PHILOSOPHICAL
TRANSACTIONS

——OF
THE ROYAL
SOCIETY

rsta.royalsocietypublishing.org

®

CrossMark

click for updates

Research

Cite this article: Ramirez Avila GM, Gapelyuk
A, Marwan N, Walther T, Stepan H, Kurths J,
Wessel N. 2013 Classification of cardiovascular
time series based on different coupling
structures using recurrence networks analysis.
Phil Trans R Soc A 371: 20110623.
http://dx.doi.org/10.1098/rsta.2011.0623

One contribution of 13 to a Theme Issue
‘Assessing causality in brain dynamics and
cardiovascular control’

Subject Areas:
complexity, medical physics, computational
physics

Keywords:

time-series analysis, cardiac dynamics,
networks and genealogical trees,
hemodynamics, blood flow in cardiovascular
system, coupling analysis

Author for correspondence:
Niels Wessel
e-mail: niels.wessel@physik.hu-berlin.de

Inforn

g the science

%’ Royal Society Publishing

of the

Classification of cardiovascular
time series based on different
coupling structures using
recurrence networks analysis

Gonzalo Marcelo Ramirez Avila"%*?, Andrej Gapelyuk’,

Norbert Marwan?, Thomas Walther*, Holger Stepan®,

12,6

Jiirgen Kurths"%*© and Niels Wessel'

Unstitut fiir Physik, Humboldt-Universitat zu Berlin, Berlin,
Germany

2potsdam Institut fiir Klimafolgenforschung, Potsdam, Germany
3Instituto de Investigaciones Fisicas, Universidad Mayor de San
Andrés, La Paz, Bolivia

*Centre for Cardiovascular and Metabolic Research, Hull York
Medical School, University of Hull, Hull, UK

>Department of Obstetrics and Gynecology, University of Leipzig,
Leipzig, Germany

SInstitute for Complex Systems and Mathematical Biology,
University of Aberdeen, Aberdeen, UK

We analyse cardiovascular time series with the
aim of performing early prediction of preeclampsia
(PE), a pregnancy-specific disorder causing maternal
and foetal morbidity and mortality. The analysis
is made using a novel approach, namely the e-
recurrence networks applied to a phase space
constructed by means of the time series of the
variabilities of the heart rate and the blood pressure
(systolic and diastolic). All the possible coupling
structures among these variables are considered for
the analysis. Network measures such as average path
length, mean coreness, global clustering coefficient
and scale-local transitivity dimension are computed
and constitute the parameters for the subsequent
quadratic discriminant analysis. This allows us to
predict PE with a sensitivity of 91.7 per cent and
a specificity of 68.1 per cent, thus validating the
use of this method for classifying healthy and
preeclamptic patients.
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1. Introduction

Detection of cardiovascular (CV) disorders has been considerably improved due to both
technological advances and new methods of time-series analysis. Nevertheless, there are still
difficulties that cannot be explained by standard data analysis. Nonlinear data analysis and
modelling methods of CV physics allow improved clinical diagnostics and give the opportunity
for a better understanding of CV regulation. One of the most important aspects of these methods
is that they focus on non-invasive recordings of biosignals. A review of these methods is outlined
in earlier studies [1-5]. Among the biosignals that CV physics deals with are the heart rate
variability (HRV), the variabilities of systolic blood pressure (SBPV) and diastolic blood pressure
(DBPV) and the baroreflex sensitivity. A detailed description of these biosignals and their use
can be found in earlier studies [6-10] and underlying models using these measures have been
developed [11-13].

Preeclampsia (PE) is a major hypertensive disorder in pregnant women also characterized by
proteinuria for which the pathophysiology remains unclear and constitutes a serious risk for both
the mother and the foetus. PE affects healthy nulliparous women in a range between 2 and 7
per cent worldwide [14]. Several strategies are used in order to predict PE, among which we can
mention some biochemical markers, such as fms-like tyrosine kinase 1 (sFlt-1), placental growth
factor (PIGF), soluble endoglin [15,16], maternal autoantibody, the angiotensin II type I receptor
agonistic autoantibody (AT1-AA) [17], the urinary biomarkers [18], ultrasonographic markers
[19], non-invasive CV markers [20] or the combination of some of those [21-24].

