlling regions
was simply investigated in the neuronal network of
cats’ brain in microscopic, mesoscopic and macro-
scopic scales [9]. The controlling areas found in [9] are
different from the usual hubs detected by degree, be-
tweenness centrality, motif and synchronization [40],
[41]. It was unveiled that the community Auditory in
cats’ brain, which is sparsely connected with other
communities, is the most important community to
control the entire neuronal network. Furthermore, in
order to embrace two measures of controllability into
one unified framework, the problem of identification
of controlling regions in the neuronal network of cats’
brain was investigated by means of an improved
constrained optimization evolutionary algorithm [38],
in which one important measure is regarded as an
objective and the other measure is viewed as a con-
straint. By relaxing the constraint gradually, the con-
trolling regions were identified. However, although
the controlling regions were identified under different
levels of constraints, one has to tune the value of
constraint carefully. A natural question arises here: is
it possible to regard two measures of controllability of
the neuronal network equally and identify the controlling
regions under different levels of constraints at the same
time? Therefore, the first motivation of this paper
is to shorten such a gap by contributing the first
attempts to deal with multiobjective identification of
control regions in the neuronal network, which can be
formulated as a multiobjective optimization problem.

Evolutionary algorithms have been widely used
in various optimization problems such as state es-
timation [42] and filtering [43]. In a multiobjec-
tive optimization problem, multiobjective optimiza-
tion evolutionary algorithms (MOEAs) have attracted

increasing attention, since they have the capability of
dealing with a multiobjective optimization problem
as well as finding nondominated sets in a single
run [44]. Among them, nondominated sorting ge-
netic algorithm-II (NSGA-II) [45] and strength Pareto
evolutionary approach-2 (SPEA 2) [46] are the most
popular ones. Recently, in order to lead a decision-
maker to the most preferred solution of ones’s choice,
reference-point based methods have been proposed
in MOEAs [47]. The progress towards the most
preferred solution is interactive and reference-point
based MOEAs have shown their effectiveness in
real world applications when man is included in
the optimization process. In addition, recent years
have witnessed the increasing attention of differential
evolution (DE), since DE is perceived as a reliable
and versatile population-based heuristic optimization
method [48]–[50]. Recently, a composite DE (CoDE),
has been proposed to utilize three trial vector gen-
eration strategies and three control parameter set-
tings [51]. It has been shown that CoDE delivers
a promising performance in various single objective
optimization problems. Although the performance of
NSGA-II has become a standard method to deal with
multiobjective optimization problems, there still exists
some research room to improve the search perfor-
mance of NSGA-II to enhance the controllability in
a neuronal network by replacing the search engine
using CoDE and including the idea of a reference-
point based technique into NSGA-II, which is the
second incentive of this paper.

Motivated by the above discussion, the problem of
multiobjective identification of controlling areas in the
neuronal network is investigated by means of a ref-
erence point based nondominated sorting composite
differential evolution (RP-NSCDE). Solutions to the
controllability of a neuronal network can be shown as
pareto fronts (PFs) by using the proposed RP-NSCDE.
In order to validate the effectiveness of RP-NSCDE,
it is compared with statistical methods in complex
network theory [1] and NSGA-II [45]. In addition, it
is also compared with the results in [9] and [38], in
which single objective evolutionary algorithms and
constraint optimization evolutionary algorithms are
utilized, respectively. The contributions of this paper
can be summarized as follows: (1) the problem of
multiobjective identification of controlling areas in a
neuronal network is studied for the first time; (2) an
improved MOEA, i. e., RP-NSCDE is proposed to
show its reliability and effectiveness of multiobjec-
tive identification of controlling areas in a neuronal
network; (3) the obtained results are compared with
recent results in [9] and [38] to show the advantages
of this work.

The organization of this paper is listed as fol-
lows. Sec. II presents the models and methods of the
multiobjective identification of controlling areas in a
neuronal network. In Sec. III, RP-NSCDE is presented

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



FINAL VERSION 3

in detail and the experiments are performed to vali-
date the effectiveness of RP-NSCDE. Conclusion and
discussion are given in Sec. IV.

Notations: In this paper, l ∈ [1, N ] represents the
number of driver nodes of a network, where N is the
network size. δD(·) denotes the characteristic function
of the set D, i.e., δD(i) = 1 if i ∈ D; otherwise,
δD(i) = 0. Define a graph by G = [V, E ], where
V = {1, · · · , N} and E = {e(i, j)} are the vertex set
and the edge set, respectively. The graph G is assumed
to be directed, weighted and simple. Let the weighted
and directed matrix G = [gij ]Ni,j=1 be the adjacency
matrix of cat graph G, which is defined as follows:
for any pair i �= j, gij < 0 if e(i, j) ∈ E ; otherwise,
gij = 0. gii = −∑N

j=1,j �=i gij (i = 1, 2, · · · , N). The
Laplacian matrix L is defined as follows: for any pair
i �= j, lij = −1 if e(i, j) ∈ E ; otherwise, lij = 0.
lii = −∑N

j=1,j �=i lij , (i ∈ V). The output-degree
kout(i) = −∑N

j=1,i �=j lij of a node i is the number of
efferent connections that it projects to other nodes,
and its input-degree kin(i) = −∑N

j=1,i �=j lji, is the
number of the afferent connections it receives.

2 MODELS AND METHODS

2.1 The graph of cats’ brain

The neuronal network of cats’ brain, which shows
the anatomical connectivity [52]–[56], is a typical
weighted and directed complex network. The detailed
connection matrix and analysis of neuronal networks
of cats’ brain was given in [52], which is obtained from
several subtle steps including cortical parcellation,
thalamic parcellation, collation of connection data
and translation from database to connection matrix.
For more details regarding the construction of the
connection matrix, please refer to [52] and references
therein. The neuronal network can be separated into
53 cortical regions (N = 53) with about 850 fibres of
different densities. This neuronal network has been
found to exhibit short average pathlength and high
clustering coefficient, indicating an optimal coordina-
tion for effective inter-area communication and for
achieving high functional complexity [41]. The cat
cortical network also exhibits a hierarchically clus-
tered organization [53], where it is composed of four
topological clusters coinciding with four functional
cortical communities: visual cortex (16 areas), audi-
tory (7 areas), somato-motor (16 areas) and fronto-
limbic (14 areas).

2.2 Multiobjective controllability of neuronal net-
works

Let a reference evolution (desired state) be written as
follows:

ds(t)
dt

= f(s(t)). (1)

As mentioned in [37], this differential equation is
general enough to represent wide real-world complex
systems such as biological networks, transportation
networks and other natural systems.

