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  Coupling analysis of transient cardiovascular 
dynamics    

  Abstract:   The analysis of effects from coupling in and 

between systems is important in data-driven investiga-

tions as practiced in many scientific fields. It allows deeper 

insights into the mechanisms of interaction emerging 

among individual smaller systems when forming complex 

systems as in the human circulatory system. For systems 

featuring various regimes, usually only the epochs before 

and after a transition between different regimes are ana-

lyzed, although relevant information might be hidden 

within these transitions. Transient behavior of cardiovas-

cular variables may emerge, on the one hand, from the 

recovery of the system after a severe disturbance or, on the 

other hand, from adaptive behavior throughout changes 

of states. It contains important information about the pro-

cesses involved and the relations between state variables 

such as heart rate, blood pressure, and respiration. There-

fore, we apply an ensemble approach to extend the method 

of symbolic coupling traces to time-variant coupling 

analysis. These new ensemble symbolic coupling traces 

are capable of determining coupling direction, strength, 

and time offset  τ  from transient dynamics in multivariate 

cardiovascular data. We use this method to analyze data 

recorded during an orthostatic test to reveal a transient 

structure that cannot be detected by classic methods.  
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  Introduction 

 Biological systems such as the human circulatory system 

are complex, usually consisting of several smaller sub-

systems. To gain deeper insights into the mechanisms 

of interaction between those subsystems, the analysis 

of couplings plays an important role, especially in data-

driven investigations as practiced in many scientific 

fields [ 2 ,  5 ,  6 ,  9 ,  13 ,  14 ,  17 ]. Recent research projects in 

the fields of medicine and physiology are, e.g., focused 

on the connection between heart rate and blood pres-

sure (e.g., baroreflex) [ 22 ], the correlation between corti-

cal and subcortical activity regarding the differences of 

heart rate variability during different sleep stages, or on 

the interaction between heart rate and respiration [ 12 ,  25 ]. 

Data recorded for these purposes almost always display 

nonstationarities, nonlinearities, and intrinsic noise as 

well as measurement noise. Therefore, the analysis of 

these signals, especially the detection of coupling direc-

tions, is complicated. Different methods, starting from 

cross-correlation  via  mutual predictability to informa-

tion theoretic approaches [ 7 ,  8 ,  10 ,  18  –  20 ,  23 ,  26  –  28 ], have 

been applied to physiological data. All these methods are 

more or less able to find the directions of the interactions. 

However, due to the nonstationarity and nonlinearity of 

the underlying processes in biosignals, the conclusions 

are not consistent across the different methods. Recently, 

new methods based on order pattern analysis have been 

developed to circumvent these problems [ 11 ,  16 ]. Order 

patterns result from a coarse graining (symbolization) of 

the data, e.g., according to the ranks of the amplitudes. 

This symbolic representation of successive amplitudes is 

less sensitive to nonstationarities. 

 However, for systems featuring various structurally 

different regimes, this approach is not enough. In this 

case, the different epochs are typically analyzed sepa-

rately, although relevant information might be hidden 

within the transitions between the regimes. In the cardio-

vascular system, these transients may occur either by the 
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recovery of the system after a severe disturbance (e.g., 

apnea during sleep) or by the adaptive behavior of the 

system throughout changes of states (e.g., orthostatic 

tests or change of sleep stages). These transient regime 

shifts contain  important information about the underlying 

 processes involved and the relations between state vari-

ables such as heart rate and blood pressure. Therefore, the 

analysis of time-dependent couplings during these tran-

sient epochs is an important current research problem. 

 Recently, a new idea to handle this kind of data has 

been proposed, using an ensemble approach [ 1 ,  15 ,  32 ]. 

We use this approach to extend the method of symbolic 

 coupling traces (SCT) [ 33 ]. In this work, we will intro-

duce the new ensemble symbolic coupling traces (eSCT) 

measure and test its capabilities to determine the temporal 

changes in the three aspects (coupling direction, coupling 

strength, and occurring time lag) of transient dynamics in 

multivariate cardiovascular data.  

  Materials and methods 
 The SCT method was introduced by Wessel et al. [ 33 ] and 

has been successfully applied in the analysis of the car-

diovascular regulation during sleep [ 31 ] and the effects of 

a therapy for patients with sleep apnea [ 21 ]. 