Time-series analysis plays an essential role in the understanding of various real systems
regardless of their nature. The techniques used in time-series analysis evolve systematically
supported by new insights in statistics, mathematics and physics. Numerous works are devoted
to nonlinear time-series methods [25,26] and further developments arise continuously [27-32]
allowing the improvement of the analysis and interpretation, and also providing a deeper
understanding of the phenomena dealt with. Recurrence methods have recently become a useful
tool in order to study time series and acquired importance because they do not need long time
series to identify transitions in dynamical systems [28] and their use may be applied to a wide
diversity of systems and phenomena as for instance climate ones [33]. In particular, recurrence
quantification analysis (RQA) has been successfully used in the study of CV signals [34,35].
Recently, the recurrence concept has been extended to networks and novel time-series analysis
methods have arisen [36]. In this work, we apply the approach of e-recurrence networks to analyse
non-invasive CV indicators with the aim of developing a classification method to identify healthy
subjects (control) from patients who develop PE. The method used in this article differs from
the methods dealing with time-varying dynamics [37] in the fact that in a recurrence network,
information about the temporal ordering of observations is not explicitly regarded, and we
focus on the topological features of the resulting graphs that might reflect dynamically invariant
properties associated with the specific dynamical system. The quantification of these topological
features enables us to classify patients who develop the pathology from the control individuals.

The paper is organized as follows: in §2, we give an overview of the used complex network-
based model; we also explain the clinical aspects (patients and their CV measures), the data
processing and statistics. In §3, we present the most important results for the classification. Finally,
in §4, we discuss the results giving the conclusion and perspectives of this work.

2. Methods

(@) Recurrence networks

Since the foundation of graph theory in 1736 by Leonhard Euler who solved the Konigsberg
bridge problem, the use of graphs composed of vertices and edges has witnessed an astonishing
evolution towards the complex networks theory in which the principal elements are nodes
and links, both exhibiting dynamic aspects in the sense that each node might have an intrinsic
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behaviour governed by nonlinear dynamical equations and even the links can evolve due to the
motion of the nodes [38]. In the last two decades, complex networks theory became an important
research topic and its application to numerous complex systems of very different nature including
physical [39], chemical [40], biological [41], economic [42], social [43] and climatic [33], among
others, gives evidence of its practical importance. Details of complex network theory can be found
in the studies of Albert & Barabasi [44] and Boccaletti et al. [45].

The basic idea of time-series analysis based on complex network techniques lies on the fact
that a time series might be transformed into a complex network from which we can extract the
adjacency matrix allowing us to obtain local and global network properties. Roughly speaking,
there are three classes of transforming methods: visibility graphs, proximity networks and
transition networks [46]. The latter two are based on the concept of recurrence which was
stated first by Poincaré [47], and reemerges with the introduction of recurrence plots [48] and
its further developments and refinements such as RQA [28]. The concept of recurrence applied
to a single trajectory of a dynamical system allows us to obtain the recurrence matrix whose
elements are given by Rij=0(e — lIx; — xll), where ©(:) represents the Heaviside function, | - ||
is a suitable norm, and ¢ is a threshold distance that should be chosen adequately according to
the characteristics of the embedded attractor into the phase space. We interpret the recurrence
matrix R as the adjacency matrix of an unweighted and undirected complex network, commonly
called the e-recurrence network which is associated with a given time series. Possible self-loops
must be avoided in this network; thus a Kronecker delta must be subtracted from the recurrence
matrix to obtain a zero-diagonal and, as a consequence, the elements of the adjacency matrix for
an e-recurrence network are

Aij(e) =Rij(e) — 8ij, (2.1)

where the e-dependence (i.e. the level of coarse-graining of phase space involved in this
procedure) is considered explicitly [49]. There is not a universal criterion for choosing & but
the choice must be made avoiding too small values that lead to a situation in which there are
not enough recurrence points, or too large values implying that every vertex is connected with
many other vertices irrespective of their actual mutual proximity in phase space [31]. Having
reconstructed the adjacency matrix A from a time series, we can apply appropriate network
characteristics to analyse and obtain information of the underlying system. In this work, we focus
our interest on four global network measures.