Based on (1), the neuronal network with identical
subsystems and a feedback controller can be written
as:

dxi(t)
dt

= f(xi, t) − a
N∑

j=1

gijh(xj(t))

− aδD(i)vi(h(s(t)) − h(xi(t))), i ∈ V,(2)

where xi(t) = [xi1(t), xi2(t), · · · , xin(t)]T ∈ R
n (i ∈

V) is the state vector of the ith area and f(xi, t) =
[f1(xi, t), · · · , fn(xi, t)]T is a continuous vector func-
tion; n denotes the dimensional size of each area; a
is the global coupling gain of the network; h(xi(t))
is the output function; G is the coupling matrix of
neuronal network of cats’ brain. Let μp = μr

p+jμm
p (j =√−1), (p ∈ V), be the set of eigenvalues of C and

suppose that they are ordered in such a way that
μr

1 ≤ μr
2 ≤ · · · ≤ μr

N . vi(i ∈ V) is the control gain
or coupling strength between the area and the desired
state. It is clear that 1 ≤ ∑N

i=1 δD(i) ≤ N . The purpose
of pinning control is to drive the state of the neuronal
network in (2) toward the desired state s(t) in (1), i.
e., x1(t) = x2(t) = · · · = xN (t) = s(t).

In order to measure the controllability of the neu-
ronal network (2), an extended network of N + 1 dy-
namical systems yi can be formulated, where yi = xi

for i ∈ V and yN+1 = s as follows [33], [38]:

dyi(t)
dt

= f(yi, t) − a
N+1∑
j=1

Rijh(yj(t)),

i ∈ V ∪ {N + 1}, (3)

where N = [Rij ] ∈ R
(N+1)×(N+1) in the form of

N =

⎛
⎜⎜⎜⎜⎜⎝

S1 g12 . . . g1N −δD(1)v1

g21 S2 . . . g2N −δD(2)v2

...
. . .

...
...

...
gN1 gN2 . . . SN −δD(N)vN

0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠

, (4)

in which Si = gii + δD(i)vi. Let λp = λr
p + jλm

p denote
the pth eigenvalue of N and suppose that λp is sorted
as a sequence λr

1 ≤ λr
2 ≤ · · · ≤ λr

N+1, where λr
1 = 0.

According to the analysis method of checking syn-
chronizability of complex networks [33], [34], the con-
trollability can be assessed in terms of minimizing the
following two objectives:

f1 = min
λr

N+1

λr
2

, (5)

and

f2 = min max
p

{λm
p }. (6)

As discussed in [33], [34], for objective (5), to satisfy
synchronization, all the aλr

i , i = 2, ..., N + 1, should
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belong to the bounded region of the complex plane,
where the master stability function is negative. For
objective (6), the condition on the maximum imagi-
nary part of the spectrum provides information about
the distribution of the eigenvalues along the direction
of the imaginary axis.

Note that both [29] and this paper investigate the
problem of controllability of networks. However, the
main differences between both are listed as follows:
1) this paper treats controllability of networks as
a multiobjective optimization problem and thus a
multiobjective optimization evolutionary algorithm is
utilized to analyze controllability, whereas [29] uti-
lized controllability in the control theory to handle
pinning control of networks; 2) the purpose of [29] is
to identify the minimum number of nodes to control
the entire networks, while the proposed method in
this paper can also investigate controllability under
different numbers of driver nodes l.

Remark 1. Recently, controllability of complex net-
works has attracted increasing attention. In [33], the
authors defined two measures for controllability of
complex networks based on the synchronizability of
them [34]. The authors utilized the information of
degree to choose driver nodes and tune their control
gains by simply assuming the control gain in each
node is equal to each other. In order to improve the
conservativeness of the results in [28], [33], single
objective evolutionary algorithms were proposed to
select the driver nodes and control gains. It is shown
that the methods can enhance the controllability of
complex networks [36]. Single objective evolutionary
algorithms were then applied to identify the control-
ling areas in the neuronal network by minimizing f1

and f2 separately [9], which inevitably neglects the
nature of a directed and weighted topology of the
neuronal network. In order to include f1 and f2 into
one unified framework, the problem of identification
controlling areas was transformed into a constraint
optimization problem, in which f1 is regarded as an
objective and f2 is considered as a constraint [38].
Then, an improved constraint optimization evolution-
ary algorithm was developed to identify the control-
ling regions in the neuronal network under different
levels of f2. However, although the results in [38] can
solve the problem of detecting controlling regions in
the neuronal network, one has to adjust f2 blindly,
which will lead to some inefficiency to show all the
solutions under different values of f2 in a single run.
In other words, the methods in [38] fail to show PFs in
a single run. Different from the results in [9] and [38],
in this paper, we formulate the controllability of the
neuronal network into a multiobjective optimization
problem with two conflicting objectives f1 and f2. In
the following, an improved MOEA is developed and
is used to investigate the multiobjective identification
of controlling areas of the neuronal network.

f
1

f 2

Dominated
solutions

Pareto
front

Nondominated
solutions

Reference point

Fig. 1. Illustration of the optimal Pareto front, the
reference point, the relationship between dominated
and nondominated solutions.

2.3 Methods
In this subsection, the concept of multiobjective op-
timization and an improved MOEA are presented.
The improved MOEA includes a nondominated sort-
ing mechanism [45], a diversity preservation mecha-
nism [45], the replacement of genetic algorithms with
differential evolution and a reference point approach.
The detailed procedure is presented here.

2.3.1 Concepts of Multiobjective Optimization
Without any loss of generality, a minimization prob-
lem is investigated with a decision space Ω, where
f1 in (5) and f2 in (6) are two objectives regarding
controllability of the neuronal network and should
be minimized as small as possible simultaneously.
We aim to solve multiobjective optimization problems
for a variable set W that optimizes the following
objective:

min
W∈Ω

F (W),W ∈ R
D, (7)

where D is the dimension size of an optimization
problem, W = {w1, w2, · · · , wD} is a vector with a set
of decision variables and F = {f1, f2, · · · , fm} is the
objective vector with m objectives to be minimized. In
this paper, m = 2 and fi(i = 1, 2) is given in (5) and
(6), respectively.

The following definitions of Pareto dominance and
Pareto optimality are useful for presenting our results
and are fundamental in multiobjective optimization,
with Pareto dominance forming the basis of the equal-
ity of the solution.

Definition 1. (Pareto Dominance): Given the objective
vectors Y1 ∈ R

m and Y2 ∈ R
m, then Y1 dominates Y2,

denoted as Y1 ≺ Y2, iff y1i ≤ y2i,∀i ∈ {1, 2, · · · ,m} and
y1i < y2i,∃i ∈ {1, 2, · · · ,m}.
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Definition 2. (Optimal Pareto Front): The optimal Pareto
front (PF) denoted by F∗ is the set of individuals

F∗ = {F∗
j |F∗

j ≺ Fi,∀Fi ∈ F}. (8)

It is worth mentioning that, different from the single
objective optimization problem [9], there exists a set of
solutions to the multiobjective optimization problem,
which can be shown in the form of PFs. Our first
purpose is to develop efficient multiobjective evolu-
tionary algorithms to tackle the problem of multiob-
jective controllability of the neuronal network, which
would find PFs with both a high accuracy and a fast
convergence speed.

