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In this paper we study synchronization of random clustered networks consisting of Kuramoto oscillators. More
specifically, by developing a mean-field analysis, we find that the presence of cycles of order 3 does not play
an important role with regard to network synchronization, showing that the synchronization of random clustered
networks can be described by tree-based theories, even for high values of clustering. In order to support our
findings, we provide numerical simulations considering clustered and nonclustered networks, which are in good
agreement with our theoretical results.
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I. INTRODUCTION

Synchronization processes have attracted the interest of
scientists for centuries and are the focus of intense research
today [1]. This collective phenomena has been observed in
biological, chemical, physical, and social systems [2,3]. Many
works have verified that the dynamics of synchronization de-
pends on the connectivity pattern of networks [1]. For instance,
when the natural frequency distributions are unimodal and
even, the critical coupling depends on the ratio between the
first and second statistical moments of the degree distribution
[4–6]. In addition, for networks in which there is a positive
correlation between the network structure and dynamics, the
critical coupling has an inverse dependence on the network
average degree [7].

However most of the analytical results of networks
consisting of Kuramoto oscillators have been obtained for
uncorrelated networks generated through the configuration
model [4–6], which generates networks with arbitrary degree
distributions by randomly connecting the nodes according to
a specified degree sequence. One of the main properties of
this model is that in the thermodynamic limit, i.e., N → ∞,
the probability of occurrence of cycles of order 3 tends to
zero. Such probability can be quantified through the clustering
coefficient C, defined as

C = 3×(number of triangles in the network)

number of connected triples
= 3N�

N3
. (1)

In addition to the configuration model, the clustering co-
efficient also vanishes for Erdos-Renyi (ER) and Barabasi-
Albert (BA) networks when N → ∞. Therefore, most of the
theoretical results concerning the Kuramoto model are derived
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for networks that have locally treelike structures, i.e., networks
in which C → 0. However, most real-world networks have
clustered topologies [8]. Thus, an analysis of the Kuramoto
model on networks with clustering is necessary to model
real-world synchronization with more accuracy.

The objective of the current work is to study the dynamics of
synchronization on clustered random networks and perform a
comparison with nonclustered ones, i.e., networks with locally
treelike structures. More specifically, we develop a mean-field
theory for the configuration model proposed independently
by Newman [9] and Miller [10], which generates networks
with C > 0 even in the limit of large networks without
degree correlations, since positive values of assortativity also
leads to high values of clustering coefficient [11]. Such
analysis is compared with the mean-field theory developed for
locally treelike networks. Our results show that the mean-field
theory for networks with low values of triangles (low values
of C) can be applied with certain accuracy on clustered
networks, indicating that the presence of cycles of order 3
does not influence the network synchronization. This result
is in agreement with previous works [12–15], which observed
that the clustering coefficient does not play an important role in
other dynamical process, such as bond-percolation, and rumor
and epidemic spreading, provided that the networks have low
values of the average shortest path length.

In Sec. II we briefly describe the configuration model pro-
posed in [9] and [10], in Sec. III we derive a sufficient condition
for synchronization through mean-field approximation, and in
Sec. IV we compare numerical and theoretical results and give
our conclusions.

II. RANDOM CLUSTERED NETWORKS

In the standard configuration model, the network is gener-
ated through the degree sequence {ki}, connecting the “stubs”
at random [16]. The process to generate random clustered
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FIG. 1. (Color online) Example of a node attached to three single
edges and two triangles with k = s + 2t� = 7. Therefore, the ith
element of the joint degree sequence is {3,2}.
networks is quite similar. Let si and ti be the number of single
edges and the number of triangles attached to the node i,
respectively. Given a network the sequence {si,ti} is possible to
connect the “stubs” in order to generate single edges and also to
connect nodes in order to obtain complete triangles. Hence, it
is convenient to define the joint degree distribution ps,t� of the
network, which is the fraction of vertices connected to s single
edges and t� triangles [9,10]. Therefore, the conventional de-
gree of each node is given by k = s + 2t�, since each triangle
contributes with two to the degree. Figure 1 shows an example
of an assignment of single edges and triangles in a node in this
model. Also, it is possible to relate the joint degree distribution
pst� with the conventional degree distribution pk through

pk =
∞∑

s,t=0

pst�δk,s+2t� , (2)

where δi,j is the Kronecker δ.
With the joint degree distribution ps,t� and the degree

distribution pk , we can calculate the clustering coefficient for
random networks. The number of triangles in the network
is given by 3N� = N