(i) Average path length (L)

The average path length is the mean value of the shortest geodetic path lengths /; ; considering all
pairs of vertices (i, j). Thus,

2
£=0ij) = gy =Ty 2 i (22)
i<j
N being the number of nodes in the network (i.e. the length of the time series [31]).

(ii) Mean coreness (C?)

The notion of core was introduced in social networks related to the concept of cohesiveness
[50]. The concept of node coreness indicates the significance of a node and its popularity in the
network. The k-core of a graph is the maximal subgraph in which each vertex has at least degree
(in the subgraph) k. The coreness of a vertex is the highest order of a k-core containing the vertex
and is calculated using Batagelj’s algorithm [51]. The mean coreness is obtained by averaging the
corenesses of all the vertices.

(iii) Global clustering coefficient C

As for the coreness, the clustering coefficient might be defined locally for each vertex as the ratio
of triangles, including vertex i and the number of triples centred on vertex i where triple refers to
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a pair (j, k) of vertices that are both linked with 7, but not necessarily mutually linked. In terms of
the adjacency matrix elements,

N
2 ik=1 AjkAijAik

G= kiki =1) 7 23

where k; is the connectivity (degree) of the vertex i. The global clustering coefficient is obtained
from the averaging of C;. Thus, C = 211\]:1 Ci/N [45].
(iv) Scale local transitivity dimension D1

Transitivity 7 is defined as the ratio of the number of triangles in the network times three and the
number of linked triples of vertices [45]. The latter can be written as

N

o Dijr= AppAijAik

==z .
2 ijk=1 AijAif(1 = k)

(2.4)

The scale local transitivity dimension is defined as D7 =log T /log(%) [49].

Note that all these measures depend on ¢ and have a global character. Some of these measures
serve as well to characterize the network topology such as in the case of small-world networks
that have high clustering coefficient and short characteristic path length [52]. On the contrary,
random networks follow the relationships: C ~1/N and £~InN [53], N being the number
of nodes.

(b) Clinical aspects

We consider for this study 96 patients with abnormal uterine perfusion, followed by means of
Doppler sonography in the second trimester, between the 18th and the 26th week of gestation
(WOG) of pregnancy, at the Department of Obstetrics and Gynecology of the University of
Leipzig. Immediately after the Doppler examination, non-invasive continuous blood pressure
monitoring was conducted via finger cuff during 30 min. The continuous blood pressure curves
were used to extract the time series of beat-to-beat intervals, systolic and diastolic blood pressures
allowing us to obtain the CV indicators (HRV, SBPV and DBPV). The length of the dataset per
variable is roughly 1700. At the time of examination, the women were healthy, normotensive,
without clinical signs of cervical incompetence and on no medication. After the 30th WOG, 24
patients developed PE. Further details on the methodology can be found in the study of Malberg
et al. [20].

(c) Data processing and statistics

In order to avoid artefacts such as double recognition of beats, the original recurrence rate (RR)
time series were filtered using a preprocessing algorithm which first removes obvious recognition
errors; then applies an adaptive percent filter, and finally, an adapting controlling filter [1].
An example of these filtered signals that constitute the CV indicators is shown in figure 1.
A preliminary inspection of figure 1 allows us to realize that there are no significant differences
in the median values of the CV indicators between both groups.

With the aim of using a recurrence network approach, we consider the three CV indicators and
some possible coupling structures. An estimation of the coupling structure of CV indicators has
been performed using nonlinear additive autoregressive models with external input following the
idea of Granger causality [54]. This coupling analysis shows that HRV, DBPV and SBPV respond
to respiration; SBPV responds to DBPV and the latter to HRV. In our case, we do not consider
respiration; thus, the coupling structure might be represented as in figure 22 where according to
the coupling scheme, there is a delay between the HRV, the DBPV and the SBPV. For simplicity, we
write down the coupling structure as (HRV(t), DBPV(t + 1), SBPV(t + 2)) or simply H(t)D(t + 1)
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Figure 1. Representative time series of the CV indicators (a,b) DBPV, (d,e) SBPV and (g,h) HRV using the median and the
corresponding Q; and Qs (25% and 75% quartiles, respectively) for both groups: PE (first column) and control (second column).
Box-and-whisker plots considering a whisker of 1.5 times the interquartile range for (c) DBPV, (f) SBPV and (i) HRV. (Online
version in colour.)