2.3.2 NSGA-II

NSGA-II was developed in [45], which is composed
of a fast nondominated sorting approach and a di-
versity preservation mechanism. NSGA-II reduces the
computational complexity and includes an elitism
approach to prevent the loss of good solutions. In
addition, NSGA-II is adaptive and does not require
to define a specific sharing parameter. It is well rec-
ognized that NSGA-II is efficient to handle multiob-
jective optimization problems in both theoretical and
practical aspects.

Remark 2. It is worth mentioning that the concept
of multiobjective optimization has been used in con-
sidering the problem of multiobjective synchroniza-
tion of two linearly coupled systems [57], in which
control cost and convergence speed are minimized
simultaneously. The constraints on the coupling form
are also concerned by converting the multiobjective
synchronization into a multiobjective constraint prob-
lem. By utilizing an improved NSGA-II, it is found
that there exist PFs when optimizing two performance
measures.

2.3.3 Composite DE (CoDE)

CoDE was proposed in [51], which aims to deal
with single objective optimization and shows its ef-
fectiveness in unimodal functions, multimodal func-
tions, expanded multimodal functions and hybrid
composition functions. The primary idea of CoDE is
to randomly combine several trial vector generation
strategies with a number of control parameter settings
at each generation to create new trial vectors. CoDE
is composed of three trial vector generation strategies
and three control parameter settings. The three trial
vector generation strategies are the following:

1) “rand/1/bin”:

ui,j,G =

⎧⎪⎪⎨
⎪⎪⎩

xr1,j,G + F ∗ (xr2,j,G − xr3,j,G),
if rand ≤ Cr or j = jrand

xi,j,G,
otherwise.

(9)

2) “rand/2/bin”:

ui,j,G =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xr1,j,G + F ∗ (xr2,j,G − xr3,j,G)
+F ∗ (xr4,j,G − xr5,j,G),
if rand ≤ Cr or j = jrand,
xi,j,G,
otherwise.

(10)

3) “current-to-rand/1”:

ui,j,G = xi,j,G + rand ∗ (xr1,j,G − xi,j,G)
+ F ∗ (xr2,j,G − xr3,j,G). (11)

where i = 1, 2, ..., SP and SP is the population size;
j = 1, 2, ..., D and D is the dimension size; G is the
generation number; xi,j,G is the state of ith individual
in jth dimension at generation G; r1, r2, r3, r4 and r5
distinct random integers from the interval [1, SP ] and
are also different from i. F is the scaling factor, which
amplifies the difference vectors; Cr is the crossover
control parameter; jrand is an integer from the interval
[1, D]; rand is a uniformly distributed random number
between 0 and 1.

The three control parameter settings are:
1) F = 1, Cr = 0.1;
2) F = 1, Cr = 0.9;
3) F = 0.8, Cr = 0.2.

The first control parameter setting, [F = 1.0, Cr = 0.1],
is for dealing with separable problems; the second
control parameter setting, [F = 1.0, Cr = 0.9], is
aimed to maintain the population diversity and thus
enhances the ability of global exploration; and the last
control parameter setting, [F = 0.8, Cr = 0.2], is for
the exploitation of the three strategies and thus in-
creases the convergence speed of the population [51].
At each generation, each trial vector generation strat-
egy in the strategy candidate pool (9)-(11) is used to
create a new trial vector with a control parameter set-
ting randomly chosen from three parameter settings.
Thus, three trial vectors are generated for each target
vector and the best one is chosen to enter the next
generation if it is better than its target vector.

2.3.4 Adaptive differential evolution (JaDE)
JaDE is made up of an adaptive updated mechanism
with a Cauchy distribution and a Normal distribu-
tion [48]. The DE/current-to-εbest strategy is into-
duced to maintain multiple best solutions to balance
the convergence speed and the diversity of the popu-
lation. In the updating equation, the current popula-
tion information and an external archive are used to
generate new individuals. The archive is employed
to store the recently explored inferior solutions. In
addition, each individual has its own scaling factor
and crossover control parameter, which are generated
according to a Normal distribution and a Cauchy
distribution. JaDE has been demonstrated its advan-
tage and effectiveness in various single objective op-
timization problems, such as unimodal optimization
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Fig. 2. Pareto fronts obtained by NSGA-II, NSCDE, RP-NSGA and RP-NSCDE under different l. (a) PFs under
l = 5; (b) PFs under l = 10; (c) PFs under l = 15; (d) PFs under l = 20; (e) PFs under l = 25; (f) PFs under
l = 30; (g) PFs under l = 35; (h) PFs under l = 40; (i) PFs under l = 45; (j) PFs under l = 50.
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Fig. 3. The comparison of PFs by RP-NSCDE under different l. (a) PFs obtained by RP-NSCDE with l = 5,
l = 10, l = 15 and l = 20; (b) PFs obtained by RP-NSCDE with l = 25, l = 30 and l = 35; (c) PFs obtained by
RP-NSCDE with l = 40, l = 45 and l = 50.

problems, multimodal optimization problems, rotated
optimization problems, non-continuous optimization
problems and hybrid optimization problems, etc [48].
JaDE has the ability of achieving a high accuracy
as well as a fast convergence speed. In [9], it is
also shown that JaDE outperforms other well-known
single objective optimization methods in dealing with
the controllability of the neuronal network, in which
f1 and f2 are optimized separately. For more details
regarding JaDE, please refer to [48].

2.3.5 A reference point based nondominated sorting
composite differential evolution (RP-NSCDE)

NSGA-II has been verified its promising performance
in various multiobjective problems and real world ap-
plications [45], [57]. Nevertheless, the search engine in
NSGA-II is genetic algorithms with simulated binary
crossover (SBX) operator and polynomial mutation,
which might have limitations in exploration and ex-
ploitation in the search space. In addition, NSGA-II
does not use the useful information to explore the

preferred region and thus explores the search space
blindly. Therefore, there still remains much research
room to develop more efficient MOEAs by replacing
inefficient search engines-genetic algorithms, while
maintaining the efficient parts of NSGA-II, i. e., the
nondominated sorting approach and the diversity
preservation mechanism.