∑
st tpst and the number of connected

triples N3 = N
∑

k( k
2 )pk . Thus, using Eq. (1), the clustering

coefficient is [9]

C =
∑

st tpst�∑
k

(
k

2

)
pk

. (3)

Note that the factors N cancel, letting C > 0 in the limit of
large networks, i.e., N → ∞.

III. SYNCHRONIZATION ON CLUSTERED NETWORKS

The Kuramoto model consists of a set of N oscillators
coupled by the sine of their phase differences [3,17]. The
state of each oscillator is characterized by its phase θi(t) i =
1, . . . ,N . Considering a complex network where each node is
a Kuramoto oscillator, the equations of motion are given by

dθi(t)

dt
= ωi + λ

N∑
i=1

Aij sin(θj − θi), i = 1, . . . ,N, (4)

where ωi is the natural frequency of the node i, λ is the coupling
strength, and Aij are the elements of the adjacency matrix A,
where Aij = 1 if the nodes i and j are connected while Aij =
0, otherwise. The synchronization can be quantified through
the order parameter

reiψ(t) = 1

N

N∑
j=1

eiθj (t), (5)

where ψ(t) is the average phase of the system. The coherence
parameter is bounded as 0 � r � 1, where r = 1 represents the
fully synchronized state and r = 0 is the incoherent solution.
In the fully connected graph (Aij = 1 ∀i,j and i �= j ), the
order parameter r as a function of λ displays a second-
order phase transition characterized by the critical coupling
λc = 2/[πg(ω̄)] [3,17], where g(ω) is the distribution of the
natural frequencies and ω̄ is the average frequency. In random
networks, the critical coupling λc of such phase transition is
rescaled by the ratio 〈k〉/〈k2〉 [1,4–6], i.e.,

λc = 2

πg(ω̄)

〈k〉
〈k2〉 , (6)

where 〈kn〉 is the nth moment of the degree distribution pk of
the network.

A. Mean-field theory

The critical coupling strength necessary for the onset of
synchronization in Eq. (6) was first obtained by Ichinomiya
through a mean-field analysis [4] for the standard configuration
model. The mean-field analysis has the advantage of allowing
an analytical treatment. In order to extend the mean-field
treatment to the configuration model for random clustered
networks, we approximate the Eqs. (4) into the following
equation:

dθi(t)

dt
= ωi + λ

∑
k′

kiP (k′|ki) sin (θk′ − θi) , (7)

where ki is the degree of the node i and P (k′|k) is the
probability that an edge emitted by a node with degree k is
connected to a node with k′. For uncorrelated networks P (k′|k)
is given by

P (k′|k) = k′pk′

〈k〉 . (8)

Substituting Eq. (8) in Eq. (7) we have

dθi(t)

dt
= ωi + λki

〈k〉
∑
k′

k′pk′ sin (θk′ − θi) . (9)

For the configuration model of clustered random networks,
pk is defined by Eq. (2). Therefore, substituting in Eq. (9) and
noting that ki = si + 2ti we get

dθi(t)

dt
= ωi + λ(si + 2ti)

〈k〉
∑
s ′,t ′�

(s ′ + 2t ′�)ps ′t ′� sin(θk′ − θi),

(10)

where 〈k〉 = 〈s〉 + 2〈t�〉.
For an analytic treatment it is convenient to use the

continuum limit of Eq. (10). For this purpose, let us define
the density of the nodes with phase θ at time t , for a given ω,
with s single edges and t� triangles, denoted by ρ(s,t�,ω; θ,t).
This density is normalized as∫ 2π

