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Nowadays, the topology of complex networks is essential in various fields as engineering, biology, physics, and other scientific fields.
We know in some general cases that there may be some unknown structure parameters in a complex network. In order to identify
those unknown structure parameters, a topology identification method is proposed based on a chaotic ant swarm algorithm in this
paper. The problem of topology identification is converted into that of parameter optimization which can be solved by a chaotic
ant algorithm. The proposed method enables us to identify the topology of the synchronization network effectively. Numerical
simulations are also provided to show the effectiveness and feasibility of the proposed method.

1. Introduction

So far, most researches on complex networks are based on
their exact structure dynamics. However, there is often vari-
ous unknown or uncertain information in complex networks
of the real world. This information including the topology
connection of networks, and dynamical parameters of nodes,
is always partially known and also changes continuously in
many real complex networks such as gene networks, protein-
DNA structure network, power grid networks, and biological
neural networks [1–4]. Knowledge about the identification
of the topology of complex networks is the prerequisite
to analyze, control, and predict their dynamical behaviors.
Therefore, this topic has drawn great attention of many
researchers, since it is of great theoretical and practical
significance to use the dynamics of observed nodes for the
identification of the network structure [5–7].

The problem of topology identification can be formulated
as a gray box model. From this viewpoint, a basic mathe-
matical model of the topology for the complex network can
be constructed, although its exact structure peculiarities are

not entirely known. In the model of a complex network,
there are often some unknown structure parameters which
can be completed via topology identification. Therefore, if
the basic mathematical model of its topological structure is
built, then we only need to identify the unknown structure
parameters of this network. Recently, some research on
topology identification of complex networks has emerged
to identify some complex networks and some time-delay
networks [8].These researchersmainly used an adaptive feed-
back control algorithm to solve the problem of topological
identification. But this algorithm may fail if the network
is in a synchronous regime. In [9], an improved adaptive
feedback controlmethodwas proposed tomake it identifiable
in synchronous complex networks. However, this improved
method should change the coupling mode of its topology. In
addition, to adapt this improved adaptive feedback control
method, the dynamical parameter of each node must be
observable, which is especially difficult to realize in most
real networks such as metabolic networks and power grid
networks.
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In this paper, a method of topology identification for
complex networks is proposedwhich is based on a chaotic ant
swarm (CAS) algorithm.The problem of topology identifica-
tion is converted into that of parameter optimization which
could be solved by the CAS optimization algorithm [10]. The
CAS algorithm was inspired by biological experiments of
single ant’s chaotic behavior. This CAS method is different
from those of ant colony optimization (ACO), since the CAS
algorithm combines chaotic and self-organizing behaviors of
ants with the advantages of swarm-based algorithms. The
CAS algorithm is a global optimization algorithm, and it
can deal with topology identification of complex networks
effectively when they are in a nonsynchronous and evenwhen
they are in a synchronous regime.

The remainder of this paper is organized as follows. In
Section 2, the problem formulation of topology identification
for complex networks is presented. In Section 3, the chaotic
ant swarm algorithm is introduced. In Section 4, results of
numerical simulations are given. Finally, some conclusions
about the proposed method are drawn in Section 5.

2. Problem Formulation

To demonstrate the topology identification of complex
networks, in this paper, we consider a general complex
dynamical network as in [1] with each node being an 𝑛-
dimensional dynamical system, and it is described by a
differential equation of the following form

𝑋̇
𝑖
= 𝐹
𝑖
(𝑋
𝑖
) +

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
𝐻𝑋
𝑗
, 𝑖 = 1, 2, . . . , 𝑁, (1)

where 𝑁 denotes the number of nodes in the dynamical
network and 𝑋

𝑖
= (𝑥

𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
) ∈ 𝑅

𝑛
is the state

vector associated with the 𝑖th node. The function 𝐹
𝑖
is the

corresponding nonlinear vector field.𝐻 is the inner-coupling
matrix. 𝐶 = (𝑐

𝑖𝑗
)
𝑁×𝑁

is the coupling topology of the network.
If there exists a coupling connection between node 𝑖 and node
𝑗 (𝑖 ̸= 𝑗), 𝑐

𝑖𝑗
̸= 0; otherwise, 𝑐

𝑖𝑗
= 0. In this paper, 𝐶 does not

need to be symmetric or irreducible.
The coupling matrix 𝐶 fully represents the topological

information of the complex network. Consequently, the
problem of topology identification for a complex network
can be converted into that of identification of the unknown
coupling matrix 𝐶. To identify the coupling matrix 𝐶, here,
we assume that 𝐻 and 𝐹

𝑖
can be experimentally measured

in advance. Next, a drive-response network should be built.
Equation (1) is taken as the driving network. Then, the
response network can be designed as

̇𝜂
𝑖
= 𝐹
𝑖
(𝜂
𝑖
) +

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
𝐻𝜂
𝑗
, (2)

where 𝑐
𝑖𝑗
is the estimated parameter of 𝑐

𝑖𝑗
. 𝜂
𝑖
is obtained by

simulating the network (1) with the estimated coupling
matrix element 𝑐

𝑖𝑗
.