Here, we develop a reference point based nondom-
inated sorting composite differential evolution (RP-
NSCDE). Due to the satisfactory performance of CoDE
in dealing with single objective optimization and its
simple mechanism, CoDE can be easily applied to
multiobjective optimization problems without compli-
cated additional modifications. In addition, we utilize
a more “intelligent” mechanism: by introducing a
reference point into the MOEA. The reference point
is usually provided by users to save the computation
time and guide the population to search more desir-
able areas of users [47], [58]. Since the capability of
JaDE was shown in the identification of controlling
regions in the neuronal network with a quick conver-
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Algorithm 1 A reference point based nondominated
sorting composite differential evolution (RP-NSCDE)

Begin
Create a random population Pt(t = 0) in feasible

solution space with SP − 1 individuals.
while fe ≤ fe,max do

P̃ = reference-point-generation(μ ∗ fe,max);
/*generating a reference point P̃ by minimizing
f1 with a fitness evaluation μ ∗ fe,max, where μ is
predefined value equaling to 0.2.*/;

Pt = add-into-population(Pt, P̃ ); /*add the
reference point into the population Pt and the pop-
ulation of Pt is SP .*/;

Mt = tournament-selection(Pt); /*using a
binary tournament selection to generate a parent
population with �SP/2� individuals*/;

Qt = composite-differential-evolution(Mt);
/*offspring Qt is generated according to (9)-(11) and
its population size of Qt is 3*�SP/2�*/;

St = Mt∪Qt; /*combine parent and offspring
population*/;

F = nondominated-sort(St); /*F =
(F1,F2, ...) contains all nondominated fronts of
St*/;

Pt+1 = ∅ and i = 1
while |Pt+1| + |Fi| ≤ SP do /*|.| is the

cardinality of a set*/;
crowding-distance-assignment(Fi); /*cal-

culating crowding distance of Fi*/;
Pt+1 = Pt+1 ∪ Fi; /*include ith nondom-

inated front in the population*/;
i = i + 1;
sort(Fi, ≺); /*sort the individuals in Fi

using ≺*/;
Pt+1 = Pt+1 ∪ Fi[1 : (NP − |Pt+1|)]; /*fill

Pt+1 with the best (SP−|Pt+1|) individuals in Fi*/;
t = t + 1.

end while
end while

End

gence speed [9], JaDE is used to provide the reference
point by minimizing f1 with a predefined number of
fitness evaluation. It is worth mentioning that we do
not utilize JaDE to minimize f2 in RP-NSCDE, since
only optimizing f2 will neglect to optimize f1, as seen
in Table 3.

Before presenting the procedure of RP-NSCDE, we
give some preliminaries first. fe stands for the fitness
evaluation and fe,max is the maximum number of
fitness evaluation allowed. Let ≺ be a partial order,
representing that between two solutions with dif-
ferent nondomination ranks (belonging to different
fronts), the solution with the lower (better) rank is
preferred. Otherwise, if both solutions belong to the
same front, the solution located in a less crowded

region is preferred. The reference-point-generation(.)
function is to utilize JaDE to provide a reference point
by only optimizing f1 when fe achieves μ∗fe,max. The
add-into-population(.,.) is to add the reference point
to the population and make the population has SP
individuals. μ is a predefined constant to balance the
trade-off between obtaining a more accurate reference
point (more close to the optimal PF) and spreading the
solutions in PFs uniformly. Here, μ = 0.2 is adopted,
since the observation from [9] shows that the solutions
achieved by JaDE usually converge with such a value
of fitness evaluation. The nondominated-sort(.) func-
tion is to generate different levels of PFs according
to pareto dominance, which was given in [45]. In
addition, the diversity preservation mechanism is to
make the solutions widely spread in the obtained
set of solutions [45]. Based on these mechanisms, the
pseudocode of RP-NSCDE is given in Algorithm 1.

3 EXPERIMENTS

3.1 Experimental information

The encoding scheme follows from [9], [38], which
consists of two components with the equal dimension
size l: the first part is an integer search space to
denote the locations of driver nodes; the other part
is a continuous search space to stand for the control
gains of driver nodes. Therefore, the dimension size
is D = 2∗ l. For a detailed example, please refer to [9],
[38]. In addition, the population size of NSGA-II and
RP-NSCDE is SP = 100. The maximum number of
fitness evaluation allowed fe,max = SP ∗D∗κ is for all
the evolutionary algorithms in this paper, where SP
is the population size, D is the dimension size and
κ is a predefined parameter. It is worth mentioning
that κ is an adjustable parameter to get a balance
between complexity and search accuracy. Usually, a
large κ is helpful to enhance search performance but
leads to huge computation complexity. A small κ can
save the computation resources but may result in
unsatisfactory search performance. In this paper, we
set κ = 175 to make a balance between complexity
and search accuracy. The parameter settings for JaDE
and constraint optimization methods follow from [9],
[38], [48], [59]. Each evolutionary algorithm is carried
out for 20 runs for eliminating discrepancy.

3.2 Methods for comparison

In this subsection, some methods are given for com-
parisons with RP-NSCDE to show the effectiveness
of RP-NSCDE. The methods include statistical meth-
ods from complex network theory [1], [9], a single
objective optimization method [9], [48], constraint
optimization methods [38], [59] and multiobjective
optimization methods. JaDE and NSGA-II are given
in Sec. 2.3.4 and Sec. 2.3.2, respectively and thus they
are omitted here.
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3.2.1 Statistical strategies in complex network theory
In order to characterize the properties of complex
networks, it is well known that degree, between-
centrality and closeness are popular measures in com-
plex network theory [1]. In [41], the information of
degree, between-centrality and closeness were used
to detect the hubs in the neuronal network of cats’
brain. In controllability of complex networks, such
information of complex networks has been used to
find controlling regions of complex networks or neu-
ronal networks [9], [60]. Here, following the work in
[9], we can select the driver nodes in the neuronal
network of cats’ brain by sorting degree, between-
centrality (BC) and closeness of each node ascendingly
(descendingly) in the neuronal network, respectively.
We summarize the statistical strategies in complex
network theory in Table 1. In statistical strategies, con-
trol gains are assumed to be identical in each driver
node and then tuned gradually from an interval [0, N ]
with a step size 0.01.

TABLE 1
Statistical strategies in complex network theory and

their abbreviations.

Methods Abbreviation

Ascending degree-based strategy ADBS
Descending degree-based strategy DDBS

Ascending betweenness centrality-based strategy ABCBS
Descending betweenness centrality-based strategy DBCBS

Ascending closeness-based strategy ACBS
Descending closeness-based strategy DCBS

3.2.2 Constraint optimization methods-a dynamic hy-
brid framework (DyHF) and an improved dynamic hy-
brid framework (IDyHF)
DyHF was very recently proposed in [59], which
includes both a global search and a local search.
In both global and local search models, differential
evolution (DE) works as a search algorithm, and
Pareto dominance in multiobjective optimization is
employed to deal with constraint handling. DyHF
formulates a constrained optimization problem into
a biobjective optimization problem by regarding the
degree of constraint violation as an additional ob-
jective. The global search model mainly concentrates
on refining the overall performance of the popula-
tion and exploring more promising regions. The local
search model aims to guide the population to feasible
regions quickly by avoiding the case of stagnating
in infeasible regions. In the local search model, the
population can be guided to feasible regions from
different directions.