0
ρ(s,t�,ω; θ,t)dθ = 1. (11)
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Therefore, Eq. (10) in the continuum limit is given by

dθ (t)

dt
= ω + λ(s + 2t�)

〈k〉
∫

ds ′
∫

dt ′�

∫
dθ ′(s ′ + 2t ′�)

×ps ′t ′� sin(θ ′ − θ ). (12)

The order parameter can also be redefined in order to account
the connectivity pattern of a random network as

reiψ(t) = 1

〈k〉
∫

dω

∫
ds

∫
dt�

∫
dθ (s + 2t�)pst�

× ρ(s,t�,ω; θ,t)eiθ . (13)

Considering Eq. (13), it allows Eq. (10) to be rewritten in
terms of the order parameter, resulting in

dθ

dt
= ω + λ(s + 2t�)r sin(ψ − θ ). (14)

The density ρ(s,t�,ω; θ,t) will obey the following continuity
equation:

∂ρ

∂t
+ ∂

∂θ
{vθρ(s,t�,ω; θ,t)} = 0, (15)

which for the stationary states (∂ρ/∂t = 0) has the solutions

ρ(s,t�,ω; θ ) =

⎧⎪⎨
⎪⎩

δ
[
φ − arcsin

(
ω

(s+2t�)λr

)]
if |ω|

(s+2t�) � λr,

C(s,t�,θ)
‖ω−λkr sin θ | otherwise.

(16)

These solutions correspond to those oscillators that are en-
trained by the mean field and those nonentrained, respectively.
Thus, separating each contribution to the order parameter, we
yield

〈k〉 r =
∫

ds

∫
dt�dθ

[ ∫
|ω|

(s+2t� ) �λr

+
∫

|ω|
(s+2t�) >λr

]

×pst� (s + 2t�)g(ω)ρ(s,t�; θ )eiθ . (17)

The part of the nonentrained oscillator is given by∫
dθg(ω)eiθ

[ ∫ ∞

λ(s+2t�)r
dω

1

(ω − λ(s + 2t�)r sin θ )

+
∫ −λ(s+2t�)r

−∞
dω

1

(−ω + λ(s + 2t�)r sin θ )

]
= 0, (18)

since the integral over θ is 0. Thus the only contribution
for coherence, the parameter r, is due to the synchronous
oscillators, which is accounted for in Eq. (17):

〈k〉 r =
∫

ds

∫
dt�

∫
dω

∫
dθ (s + 2t�)g(ω)

×pst� exp

[
i arcsin

(
ω

(s + 2t�)λr

)]
. (19)

From the real part we get

〈k〉 r =
∫

ds

∫
dt�

∫
dω

∫
dθ (s + 2t�)g(ω)

×pst�

√
1 −

(
ω

(s + 2t�)λr

)2

. (20)

Considering the following change of variable ω′ = ω/(s +
2t�)λr and considering g(ω) = (

√
2π )−1e−ω2/2, we obtain the

following implicit equation for the coherence parameter r:

λ =
√

π

8
〈k〉

{ ∫ ∫
(s + 2t�)2pst�e−λ2(s+2t�)2r2/4

×
[
I0

(
λ2(s + 2t�)2r2

4

)
+ I1

(
λ2(s + 2t�)2r2

4

)]

× dsdt�

}−1

, (21)

where I0 and I1 are the modified Bessel functions of first kind.
Thus, tending r → 0+, we obtain the critical coupling λc for
the onset of synchronization:

λc =
√

8

π
〈k〉

{∫ ∫
(s + 2t�)2pst�dsdt�

}−1

. (22)

The mean-field result obtained for the critical coupling λc

for clustered networks, Eq. (22), is similar to the one for
nonclustered networks [Eq. (6)], i.e., in both cases the critical
coupling is proportional to the ratio of the moments of the
degree distribution. Note that in the absence of triangles
(t� = 0) we recover the result λc = √

8/π〈k〉/〈k2〉, where
the degrees are just due to single edges, k = s. It is possible
to obtain the theoretical curve of the order parameter r as a
function of λ using Eq. (21) by simply, for a given coupling
λ0, checking which value r0 satisfies the equality of Eq. (21)
and thus obtaining the pair of values (λ0,r0). By repeating this
procedure for several values of λ0 we obtain the dependence
r = r(λ).