 Suppose we either have a bivariate time series 

  { }
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( ) ,
i N

x i
=

�
 where a certain event takes place  M  times at 

time points   0
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build the ensembles in order to apply the eSCT method, 

we first have to align the  M  events/time series in a way 
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ensemble of aligned time series for a certain time range 
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 where   θ   is the time delay between the values regarded 

for the symbolification process. Throughout this work, 

it is set to the sampling time (recorded data) or to   θ   = 1 

(model data), i.e., successive values in the time series 

are regarded. The index  k  = 1, … , M  describes the ensemble 

elements. 

 Using these symbol sequences, words   ( )k
xw t  and 

  ( )k
yw t  of a predetermined length  l  of successive symbols 

are formed, resulting in  d  = 2  l   different possible words. The 

words are then taken to compute the time-dependent joint 

bivariate word distribution [ 4 ]: 

   
( )( , ) ( ) ; ( ) .k k

ij x i y jp t P w t W w t Wτ τ= = + =
 

(2)
 

 The variable  p ij  ( t, τ  ) describes the probability that 

the words  W i   and  W j   occur in the word sequences   ( )k
xw t  

and   ( )k
yw t  at time point  t  exactly   τ   time steps apart. This 

probability is estimated by building a histogram for each 

time point  t  and each lag   τ  , thus averaging over all the 

 ensemble elements  k . The basic SCT concept, which is 

identical for SCT and eSCT, is illustrated in  Figure 1 . The 

time-dependent difference  

   1..2 ; 2 1-

( , )( , ) ( , )- ( , ) ( , )-
l l

ijij
i j i j i

p tT t T t T t p t ττ τ τ τ
= = = +

Δ = =∑ ∑
 

(3)
 

 describes the discrepancy between structurally symmet-

ric and diametric parts of the time series of the different 

variables, when shifted   τ   time steps against each other. 

Through this difference, it is possible to assess the rela-

tive coupling strength and the dominant mutual behavior 

 Figure 1      Illustration of the SCT [ 33 ]. 

 After the symbolification of the time series, words of a certain length are formed and the bivariate word distribution is computed.    
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of both time series (symmetric or diametric). Using this 

difference has been shown to be more useful than using, 

e.g., Shannon entropy to characterize the  p  ij ( t, τ  ) matrix, as 

this just blurs the correct results. Using the correspond-

ing values of   τ  , the coupling direction and the occurring 

time lag are determined. Using an empirical test [ 31 ], the 

significance of the resulting values can be assessed. In 

this method, the coupling direction is solely determined 

 via  the occurring time lags, which is sufficient for our pur-

poses of developing descriptive models to help in predict-

ing certain events, as we are only looking at causalities in 

the sense of Granger causality [ 10 ]. 

 Using the symbolification approach, the amplitude 

information of the time series is lost. However, because this 

information can be quite unreliable due to noise, the SCT 

and eSCT methods are able to ignore random effects and 

concentrate on significant coupling information only. In 

 Figure 2 , five realizations of an AR process, described below, 

are shown, and the basic concept of the ensemble method 

in contrast to a time-averaging method is illustrated. In 

 Figure 3 , a representation of the results of the eSCT method 

applied on the data of the same AR process is shown and an 

explanation of how to read the diagram is given.   

 For a first test, we apply the eSCT on data generated 

by a simple AR model  x ( i ) =  ax ( i -1) +  by ( i -  τ   
1
 ( i )) +   ε  x  ( i), y ( i ) =  cy

 ( i -1) +  dy ( i -  τ   
2
 ( i )) +   ε  y  ( i ), where  a  =  c  = 0.3 and  b  = - d  = 0.7. In the first 

case, all model parameters were held constant throughout 

the simulation with   τ   
1
  = 1 and   τ   

2
  = 2 ( Figure 4 , upper panel). In 

the second case, the time lags   τ   
1
  and   τ   

2
  for the interactions 

between the two time series were changed at  i  = 200 from   τ   
2
  = 2 

to   τ   
2
  = 5 and at  i  = 700 from   τ   

1
  = 1 to   τ   

1
  = 3 (Figure 4, lower panel). 