Although DyHF has been shown its effectiveness
and performance in constraint optimization problems
by carrying out a scientific set of experiments [59],
the DE in global search model is not adaptive and
thus DyHF does not have the ability of fitting the

circumstances adaptively. In order to make the DyHF
more powerful to have a high accuracy, an efficient
constraint handling and a quick search speed, a self-
adaptive differential evolution named jDE [49] was
used to replace the search engine in DyHF and there-
fore an IDyHF was proposed in [38]. It was found
that IDyHF can efficiently enhance the performance
of DyHF for the identification of controlling regions
in the neuronal network.

3.3 Comparison
In this subsection, in order to show the advantages
of the proposed RP-NSCDE, we compare it with dif-
ferent methods in complex network theory, single ob-
jective optimization problems, constraint optimization
problems and multiobjective optimization problems,
as given in Sec. 3.2.

3.3.1 Comparison of statistical strategies in complex
network theory and RP-NSCDE
The comparison results of statistical strategies in com-
plex network theory and RP-NSCDE are provided in
Table 2 by optimizing f1 and f2 separately. Note that
RP-NSCDE is a multiobjective optimization method
and thus has a set of nondominated solutions. There-
fore, we select the solution with the minimum f1

among a set of nondominated solutions and record its
corresponding f2 in each run. Then, after 20 runs, the
mean value of f1 and f2 can be calculated. When mini-
mizing f1, it can be seen that RP-NSCDE achieves best
for f1 in all the cases and the corresponding values
of f2 achieve best in six cases. It is worth mentioning
that ADBS, ABCBS and DCBS usually perform better
than DDBS, DBCBS and ACBS in optimizing f1, which
implies that driver nodes are usually selected from
areas with a small degree. Therefore, driver nodes
from a small degree will deliver a robust performance
in minimizing f1. As l increases, f1 becomes smaller
in all the methods. That is, the more driver nodes are
chosen, the better the controllability of the neuronal
network is.

When minimizing f2, RP-NSCDE works best
among the seven methods in both f1 and f2 under
different l. It can be seen that RP-NSCDE can not only
maintain f2 to attain zero but also deliver the best
value in f1 among the seven methods. For RP-NSCDE,
as l monotonically increases, f1 decreases gradually
and maintains f2 at 0. All the methods in complex net-
work theory cannot suppress f2 to zero successfully.
Different from RP-NSCDE and the case of minimizing
f1, f2 does not decrease for all the methods from
complex network theory, as l increases. Like the case
of minimizing f1, the regions with a small degree are
still robust to minimize f2 and their corresponding
f1. To summarize, RP-NSCDE performs best among
these methods in both minimizing f1 and f2 under a
different allowed number of driver nodes.
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TABLE 2
Comparison of statistical strategies in complex network theory and RP-NSCDE for the identification of

controlling regions of the neuronal network of cats’ brain when l = 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50. The
mean results of minimum of f1 (f2) and its corresponding f2 (f1) among the nondominated solutions in 20 runs

are provided for RP-NSCDE. The better results between statistical strategies and RP-NSCDE are shown in
Bold fonts.

Minimization f1

DDBS DBCBS ACBS ADBS ABCBS DCBS RP-NSCDE
f1 f2 f1 f2 f1 f2 f1 f2 f1 f2 f1 f2 f1 f2

l = 5 71.4213 0.9111 55.9645 0.9363 71.4213 0.9111 56.4496 1.0737 43.0772 0.8252 65.2997 0.8439 33.1132 0.2813
l = 10 44.1461 0.8214 36.9477 0.7972 44.1461 0.8214 24.3185 0.8698 22.6184 0.9679 29.0945 0.9823 16.5113 0.7962
l = 15 34.2414 0.7816 31.7341 0.8994 34.2414 0.7816 14.1849 0.9779 14.0409 1.3173 15.0466 0.8193 10.7217 0.7012
l = 20 32.4692 0.7786 22.7841 0.3584 31.9017 0.7581 9.4899 1.2315 11.5303 1.0777 10.1022 1.0053 7.8189 0.4374
l = 25 29.3212 0.3492 17.9532 0.5004 29.7578 0.3372 7.4427 1.3211 9.6757 1.0257 7.4714 0.9281 6.166 0.5735
l = 30 27.3839 0.3581 17.4414 0.3337 27.8319 0.3428 5.7293 1.4248 7.816 1.253 6.0127 1.7641 5.0506 0.4894
l = 35 26.0809 1.0203 17.1048 0.3829 25.9419 0.853 4.7137 1.282 6.1687 1.4648 4.7137 1.282 4.1999 0.711
l = 40 21.5184 1.0312 16.4416 0.9389 16.4793 0.9356 4.2255 1.543 4.4968 1.5531 4.4516 1.598 3.4044 0.7588
l = 45 16.3439 0.9287 15.3385 0.9168 15.6126 0.9058 3.2984 1.0562 4.0001 1.3338 3.2984 1.0562 2.7106 0.8654
l = 50 15.0445 0.8826 14.0634 0.8976 14.5706 0.8857 2.7175 0.8986 3.3332 0.9333 2.5691 0.7928 2.1906 0.9101

Minimization f2
l = 5 809.9556 0.8849 615.738 0.8883 809.9556 0.8849 64.6466 0.3458 47.0724 0.8195 72.8859 0.6473 33.5641 0
l = 10 45.6937 0.7988 37.9129 0.7761 45.6937 0.7988 27.7794 0.7677 29.0126 0.6077 29.446 0.5544 17.1039 0
l = 15 35.1968 0.7641 37.6757 0.8565 35.1968 0.7641 16.2786 0.6296 37.022 0.5857 15.7334 0.5827 11.0937 0
l = 20 33.1039 0.7692 26.0629 0.3554 51.2308 0.5894 23.7415 0.5351 12.457 0.4681 13.3333 0.4471 8.0189 0
l = 25 57.1181 0.3398 21.8953 0.2171 30.934 0.3352 43.2995 0.464 11.0904 0.6343 8.8753 0.466 6.2865 0
l = 30 28.2536 0.3313 17.5127 0.3264 36.7119 0.3248 12.1871 0.4994 16.6001 0.5853 6.4633 0.3433 5.1784 0
l = 35 108.4975 0.9107 18.5507 0.3617 26.4119 0.8471 21.9108 0.7745 29.4098 0.529 21.9108 0.7745 4.3846 0
l = 40 89.1616 0.9196 43.8192 0.875 85.3365 0.8893 13.6795 0.7556 10.135 0.5872 17.7563 0.832 3.5451 0
l = 45 73.686 0.8916 72.0502 0.8952 72.662 0.8926 3.6277 0.5555 6.7121 0.6898 3.6277 0.5555 2.8948 0
l = 50 22.05 0.8775 60.1543 0.8922 62.6352 0.8838 3.0419 0.796 4.1913 0.6916 2.5855 0.7383 2.5016 0

TABLE 3
Comparison of JaDE and RP-NSCDE for the identification of controlling regions of the neuronal network when
l = 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50. The minimum results of optimization of f1 (f2) and its corresponding f2

(f1) in 20 runs are listed under different l. The better results between JaDE and RP-NSCDE are shown in Bold
fonts.