IV. NUMERICAL SIMULATIONS

In this section we give some numerical simulations of
clustered and nonclustered networks and will compare them
with the theoretical result of Eq. (21). All simulations consider
networks which are constructed through the configuration

FIG. 2. (Color online) Synchronization diagrams for networks
with double Poisson joint distribution pst� [Eq. (23)]. The dots are
obtained by calculating the equations of motion [Eq. (4)] until the
system reaches the stationary state for each value of coupling λ. The
order parameter r is then calculated with Eq. (5). Each point is an
average over ten network realizations. Solid lines correspond to the
theoretical prediction from Eq. (21). Note that the blue and red solid
lines overlap each other.
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model presented in Sec. II and the distributions of single
edges and triangles independently. However, it is also pos-
sible consider correlated distributions as well. The frequency
distribution considered is the same as used in Sec. II, i.e.,
g(ω) = (

√
2π )−1e−ω2/2.

Let us study first networks with the following joint
distribution of single edges and triangles:

pst� = e−〈s〉 〈s〉s
s!

e−〈t�〉 〈t�〉t�
t�!

. (23)

In order to analyze systematically the dependence of the order
parameter on the presence of triangles in the network, we kept
the average degree 〈k〉 = 〈s〉 + 2〈t�〉 fixed and varied the 〈s〉
and 〈t�〉, calculating the order parameter r as a function of the
coupling λ. Figure 2 shows the synchronization diagram for
networks with double Poisson degree distributions [Eq. (23)]
with average degree 〈k〉 = 20. It is interesting to note that
networks with higher values of 〈t�〉 have the same critical
coupling for the onset of synchronization.

We have also considered networks with joint distribution
consisting of a double power-law distribution

pst� ∝ s−γs t
−γt

� , (24)

where γs = γt = γ for the sake of simplicity. Figure 3 shows
order parameter r as a function of λ considering γ = 3. As
we can see, the same behavior is observed as in Fig. 2; the
presence of clustering in the network does not affect the
network synchronization. The nonzero values of the order
parameter r for small values of the coupling λ in Figs. 2 and 3
are due to finite-size effects [4–6,18] (see Appendix).

It is also possible to construct the joint distribution pst� from
a given degree distribution pk through the relation [13,14]

pst� = pkδk,s+2t� [(1 − f )δt,0 + f δt,
(s+2t�)/2�], (25)

where 0 � f � 1 and 
·� is the floor function. Through
Eq. (25) we can construct pst� keeping the degree distribution
pk fixed, with f being the fraction of nodes in the network
attached to the maximum possible number of triangles t =

(s + 2t�)/2� and (1 − f ) the fraction of nodes which are
attached to single edges only. By substituting Eq. (25) into

FIG. 3. (Color online) Synchronization diagram calculated as in
Fig. 2 for networks with double power-law joint distribution pst� , with
γs = γt = 3 in Eq. (24). Each point is an average over ten network
realizations. Solid lines correspond to the theoretical prediction from
Eq. (21). Note that the blue and red solid lines overlap each other.

FIG. 4. (Color online) Synchronization diagrams calculated as in
the other figures for random networks with degree distribution pk =
e−〈k〉 〈k〉k /k! and joint degree distribution generated by Eq. (25).
Each point is an average over ten network realizations. Solid lines
correspond to the theoretical prediction from Eq. (21). Note that the
blue and red solid lines overlap each other.