S(t + 2) = 012. Here, an arrow indicates a causal relation: when there are two arrows, it indicates
that the “first source’ of arrows (H(t)) plays the role of the ‘main driver’ so that the other variables
do not influence it (consequently, we adopt the O for that, i.e. no arrows converge on it); the
‘second source” of arrows (D(t)) plays the role of the ‘secondary driver’, thus, it is driven by H
but it drives to S (consequently, we adopt the 1 (label ¢ + 1) for that); finally, S is driven by D and
consequently by H, i.e. there are two time steps separating S from the ‘first source’ H, and for this
reason, we adopt the 2 (label t + 2) for that.

We sought to predict whether or not a patient develops PE using the CV indicators embedded
in a phase space determined by the structure of coupling. We consider a minimalist assumption in
which the structure of coupling between HRV, DBPV and SBPV is equal in each subject of a group
and that this structure does not change during the measurement. In this study, we set out to test
all the possible structures of coupling shown in figure 2 and a wide range of the threshold ¢ going
from 0.010 to 0.990, where o is the standard deviation of the underlying process in the embedded
phase space. From a simple CV time series corresponding to each patient, we construct a complex
network for each possible structure of coupling and each value of €. Then, we compute the four
network measures (C, £,Cl, D7), and with these new measures we perform an analysis to classify
the groups of patients. For that purpose, we firstly verify whether or not these new parameters
are significant by means of a Mann-Whitney U-test and considering a significance level of 5 per
cent; the null hypothesis being that data in the vectors corresponding to control and preeclamptic
patients are independent samples from identical continuous distributions with equal medians,
against the alternative that they do not have equal medians.

The methodology to obtain the results might be summarized in the following steps.
(i) Preprocessing the raw data and obtaining the values of HRV, DBPV and SBPV. (ii) Identifying
the interaction among HRV, DBPV and SBPV (coupling structure). (iii) Obtaining the recurrence
matrix for HDS(#). (iv) Obtaining the recurrence network. (v) Using the structure of the coupling
and the threshold ¢ to construct the parameter space. (vi) Performing the classification analysis
from the parameter space and the statistical issues.

€Z90LL0 “LLE 205 § Suel] 1yd BioBuystigndiaanosieforens:



Figure 2. (a) Coupling structure considering that HRV drives the DBPV and this in turn the SBPV (directed arrows from HRV
to DBPV, and from DBPV to SBPV). Note that when the variables are linked only for a line, it means that these are coupled but
without any delay. This might be written schematically as H(t)D(t + 1)S(t + 2) = 012; the latter number can change according
to the delay among the sequential variables HRV, DBPV and SBPV, represented as HDS. (b) All the other possibilities of coupling
structures. The numbers corresponding to the sequence HDS take into account the possible delay among the variables. We only
consider one time-step delay between two consecutive variables. For instance, 000 indicates that there is no delay among the
three variables and the corresponding coupling structure is (H(t), D(t), 5(t)). On the contrary, 210 indicates that S drives D and
thisin turn drives 4; thus, the coupling structureis (H(t + 2), D(t 4 1), 5(t)). Note thatingeneral, HDS(t) = (H(t + =), D(t +
7)), S(t + 13)), where 7; represent the delay of each of the variables that satisfies Z; 7; < 3and at least one of the values
must be zero.
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Figure 3. Recurrence plots obtained using the time series of the medians for both groups of patients (a) PE and (b) control.

(a) ° (b) 0

Figure 4. Visualization of the networks obtained by using a layout algorithm that considers an optimization procedure by
physical principles (software Network Workbench [55]); in this case, for a better visualization, we take only 500 nodes into
consideration. The network visualizations were constructed with the medians of the time series for both groups of patients
(@) PEand (b) control. (Online version in colour.)