Minimization f1 Minimization f2

JaDE RP-NSCDE JaDE RP-NSCDE
f1 f2 f1 f2 f1 f2 f1 f2

l = 5 33.097 0.4687 33.0924 0.4677 149.6125 0 33.1018 0
l = 10 16.4934 0.9684 16.4717 0.9936 46.014 0 16.7009 0
l = 15 10.4281 0.7461 10.3936 0.909 26.8588 0 10.7954 0
l = 20 7.581 0.7006 7.6431 0.6925 27.2322 0 7.7681 0
l = 25 5.8517 0.9622 5.8792 0.8629 52.4813 0 6.0615 0
l = 30 4.6952 0.9682 4.8831 0.4617 27.9384 0 5.0096 0
l = 35 3.9439 1.3907 4.1564 0.8869 125.8241 0 4.2346 0
l = 40 3.2745 1.1931 3.3585 0.6344 61.2819 0 3.4546 0
l = 45 2.6768 0.9788 2.6884 1.1802 63.4997 0 2.8071 0
l = 50 2.2029 1.7323 2.1743 0.9449 29.0712 0 2.2841 0

3.3.2 Comparison of JaDE and RP-NSCDE
In [9], the results of JaDE are given to identify con-
trolling regions by optimizing f1 and f2 separately.
We list the minimum values of f1 (f2) and their
corresponding f2 (f1) in 20 runs under different l in
Table 3. Note that RP-NSCDE is a multiobjective opti-
mization method. Consequently, the minimum values
of f1 among the nondominated solutions and their
corresponding f2 are listed in Table 3 for RP-NSCDE
in 20 runs under different l. Similarly, the results of
minimizing f2 are listed in Table 3. Although JaDE is a
single objective optimization method and only focuses
on minimizing one objective, JaDE cannot achieve bet-
ter in all the cases than RP-NSCDE when minimizing
f1. RP-NSCDE performs better for the values of f1

than JaDE under l = 5, 10, 15 and 50 when minimizing
f1. Although RP-NSCDE is worse than JaDE in other
six cases, the difference between them is very small.
All these observations demonstrate the effectiveness
of RP-NSCDE, even if it is compared with a powerful
single objective optimization algorithm-JaDE.

When minimizing f2, both JaDE and RP-NSCDE
can attain zero in all the cases, which are differ-
ent from the statistical methods in complex network
theory when minimizing f2. However, it is obvious
that all the nondominated solutions generated by RP-
NSCDE dominate the solutions obtained by JaDE.
It can be revealed that RP-NSCDE can offer much
smaller f1 than JaDE as well as maintaining f2 at zero
under different l, since RP-NSCDE is a multiobjective
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TABLE 4
Comparison of DyHF, IDyHF and RP-NSCDE for the identification of controlling regions of the neuronal network
when l = 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50. The mean and minimum values of f1 (f2) and their corresponding

f2 (f1) in 20 runs are given here. The best results among DyHF, IDyHF and RP-NSCDE are shown in Bold
fonts.

δ = 0.1
DyHF IDyHF RP-NSCDE

f1 f̃2 f1 f̃2 f1 f̃2

min mean min mean min mean min mean min mean min mean
l = 5 33.1069 33.6454 0 0 33.1069 36.062 0 0 33.0978 33.3285 0 0
l = 10 17.6765 19.5482 0 0 17.4138 18.2775 0 0 16.611 16.8277 0 0
l = 15 12.566 13.4507 0 0 11.8687 12.4638 0 0 10.7765 11.0554 0 0
l = 20 10.1962 12.9785 0 0 8.5238 9.2097 0 0 7.7525 7.9724 0 0
l = 25 7.8375 9.988 0 0 6.9952 7.6494 0 0 6.0223 6.2534 0 0
l = 30 8.9547 10.0877 0 0 5.8847 6.4759 0 0 4.944 5.1154 0 0
l = 35 5.8531 9.1597 0 0 4.9418 5.3835 0 0 4.2019 4.2846 0 0
l = 40 5.9439 7.8927 0 0 3.8327 4.5113 0 0 3.4441 3.4932 0 0
l = 45 4.306 6.02 0 0 3.1575 3.8624 0 0 2.7487 2.8342 0 0
l = 50 4.0159 6.5301 0 0 2.4946 3.0037 0 0 2.255 2.3936 0 0

δ = 0
l = 5 38.1923 40.7439 0 0 33.1591 39.954 0 0 33.1018 33.5641 0 0
l = 10 18.8906 20.3117 0 0 18.2647 19.0401 0 0 16.7009 17.1039 0 0
l = 15 12.716 16.4437 0 0 12.2507 12.7915 0 0 10.7954 11.0937 0 0
l = 20 10.7616 12.9512 0 0 9.1151 9.5792 0 0 7.7681 8.0189 0 0
l = 25 9.9345 12.4832 0 0 6.6852 7.7151 0 0 6.0615 6.2865 0 0
l = 30 7.4228 9.4702 0 0 5.8306 6.3257 0 0 5.0096 5.1784 0 0
l = 35 7.6439 8.9241 0 0 4.6379 5.2644 0 0 4.2346 4.3846 0 0
l = 40 5.7481 7.8039 0 0 4.2027 4.6988 0 0 3.4546 3.5451 0 0
l = 45 4.9654 7.1958 0 0 3.0661 3.6264 0 0 2.8071 2.8948 0 0
l = 50 5.8373 7.4608 0 0 2.6048 2.8488 0 0 2.2841 2.5016 0 0

TABLE 5
Comparison of NSGA-II, NSCDE, RP-NSGA and RP-NSCDE for the identification of controlling regions of the

neuronal network of cats’ brain when l = 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50. The mean and minimum values of
f1 (f2) and their corresponding f2 (f1) in 20 runs are shown here. The best results among NSGA-II, NSCDE,

RP-NSGA and RP-NSCDE are shown in Bold fonts.