Eq. (3) we obtained [14]

C = f

∑
k(p2k + p2k+1)∑

k

(
k

2

)
pk

. (26)

Equation (26) establishes a linear relationship between C

and f , i.e., with f = 0 we construct a network with the
minimum value for the cluster coefficient and f = 1 a network
with the maximum value of C for a given pk , allowing
study of the extreme cases of the topology. Figures 4 and 5
show the synchronization diagrams for networks with pk =
e−〈k〉 〈k〉k /k! and pk ∝ k−γ , respectively. Again, we observe
a good agreement with the theoretical curve. Therefore, the
clustering coefficient has no effect on the coherence parameter
evolution r(λ), comparing the curves with f = 0 and f = 1.
Also, finite-size effects are observed for small values of λ (see
Appendix).

In summary, we have shown that the critical coupling
λc for clustered networks is similar to the coupling for
nonclustered ones, which leads to the conclusion that the

FIG. 5. (Color online) Synchronization diagrams calculated as
in the other figures for random networks with degree distribution
pk ∝ k−γ , with γ = 3 and joint degree distribution generated by
Eq. (25). Each point is an average over ten network realizations.
Solid lines correspond to the theoretical prediction from Eq. (21).
Note that the blue and red solid lines overlap each other.
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FIG. 6. (Color online) Synchronization diagrams calculated as
in the other figures for random networks with degree distribution
pk = e−〈k〉 〈k〉k /k! and joint degree distribution generated by Eq. (25)
with f = 1. Each point is an average over ten network realizations.
Solid lines correspond to the theoretical prediction from Eq. (21).

presence of cycles of order 3 does not play an important role
in network synchronization of Kuramoto oscillators. In fact,
the theoretical results for nonclustered networks are highly
accurate in describing the behavior of the order parameter
r for clustered networks, even when the cluster coefficient
C has the maximum accessible value for a given network.
The results presented here are in agreement with previous
findings [12], where it was found that the presence of triangles
in the network topology does not influence the performance of
other dynamical processes, such as bond percolation, k-core
size percolations, and epidemic spreading.
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APPENDIX: ORDER PARAMETER FOR SMALL
COUPLINGS

As we can see in Figs. 2–5, for small coupling λ, the order
parameter r presents non-null values. In order to verify whether
this effect is due to finite-size effects, we performed numerical
simulations in larger networks.

All networks considered have degree distribution given by
Eq. (25), with parameter f = 1, since the main objective of

FIG. 7. (Color online) Synchronization diagrams calculated as
in the other figures for random networks with degree distribution
pk ∝ k−γ , with γ = 3 and joint degree distribution generated by
Eq. (25) with f = 1. Each point is an average over ten network
realizations. Solid lines correspond to the theoretical prediction from
Eq. (21).

the present work is to study networks with clustered structure,
i.e., with nonzero values of triangles. Figure 6 shows the
order parameter r as a function of the coupling λ, considering
networks with average degree 〈k〉 = 20 and N = 1 × 103,3 ×
103,5 × 103, and 1 × 104 nodes by taking into account the
Poisson degree distributions pk in Eq. (25). Moreover,
the frequency distribution is the same as previously used in
the other sections of the paper, i.e., g(ω) = (

√
2π )−1e−ω2/2.

As we can see from Fig. 6, the larger the networks, the
smaller the values of r in the region λ < λc. Note also that
we still observe a good agreement with the theoretical curve
for the larger networks. The same effect is observed in Fig. 7,
where the order parameter r is shown as a function of λ

for networks constructed by taking into account a power-law
degree distribution in Eq. (25) and also with f = 1. Note that
the order of r for λ < λc in all plots is consistent with the
finite-size scaling analysis developed in Refs. [4–6,18], for all
networks.

Finally, we would like to point out that the size depen-
dency of order parameters for small coupling values in the
synchronization problem can be microscopically related to a
recent observed effect, called collective almost synchroniza-
tion (CAS) [19], which consists of nodes evolving in periodic
stable orbits of their dynamics, yielding an approximately
constant local mean field and thus leading to non-null values
of order parameters in the network dynamics. However, this
analysis is out of the scope of the current paper and can be
considered in further works.
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