To identify the topology of the complex network, the
following objective function is introduced as

𝑉 =

𝑀

∑

𝑘=0

𝑁

∑

𝑖=1

𝐷

∑

𝑑=1

(𝑥
𝑖𝑑 (
𝑘) − 𝜂𝑖𝑑 (

𝑘))
2
, (3)

where𝑀 is the termination time of numerical simulation,𝑁
indicates the number of nodes, 𝐷 denotes the dimensions of
each node’s dynamical system, and 𝑘 is the discrete time. 𝑥

𝑖𝑗
is

the state vector of the driving network. 𝜂
𝑖𝑗
is the state vector

of the response network with initial value 𝜂
𝑖𝑗
= 𝑥
𝑖𝑗
and the

estimated coupling matrix element 𝑐
𝑖𝑗
.

Hence, the problem of topology identification is con-
verted into that of a parameter optimization by the search of
the minimal value of 𝑉. The topology matrix 𝐶 can be well
identified through the method of objective function.

3. Chaotic Ant Swarm Algorithm

In recent years, a swarm intelligent optimization algorithm
called chaotic ant swam (CAS) algorithm is proposed to
solve the optimization problem based on chaos theory [10].
The mathematical model of CAS algorithm is described as
follows:

𝑦
𝑖 (
𝑡) = 𝑦𝑖(

𝑡 − 1)
(1+𝑟𝑖)

,

𝑧
𝑖𝑑 (
𝑡) = Δ exp ((1 − exp (−𝑎𝑦

𝑖 (
𝑡))) (3 − Ψ𝑑

Δ))

−

7.5

Ψ
𝑑
× 𝑉
𝑖

+ exp (−2𝑎𝑦
𝑖 (
𝑡) + 𝑏)

× (𝑝best
𝑑
(𝑡 − 1) − 𝑧𝑖𝑑 (

𝑡 − 1)) ,

(4)

where 𝑦
𝑖
(𝑡) is the organization variable of the CAS model

and Δ = 𝑧
𝑖𝑑
(𝑡 − 1) + 7.5/(Ψ

𝑑
× 𝜙
𝑖
). It controls the chaotic

behavior of an individual ant. In this paper, 𝑦
𝑖
(0) = 0.999.

𝑟
𝑖
is the organization parameter of individual ant which is a

positive constant less than 1. 𝑎 is a very large positive constant;
here, 𝑎 is set to be 200. 𝑏 is a positive constant, where 0 ≤

𝑏 ≤ 2/3. Ψ
𝑖
determines the searching range of the 𝑖th ant in

𝑑th dimension. 𝜙
𝑖
controls the moving proportion of the 𝑖th

ant searching space. 𝑝best(𝑡 − 1) is the best position that the
individual ant and its neighbors have ever found within 𝑡 − 1
time steps. Here the neighbors are set to be global neighbors;
that is, all the ants are the neighbors of each other.

The ants usually exchange information via certain direct
or indirect communication methods. As a result of effective
communication, the impact of the organization becomes
stronger as time evolves. Finally, all the ants walk through
the best path to forage food. Equation (4) shows the foraging
process of CAS model. As time increases, the effect of the
organization variable 𝑦

𝑖
(𝑡) on the behavior of each ant is

becoming stronger via the organization parameter 𝑟
𝑖
. Finally,

by the effect of both 𝑝best
𝑑
(𝑡 − 1) and 𝑦

𝑖
(𝑡), the state of 𝑧

𝑖𝑑
(𝑡)

will converge to the best global position.
𝑟
𝑖
andΨ

𝑑
are two important parameters. 𝑟

𝑖
has an effect on

the converging speed of the CAS algorithm. If 𝑟
𝑖
is very large,

then the converging speed of the CAS algorithm will be very
fast so that the optimal solution might not be found. If 𝑟

𝑖
is
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very small, then the converging speed of the CAS algorithm
will be very slow and the runtimewill be longer. If 𝑟

𝑖
is set to be

zero, then the behavior of one ant will be chaotic all the time
and the CAS algorithm cannot converge to a fixed position.
Furthermore, since small changes of organization effect are
desired, 𝑟

𝑖
is set to be 0 ≤ 𝑟

𝑖
≤ 0.5. The concrete formula

of 𝑟
𝑖
depends on the specific problem as well as runtime.