3. Results

As the approach is based on recurrence complex networks, firstly we obtain the matrices R and
A, and we expect that visualization of structures related to these matrices could also give some
information about the differences between the PE and the control group. Visualizations of the
recurrence plots and the associated networks, obtained using the medians of the time series,
are shown in figures 3 and 4, respectively. We note slight differences between the recurrence
plots corresponding to PE and control group (figure 3). The network representations are made
using a layout algorithm that uses basic principles of physics to iteratively determine an optimal
layout, i.e. a given mass and an electric charge are associated with each node, and each edge
is represented as a spring. For this second construction, we have used only 500 nodes in
order to better visualize the differences between the PE and control networks (figure 4a,b,
respectively). Nonetheless, this visualization inspection is just a first checkup that cannot replace
the quantification of the network measures.
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Figure 6. Same phase planes as in figure 5 showing the situations (a) in which the four considered network measures satisfy
simultaneously the condition p < 0.05 (black pixels); and (b) the misclassification errors (colour code) in the classification of
control and PE groups after a quadratic discriminant analysis for the four network measures. Here, the black pixel indicates the
minimum value of the error, whereas white pixels indicate that the discriminant analysis cannot be performed which is related
to the fact that for these cases, at least one of the network measures has an undetermined p-value.

The results for each network measure are represented in the phase plane embedding (structure
of coupling) versus ¢ as shown in figure 5. The colour code indicates the p-values of the statistical
test when the null hypothesis Hy of equal medians at 5 per cent significance level is rejected.
The white pixels denote that there is no difference between both groups (p > 0.05), and pink ones
the impossibility to compute p. On the contrary, the black pixels represent the minimum p-value
among all the possibilities on the phase plane.

According to figure 5, the significant values for each network measure occur only for some
coupling structures and thresholds ¢. Figure 6a shows the same plane as in figure 5 but
considering the cases in which all the four network measures are simultaneously significant, i.e.
p < 0.05 (black pixels). The inspection of figure 6a shows that there are 22 situations in which
the four network measures satisfy simultaneously the statistical significance test, and we further
restrict the analysis to these selected cases which do not necessarily correspond to the lower p-
values. Now, considering these four measures as the parameters for the classification of control
and PE groups, we perform a quadratic discriminant analysis for all the possible structures of the
coupling and ¢ (figure 6b). At first sight, we identify the minimum p-value which corresponds to
the coupling structure of 120 and ¢ = 0.600 . Nevertheless, this situation does not correspond to the
selected ones in figure 6a and consequently it is discarded. Table 1 shows the statistical measures
of the performance of a binary classification test for the 22 selected cases. Such measures are
misclassification error (percentage of observations that are misclassified), sensitivity (proportion
of true positives that are correctly identified by the test), specificity (proportion of true negatives
correctly identified by the test) [56], positive predictive value (PPV), i.e. the proportion of patients
with positive test results who are correctly diagnosed, and negative predictive value (NPV),
i.e. the proportion of patients with negative test results who are correctly diagnosed [57]. From
table 1, we select the situation corresponding to a coupling structure 120 and ¢ =0.610 (italic
fonts) whose misclassification error is 20.1 per cent giving consequently the best values for the
classification results, i.e. a sensitivity of 91.7 per cent, a specificity of 68.1 per cent, a PPV of
48.9 per cent and an NPV of 96.1 per cent. We stress again the fact that the p-values for the four
considered network measures are statistically significant (table 2). It is worthwhile to mention that
performing 10-fold cross-validation, the results obtained using this technique give for sensitivity
and specificity 60.0 per cent and 69.7 per cent, respectively.
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Table 1. Statistical measures of the performance of a binary classification test considering the 22 possible situations in which
the four network measures satisfy simultaneously the condition p < 0.05.

coupling e(xo) error (%) sensitivity (%) specificity (%) PPV (%) NPV (%)

Table 2. Values of p for the four network measures when using the situation where the structure of the coupling is 120 and
& = 0.610 chosen from table 1.

network measure C L Q D7

Finally, we must point out several aspects in order to justify our methodology compared
with other possible approaches. The utilization of e-recurrence networks to classify using the
embedding of the individual time series, i.e. x(t) = (H(t), H(t — 1), H(t — 2)), y(t) = (S(), S(t —
1),S(t —2)) or z(t)=(D(t), D(t — 1), D(t — 2)), restricts considerably the possibilities for the
analysis; there are few cases in which a set of four network measures satisfies the condition p <
0.05 for all the four variables simultaneously. We obtained interesting results using the embedding
of the DBPV for small values of ¢. On the contrary, for HRV and SBPV, there are not four network
measures satisfying simultaneously the condition p < 0.05. Despite the ‘good results’ (sensitivity
and specificity of 41.7% and 93.1%, respectively) obtained with the embedding of DBPYV, this
approach obviates the coupling among the CV indicators. Thus, the conceptual richness is less
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than the approach used in this work. We also performed RQA considering the same threshold
and coupling structure (¢ = 0.610 and 120) and found that sensitivity and specificity are 91.7 per
cent and 45.8 per cent, respectively, for a set of four variables (RR, determinism, longest vertical
line and trapping time) satisfying simultaneously the condition p < 0.05. The latter confirms that
our method is more adequate for this problem of classification.