Further, we test the new method on data coming from two 

studies. From the first [ 21 ], we took the electrocardiogram 

(ECG) and blood pressure (systolic and diastolic) recordings 

from ten male control subjects during sleep. After identify-

ing light sleep stages, as scored by qualified technicians, 

over all subjects, we were able to build an ensemble con-

taining  M  = 152 measurements of ECG and blood pressure, 

respectively, spanning a time of at least 18 beat-to-beat 

intervals. The time series are aligned at the beginning of the 

sleep stage as scored. From the second study [ 3 ], we took the 

ECG and blood pressure (also systolic and diastolic) record-

ings during an orthostatic test. The 346 subjects were first 

measured in a supine position, and then after a change of 

posture, in a standing position. For an initial test, we used 

the data from all subjects with no regard of age, gender, or 

body mass index to build an ensemble with a size of  M  = 346 

measurements. The ensemble time series are aligned using 

the event of standing up as scored in the data as the refer-

ence point and a time range of 110 beat-to-beat intervals 

before and after the event are regarded. 

  The time spans selected in these first tests represent a 

compromise between an ensemble that is as large as pos-

sible and a still representative time range.  

  Results 
 As a first step, we applied the eSCT on data generated by 

a simple AR model. Whereas the classic SCT (Figure 4A 
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 Figure 2      Illustration of the use of the ensemble approach for five realizations of an AR process. 

 The red rectangle shows the usual estimation over the time domain for the ensemble member  k  = 2. The green line, labeled  T  
0
 , shows the time point 

at which the ensemble time series are aligned. The blue rectangles show the estimation across the ensemble for three different time points.    
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 Figure 3      Representation of the results of the eSCT method applied to an AR process with time-varying parameters. 

 The left panel shows a bar diagram (coupling strength over time lag) for time point  t  = 800. Negative values in the coupling strength indicate 

diametric, whereas positive values represent symmetric coupling. The height of the bars corresponds to the color coding in the right panel, 

where the coupling strength for each time lag is plotted for each time point.    

and B) only shows which time lag predominated over a 

larger time span, the eSCT (Figure 4C and D) shows the 

exact time points where the parameter changes occurred. 

The windowed cross-correlation (Figure 4E and F) also 

finds the correct lags but shows residues at other time lags 

and is not as accurate in identifying the time points where 

the switchings took place due to the length of the used 

window. In this test, an ensemble consisting of  M  = 1000 

realizations has been used to eliminate the effect of noise. 

In the case of this simple model data, the coupling struc-

ture can already be guessed using an ensemble size as 

small as  M  = 20. Using  M  = 100, the structure can already be 

clearly recognized with only little influences from noise. 

The dependency of the quality of the results on the ensem-

ble size for this example is shown in  Figure 5 .  

 The next step was to test the eSCT on stationary heart 

rate and blood pressure data recorded during light sleep 

[ 21 ] in order to ascertain that the results obtained using 

the SCT method are reproduced. The results are shown 

in  Figure 6 . Both methods show significant couplings 

(p  <  0.01) from diastolic to systolic blood pressure (sym-

metric,   τ   = -1), from beat-to-beat intervals to systolic blood 

pressure (diametric,   τ   = -2), and instantaneous connections 

(  τ  =  0) between diastolic blood pressure and beat-to-beat 

intervals (diametric) and between beat-to-beat intervals 

and systolic blood pressure (symmetric).  

 Finally, as a first test for the performance of the 

eSCT on transient data, we applied the method on blood 

pressure and beat-to-beat interval recordings ( Figure  7 ) 

obtained during an orthostatic test [ 3 ]. The drastic changes 

in blood pressure and the almost complete disappearance 

of the respiratory sinus arrhythmia are clearly visible. 

In  Figure 8 , it can be seen that the regular structure (as 

seen in Figure 6) is disrupted during the event around 

time point  t  = 0, where the subjects changed position. In 

the direct aftermath of the event, a growing symmetric 

influence of blood pressure on the beat-to-beat intervals 

can be observed. In the direct vicinity of the event, a gap 

appears in the   τ   = -2 interaction. After the outburst around 

 t  = 20, the regular structure is restored quite fast, although 

a lingering effect from blood pressure on the heart rate 

can be seen (  τ   = 1). Also, slight fluctuations in the coupling 

strength (fluctuations in the color), different from those 

before the event, are now present.   