In order to enable each ant to have a different organization
parameter, we set 𝑟

𝑖
= 0.1 + 0.2 × rand, where rand is a

uniformly distributed random number in the interval [0, 1].
Ψ
𝑑
has an effect on the searching range of the CAS algorithm.

If the value of Ψ
𝑑
is very large, then the searching range will

be small. If Ψ
𝑑
is very small, then the searching range will be

very large.The searching range is set to be [−𝑤
𝑑
/2, 𝑤
𝑑
/2], and

then 𝑤
𝑑
≈ 7.5/Ψ

𝑑
.

Based on the above discussions about the CAS algorithm,
the detailed procedure for identifying the topology structure
of a complex network is described as follows.

Step 1. To identify the topology parameter of a complex
network, some important parameters of the CAS algorithm
should be firstly initialized. In this paper, the positive constant
𝑎 is set to be 200; the organization factor 𝑟

𝑖
of each node is set

as 𝑟
𝑖
= 0.1 + 0.2 × rand, where 𝑖 is the 𝑖th ant in the whole 𝑄

ants; 𝜙
𝑖
is set properly to control the moving proportion. The

organization variable of each node 𝑦
𝑖
is set to be 0.999. Ψ

𝑑
is

set properly to control the searching range of 𝑧
𝑖𝑑
, where 𝑑 is

the 𝑑th dimension of the ant local position.

Step 2. Generate the initial position of the 𝑖th ant 𝑧
𝑖
(𝑘 = 0) =

(𝑧
𝑖1
, 𝑧
𝑖2
, . . . , 𝑧

𝑖𝑑
)
𝑇 randomly in the searching space. 𝑘 = 0

denotes the initial time point.

Step 3. By setting the initial time state vector 𝑥
𝑖
(0) =

(𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
), the fourth-order Runge-Kutta algorithm is

used in the driving network (1) to obtain a series of 𝑥
𝑖
(𝑘).

Step 4. By setting the initial time state vector 𝜂
𝑖
(0) = 𝑥

𝑖
(0),

𝑖 = 1, 2, . . . , 𝑁, the well-known fourth-order Runge-Kutta
algorithm is used in the response network (2) to obtain a
series of 𝜂

𝑖
(𝑘), 𝑖 = 1, 2, . . . , 𝑁. The coupling matrix 𝐶 can be

estimated by the ant colony 𝑧
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑄.

Step 5. Compute 𝑦
𝑖
for each ant.Then, update the position of

each ant via (4).

Step 6. Compute the value of objective function for each ant
𝑧
𝑖
, and compare each value with previous 𝑓𝑝best of each ant.

If the current value is smaller than the previous 𝑓𝑝best, then
it is updated by the current value, and set the value of 𝑝best
to be the current individual location. Finally, compare each
𝑓𝑝best with 𝑓𝑔best. If the value of 𝑓𝑝best is smaller than
𝑓𝑔best, then 𝑓𝑔best is updated by 𝑓𝑝best of this ant. Then,
the 𝑝𝑔best = (𝑝𝑔best

1
, 𝑝𝑔best

2
, . . . , 𝑝𝑔best

𝑑
) is replaced by

the current global best position.

Step 7. Go to Step 5 until the ending condition is satisfied.
Then output the global best location of each ant, whichmeans
the couplingmatrix𝐶 can be identified by theCAS algorithm.

4. Numerical Simulation

In this section, we present several numerical simulation
results to illustrate the effectiveness of the proposed method.
Lorenz chaotic equation is taken as the node dynamical
system of the 𝑖th node, which is described as

𝑥̇
1
= 𝜃
1
(𝑥
2
− 𝑥
1
) ,

𝑥̇
2
= (𝜃
2
− 𝑥
3
) 𝑥
1
− 𝑥
2
,

𝑥̇
3
= 𝑥
1
𝑥
2
− 𝜃
3
𝑥
3
,

(5)

where 𝑥
1
, 𝑥
2
, and 𝑥

3
are the state variables; 𝜃

1
= 10, 𝜃

2
= 28,

𝜃
3
= 8/3 are positive constants. For the CAS algorithmmodel

(4), we set 𝑎 = 200, 𝑏 = 2/3, and 𝜙
𝑖
= 0. To calculate

the objective function 𝑉, 𝑀 = 20 successive vectors are
set in both driving and response networks. In order to show
the effectiveness and feasibility of the proposed method, two
examples are provided as follows to identify the topology
structure of complex networks.
Note. There is an interesting phenomenon. Let 𝜑 be the
golden ratio, which is approximately equal 1.618. Then, 𝑏
approximately equals 1/𝜑, and 𝜃

3
approximately equals to 𝜑2.