NSGA-II NSCDE

Minimization f1 Minimization f2 Minimization f1 Minimization f2
f1 f2 f1 f2 f1 f2 f1 f2

min mean min mean min mean mean min mean min mean min mean mean
l = 5 33.1077 33.9679 0.0218 0.2779 33.2411 35.8399 0 33.1025 33.2071 0.0003 0.2851 33.1026 34.5485 0
l = 10 17.8696 19.0527 0.0772 0.5128 18.6041 19.6293 0 16.487 17.0332 0.3675 0.6336 16.8326 17.5784 0
l = 15 11.6244 12.9182 0.1139 0.4146 12.6848 13.3971 0 10.6783 11.3544 0.1047 0.4968 10.9391 11.6235 0
l = 20 8.3636 9.33 0.2123 0.4346 8.5891 9.5615 0 7.9199 8.4955 0.141 0.402 8.1125 8.5965 0
l = 25 6.4045 7.1511 0.245 0.4817 6.9028 7.3654 0 6.2831 6.7111 0.1133 0.3789 6.3769 6.7733 0
l = 30 5.5411 5.9728 0.3058 0.5445 5.5668 6.0746 0 5.0416 5.5146 0.3201 0.563 5.1696 5.5732 0
l = 35 4.4242 4.7877 0.2462 0.6071 4.5574 4.9243 0 4.3142 4.5908 0.2579 0.4623 4.3693 4.6429 0
l = 40 3.8775 4.0977 0 0.4077 3.9766 4.2008 0 3.4715 3.866 0.2656 0.5201 3.5475 3.9469 0
l = 45 3.1488 3.4535 0.3866 0.5959 3.2288 3.5923 0 2.88 3.2804 0.3357 0.5353 2.975 3.3153 0
l = 50 2.4316 2.8138 0.3484 0.6649 2.5796 2.9555 0 2.4215 2.7304 0.3074 0.5243 2.5005 2.7843 0

RP-NSGA RP-NSCDE

Minimization f1 Minimization f2 Minimization f1 Minimization f2
f1 f2 f1 f2 f1 f2 f1 f2

min mean min mean min mean mean min mean min mean min mean mean
l = 5 33.0986 33.2164 0.4631 0.4985 33.225 34.9851 0 33.0924 33.1132 0.0004 0.2813 33.1018 33.5641 0
l = 10 16.4456 16.563 0.4477 0.7878 17.321 18.9881 0 16.4717 16.5113 0.4315 0.7962 16.7009 17.1039 0
l = 15 10.4513 10.7292 0.5213 0.644 11.0029 12.0463 0 10.3936 10.7217 0.3543 0.7012 10.7954 11.0937 0
l = 20 7.6462 7.8904 0.334 0.5246 8.3936 8.8844 0 7.6431 7.8189 0.3141 0.4374 7.7681 8.0189 0
l = 25 6.0955 6.2613 0.5732 0.8094 6.5607 6.9731 0 5.8792 6.166 0.335 0.5735 6.0615 6.2865 0
l = 30 4.8361 5.0419 0.3595 0.7682 5.1509 5.5675 0 4.8831 5.0506 0.2203 0.4894 5.0096 5.1784 0
l = 35 4.0954 4.1553 0.7387 0.9598 4.4196 4.8480 0 4.1564 4.1999 0.4999 0.711 4.2346 4.3846 0
l = 40 3.3423 3.3841 0.4682 1.1474 3.6668 4.0162 0 3.3585 3.4044 0.5755 0.7588 3.4546 3.5451 0
l = 45 2.6894 2.7179 0.722 1.0586 3.1248 3.3405 0 2.6884 2.7106 0.7132 0.8654 2.8071 2.8948 0
l = 50 2.1745 2.1902 1.0415 1.3312 2.4749 2.9014 0 2.1743 2.1906 0.6895 0.9101 2.2841 2.5016 0
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optimization method.
In summary, when only minimizing f1, RP-NSCDE

is comparable to JaDE. When only minimizing f2, RP-
NSCDE offers a much better performance than JaDE.
Therefore, RP-NSCDE is more efficient and powerful
than JaDE for the identification of controlling regions
in the neuronal network. Hence, our results in this
paper outperform the works in [9].

3.3.3 Comparison of DyHF, IDyHF and RP-NSCDE
In this subsection, we compare the performance of
DyHF [59], IDyHF [38] and RP-NSCDE in this paper.
Since DyHF and IDyHF are constraint optimization
approaches, we introduce the following measure to
characterize the feasibility of the solutions:

Q = f2 − δ,

H = f2 − δ,

f̃2(x) =
{

max{0, Q}, if δ = 0.1,
max{0, |H|}, if δ = 0.

(12)

Then, f̃2(x) reflects the degree of constraint violation
of the vector x. If f̃2(x) = 0, the solution x is feasible.

The comparison results between DyHF, IDyHF and
RP-NSCDE are given in Table 4 under different l
and δ. It can be seen that DyHF, IDyHF and RP-
NSCDE can obtain feasible solutions in each run
among 20 runs and different dimension sizes. IDyHF
improves DyHF due to the introduction of jDE to
flexibly adjust the parameters of the population. RP-
NSCDE performs best among the three algorithms in
all the dimension sizes when δ = 0 and δ = 0.1,
which validates the reliability and advantage of RP-
NSCDE. Consequently, RP-NSCDE is more powerful
and reliable than DyHF and IDyHF for the identifi-
cation of controlling regions in the neuronal network.
Consequently, our results work better than the works
in [38].

3.3.4 Comparison of NSGA-II, NSCDE, RP-NSGA
and RP-NSCDE
In RP-NSCDE, two important modifications are made
including a reference-point strategy and the replace-
ment of the search engine in NSGA-II by CoDE.
Therefore, in this subsection, we compare NSGA-II,
nondominated sorting composite differential evolu-
tion (NSCDE, i. e., RP-NSCDE without the reference
point strategy), reference point-based nondominated
sorting genetic algorithms (RP-NSGA, i. e., NSGA-II
with the reference point strategy) and RP-NSCDE. The
comparison results of NSGA-II, NSCDE, RP-NSGA
and RP-NSCDE are shown in Fig. 2 and Table 5.
The mean and minimum values of the nondominated
solutions with minimum f1 (f2) and their correspond-
ing f2 (f1) are provided in 20 runs under different
l. All the four MOEAs can find the solutions with
f2 = 0 in each single run among 20 runs, which
means that all these methods are effective for the