4. Discussion

Although large improvements concerning the early detection of PE have been made [58], this
topic is still one of the most important challenges in obstetrics. Several researches are oriented to
cheap and non-invasive methods and the application of new methods and ideas contributes to
improve the statistical predictive values. The essential aspect of the approach used in this work
lies in its novelty when applying to CV signals, i.e. complex time series that in their raw form
are not useful for classification are transformed into recurrence networks from which we extract
several measures that allow a classification with suitable results. In fact, after the choice of an
adequate structure of the coupling and the threshold ¢, only one complex network is constructed
from the three CV indicators for each person and then we quantify the network features that
constitute the parameters for the classification analysis. In summary, our exploratory results show
that the used approach constitutes a useful tool to study such a classification problem.

Note that the analysis presented here is in some sense only a first approximation of the
recurrence networks approach. Our method takes into account the coupling among the CV
indicators (HRV, SBPV and DBPV). The coupling is very important in the dynamics of these
quantities and consequently in the causes that could lead to deregulation of the blood pressure.
We see for future research several ways of improvements, as explained in the following. In
spite of the minimalist assumptions concerning the structure of the coupling, and just one value
of ¢ in order to avoid the ambiguities stated in [59], our results give useful information for
the classification and are similar to those obtained in [20], thus validating our method. The
consideration of dynamic structures of the coupling (i.e. temporal variations in the coupling
structure) could improve our results and also give us a deeper insight in the underlying
physiological processes. For that, it is necessary to design an adaptive algorithm taking into
account possible transitions in several time windows. This method could be also useful as an
alternative to find the adequate structure of coupling and thus minimizing poor performances
of the specific coupling structures to describe some casual relations. We are also aware of the
major role of respiration [60] and related to the understanding of PE pathogenesis [54]. Therefore,
adequate data processing, including respiration, should improve our results. Additionally, in
order to improve the accuracy and applicability of the method, further complementary measures
of causality could be performed either using Granger causality or convergent cross mapping, a
new technique applied successfully to real ecological systems [61]. Finally, the method used in
this study offers some additional advantages such as the ability to cope with short time series and
showing that it is not mandatory to have observations equally spaced in time.

The used classification method might also be improved considering some other consistent
network measures for a better characterization of the phase-space properties or combining
with RQA that could give additional insights into the recurrence structure of the underlying
dynamical system. The quantification of the motifs [62] consisting of three or four nodes in the
underlying networks constitutes another aspect that could be considered in the classification.
This quantification seems to be a feasible tool to understand the dynamics of certain systems and
deserves a deeper study. The combination of these methods and adequate interpretation could
also help to a better comprehension of the related physiological aspects.

In our tests, we have observed that the discriminant analysis could even be improved by
considering shorter time series and other types of coupling structure such as 013, 014, etc. (results
not shown here). Nevertheless, we do not report these results because we prefer to keep on the
complete time series and the assumptions concerning the coupling structure and, consequently,
the consistency of the physiological interpretations.
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The consideration of other qualitative aspects related to the history of the patients (age,
ethnicity and body mass index) [63] and in general predisposing factors such as genetic
[64], behavioural [65] or environmental [66] could give additional information to improve the
classification analysis combined with the technique used in this paper.

Our study follows the same line as previous works [20] in which the biosignal analysis
(in our case, the associated recurrence complex network analysis) constitutes a non-invasive,
cheap and universal diagnostic approach whose utilization offers new possibilities both in the
understanding of PE pathogenesis and for envisaging new therapeutic strategies. Moreover, the
method used in this work has similar performance at the level of classification to other ones. The
novel aspects considered here are the inclusion of the coupling structure and the fact that few
parameters (the network measures) can give us suitable classification results.
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