Why such an interesting phenomenon exist? We should give
further study in our future work. The basic concept of the
golden ratio is given in [11–13] and [14] for the spectra used
in [11, 12].

Example 1. First of all, a nonsymmetric and non-
synchronous diffusive network is considered, which includes
three nodes with the topology matrix 𝐶. The elements of the
topology matrix 𝐶 are 𝑐

1,2
= 4, 𝑐
2,1

= 5, 𝑐
2,3

= 3, and 𝑐
3,2

= 2.
The other elements are 𝑐

𝑖,𝑗
= 0 (𝑖 ̸= 𝑗) and 𝑐

𝑖,𝑖
= −∑ 𝑐

𝑖,𝑗
. 𝐻

is an identical matrix 𝐼
3
. Here, the initial state is set to be

𝑋(0) = [−6, 3, 7; −14, 3, −4; 5, −3, 4]. The population size is
40. The maximum time step is set as 200. Obviously, there
are 6 independent variables, so the dimension of each ant
position is set to be 6. We set Ψ

1
= Ψ
3
= 1.25, Ψ

2
= 1,

Ψ
4
= 1.85, and Ψ

5
= Ψ
6
= 10. 𝜂

𝑖𝑑
is in the interval [0, 7.5].

The estimated process is shown as follows.

Figure 1 shows that the coupling matrix 𝐶 can be well
identified as the time increases. When the time step is
approximately 200, the estimated coupling matrix converges
to the true value where the population size is 40. To compare
the CAS algorithm with the QPSO algorithm, we also use the
definition of [15] to identify the topology of Example 1. Then,
the evolution curve of the objective function against the time
can be obtained, and their comparative result between these
two algorithms is shown in Figure 2. We can see that the
objective function𝑉 converges rapidly to the global optima as
time evolves. Besides, the converging speed and the precision
of the CAS algorithm aremuch better than those of theQPSO
algorithm.

Example 2. In this example, a symmetric synchronous net-
work is introduced to show the effectiveness of the proposed
method. The parameters of the topology structure are set as
𝑐
1,2

= 𝑐
2,1

= 3, 𝑐
1,3

= 𝑐
3,1

= 6, 𝑐
1,4

= 𝑐
4,1

= 2, 𝑐
2,3

= 𝑐
3,2

= 4,
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Figure 1: (Color online) Estimation of nonsynchronous network
topology showing the value 𝑐(𝑡) against time step 𝑡.
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Figure 2: Estimation of nonsynchronous network topology show-
ing the objective function value 𝑉 against time step 𝑡.
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𝑖,𝑗
.

𝐻 is an identical matrix 𝐼
3
. Here, the initial state is 𝑋(0) =

[−6, 3, 7; −14, 3, −4; −3, 4, 5; −5, 6, 1].The population size is
30.Themaximal time step is set as 300. Obviously, there are 6
independent variables, so the dimension of each ant position
is set to be 6.Ψ

1
is set to be 1.875.Ψ

2
is set to be 0.75.Ψ

3
is set

to be 1.875. Ψ
4
is set to be 1.25. Ψ

5
is set to be 0.9375, and Ψ

6

is set to be 10. Figure 3 shows the identification results.

We can see that the topology matrix 𝐶 can be identified
precisely as the time increases. To compare CAS algorithm
with QPSO algorithm, we use the definition of [15] to identify
the topology of Example 2.The comparative result is shown in
Figure 4. From Figure 4 and Table 1, we can see that although
the converging speed of QPSO algorithm is a little faster than
that of CAS algorithm, the converging precision of QPSO is
much less than that of CAS algorithm. Obviously, the CAS-
based topology identification method is more effective than
the QPSO-based topology identification method. Compared
with the adaptive synchronization identification approach,
the CAS algorithm does not need to change the coupling
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Figure 3: (Color online) Estimation of a synchronous network
topology showing the value 𝑐(𝑡) against time step 𝑡.
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Figure 4: Estimation of nonsynchronous network topology show-
ing the objective function value 𝑉 against time step 𝑡.

Table 1: Comparison between two algorithms.

Algorithms Objective value
CAS 0.317
QPSO 2.082

modes of the network topology, which has advantages in
some real identification cases, for example, the biological
neural network.

5. Conclusion

In this paper, a topology identification method is proposed
based on the CAS algorithm. The problem of topology iden-
tification is converted into that of parameter optimization.
Compared with the constraints of identifying synchronous
complex networks via adaptive feedback control method and
the relatively poorer converging precision via QPSO-based
topology identification method, the proposed method based
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on CAS algorithm can identify the topology structure of
complex network effectively.
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