identification of controlling areas in the neuronal net-
work. It can be seen from Fig. 2 that the final non-
dominated solutions generated by RP-NSCDE domi-
nate those generated by NSGA-II and NSCDE. Most
of the solutions generated by RP-NSCDE dominate
those obtained by RP-NSGA. RP-NSGA performs a
little bit better than NSCDE, which indicates that the
reference-point method is more powerful than the
replacement of a search engine in NSGA-II by CoDE.
Both RP-NSGA and NSCDE outperform the original
NSGA-II, which means that the two modifications of
NSGA-II are important to enhance the search ability of
NSGA-II. From Table 5, although RP-NSGA performs
a little bit better than RP-NSCDE in some cases, RP-
NSCDE is more reliable than RP-NSGA in most of
the cases, especially considering the corresponding
f1 when minimizing f2. Overall, RP-NSCDE is the
most powerful MOEA among the four algorithms.
RP-NSGA and NSCDE ranks the second place and
the third place, respectively. NSGA-II is the last one.
Therefore, RP-NSCDE outperforms other variants of
RP-NSCDE. The pareto fronts (PFs) are clearly plotted
in Figs. 2 and 3. In addition, it can be found from Fig.
3 that as l increases, the nondominated solutions by
RP-NSCDE become better, which manifests that the
more driver nodes are allowed to control, the better
the controllability is. Consequently, although NSGA-
II, NSCDE, RP-NSGA and RP-NSCDE are effective for
the identification of controlling areas in the neuronal
network, the proposed RP-NSCDE offers the best
performance among the four kinds of MOEAs due
to the introduction of a reference point approach to
guide the population to promising areas efficiently
and CoDE to explore the search space by maintaining
the diversity of the population.

3.4 Summarizing controlling regions by the non-
dominated solutions using RP-NSCDE
As demonstrated in Sec. 3.3, it is shown that RP-
NSCDE has the promising ability of dealing with the
identification of controlling regions in the neuronal
network, in comparison with statistical methods [1],
[9], JaDE [48], DyHF [59], IDyHF [38] and NSGA-
II [45]. Therefore, we utilize RP-NSCDE to identify
controlling areas of the neuronal network. Let ηi be
the sum of each node to work as driver nodes in all
the nondominated solutions generated by RP-NSCDE
when l = 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50. Table
6 presents the times of each node to be selected as
driver nodes and its corresponding community. The
regions with a large ηi can be viewed as controlling
areas and it is found that these controlling areas are
uniformly spread in the four communities. Table 6
shows that the regions such as VPc, 2 and 21a are the
most important three regions to control the neuronal
network, which spread evenly in three communities
of the neuronal network (visual, auditory, somato-
motor). For these regions, the importance of them
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TABLE 6
Controlling regions by summarizing the nondominated

solutions when l = 5, 10, 15, 20, 25, 30, 35, 40, 45 and
50.

Node Name η Community �k

VPc 1066 Auditory 4
2 1021 Somato-motor 7

21a 981 Visual 5
PS 897 Visual 7

AMLS 895 Visual 7
ALLS 895 Visual 4
21b 895 Visual 4

AAF 895 Auditory 3
Sb 895 Frontolimbic 8

Hipp 895 Frontolimbic 2
3a 828 Somato-motor 2

Tem 810 Auditory 2
SIV 810 Somato-motor 5

4 810 Somato-motor 3
PLLS 796 Visual 5
DLS 735 Visual 1
SII 731 Somato-motor 3
P 716 Auditory 3

RS 716 Frontolimbic -2
PSb 716 Frontolimbic 3

1 713 Somato-motor 5
17 616 Visual 1

20b 616 Visual 0
PFCMiI 616 Frontolimbic -3

19 583 Visual 3
Enr 574 Frontolimbic -1
VLS 516 Visual -2
AII 516 Auditory 1

SSAo 516 Somato-motor -5
61 489 Somato-motor 0

PMLS 481 Visual 2
36 458 Frontolimbic 9
18 433 Visual 2
AI 403 Auditory -1

PFCI 372 Frontolimbic -10
4g 352 Somato-motor -1
3b 345 Somato-motor 1

SSAi 314 Somato-motor -5
Ig 314 Frontolimbic 5
7 294 Visual -1

6m 294 Somato-motor -4
5Bm 294 Somato-motor -6
AES 216 Visual -1

PFCMd 216 Frontolimbic -6
Ia 192 Frontolimbic -3

EPp 130 Auditory -6
5Am 106 Somato-motor -8
5BI 106 Somato-motor -10
Cga 106 Frontolimbic -13
35 106 Frontolimbic 7
20a 0 Visual -6
5AI 0 Somato-motor -10
CGp 0 Frontolimbic -10

in neuroscience can be explained as follows: VPc is
a tonotopical organized ’core’ field in the auditory
community; area 2 is the primary somatosensory area
forming the periphery of the somato-motor commu-
nity and 21a is the key area for hierarchical organi-
zation [52]. Additionally, the areas like 20a, 5AI and
CGp are never to be selected to serve as controlling
areas in all the nondominated solutions. Table 6 also
illustrates 
k = kin−kout of each node in the neuronal
network. It can be inferred that the controlling areas

are usually selected from the nodes with a large kin

and a small kout. As discussed in [9], when l is small,
the high-degree regions are important to control the
entire networks. However, overall, not the same as the
usual hubs detected by degree, BC and motif based
methods in [41], the controlling areas found in this
paper are usually selected from areas with a small
degree rather than those with a large degree, which
is consistent with the observations for the neuronal
network of Caenorhabditis elegans in [29]. Most of the
observations in this paper coincide with the findings
in [9], [38].

4 DISCUSSION AND CONCLUSION

In this paper, the problem of multiobjective identifi-
cation of controlling areas is investigated for the neu-
ronal network of cats’ brain. By treating two measures
equally, the problem of multiobjective identification
of controlling areas is formulated as a multiobjective
optimization problem. By means of a multiobjective
optimization algorithm, i. e., a reference point based
nondominated sorting composite differential evolu-
tion (RP-NSCDE), is developed to tackle the proposed
problem. By comparing with the methods and results
in [9], [38], we show that RP-NSCDE is reliable and
competitive to identify the controlling areas of the
neuronal network and the nondominated solutions
are shown in the form of pareto fronts (PFs). The
findings reveal that the controlling areas are usually
selected from the areas with a small degree, which
differ from the usual hubs with a large degree in [41]
and support the findings the results in [9], [38].

Finally, some future research topics are given here.
Firstly, it remains interesting to use the informa-
tion of network structure to initialize the population
intentionally instead of randomly to achieve better
performance. Secondly, it is important to extend our
results in formation control of multi-agent systems.
Thirdly, it is also interesting to utilize other kinds of
multi-objective optimization methods to identify the
controlling regions of neuronal networks [61], [62].
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