 When compared with a windowed version of the SCT, 

the eSCT method shows clear advantages because of the 

tradeoff between window length and time resolution. 

Either the window length was too small for the SCT to 
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 Figure 4      Comparison of the classic SCT and the eSCT method and the windowed cross-correlation (window length = 100) for the AR model data. 

 Time and time lags are shown as sample indices. In A, C, and E, all parameters and time lags stayed fixed throughout the simulation, and 

the first two methods detected the diametric coupling from  x  to  y  with time lag   τ   = -2 and the symmetric coupling from  y  to  x  with time lag 

  τ   = 1. The windowed cross-correlation also identifies the correct time lags, although the results are more washed out and show a repetitive 

behavior for higher time lags. In B, D, and F, the occurring time lags have been switched at different time points. The SCT method (B) detects 

only the time lags that have been predominant over the longer period. The eSCT (D) detects the correct time lags, including the exact time 

points where the parameter changes took place. The windowed cross-correlation again shows the correct time lags and also some residue 

at other time lags, especially around the correct lags. Additionally, the time points where the parameter changes took place are not clearly 

identifiable due to the length of the used window.    
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 Figure 5      Dependency between the quality of the results and the ensemble size for the regarded AR process with time-varying parameters. 

 The plot shows the mean correlation between the estimated coupling structure and the theoretic structure. For this simple example, the 

coupling structure can already be guessed for  M  = 20 (correlation   >  0.75) and good results can be obtained for  M   >  90 (correlation   >  0.95).    
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 Time and time lags are shown as indices of the respective beat-to-beat intervals. At time  t  = 0, the change of posture took place. In the 

beginning of the event, the attenuation of the respiratory sinus arrhythmia can be seen.    
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 Figure 6      Comparison of the classic SCT and the eSCT method for stationary blood pressure and beat-to-beat intervals recorded during 

light sleep. 

 Time and time lags are shown as indices of the respective beat-to-beat intervals. Both methods detect the same time lags, relative  coupling 

strengths, and the same mutual behavior of the time series. We find directional symmetric coupling from diastolic to systolic blood 

 pressure (left, Frank-Starling mechanism) and diametric coupling from beat-to-beat intervals to systolic blood pressure (middle, baroreflex). 

The lag   τ   = 0 couplings represent mechanically induced arterial pressure fluctuations, e.g., due to respiratory movement.    
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show any meaningful results (noise) or too big to capture 

the transient event of the change of posture. We also com-

pared the eSCT method with the windowed cross-correla-

tion, but this time, no meaningful structure was discern-

ible using the cross-correlation.  

  Discussion 
 The couplings found by applying our eSCT technique to 

real data confirm the predominating picture about cardio-

vascular short-term regulation. The significant connec-

tions found in the stationary data recorded during sleep 

(Figure 6) are from diastolic to systolic blood pressure 

(symmetric,   τ   = -1), depicting the Frank-Starling mecha-

nism due to the respiratory sinus arrhythmia [ 30 ], and 

from beat-to-beat intervals to systolic blood pressure (dia-

metric,   τ   = -2), illustrating the vagal feedback [ 33 ]. The lag 

  τ   = 0 connections between diastolic blood pressure and 

beat-to-beat intervals (diametric) and between beat-to-

beat intervals and systolic blood pressure (symmetric) 

represent mechanically induced arterial pressure fluctua-

tions due to respiratory movement [ 33 ]. 

 The coupling structure found in the nonstation-

ary data further corroborates the opinions about the 

short-term regulation. The growing symmetric influence 

of blood pressure on the beat-to-beat intervals can be 

identified with the sympathetic baroreflex trying to com-

pensate the drop in blood pressure. The gap in the   τ   = -2 

interaction between beat-to-beat intervals and blood pres-

sure can be explained by the attenuated respiratory sinus 

arrhythmia (cf. Figure 7) and the strong dominance of 

the blood pressure drop at this time. The fluctuations in 

the coupling strength show an adapting process between 

blood pressure and heart rate, as the minima and maxima 

in the   τ   = 0 and   τ   = 1 region are alternating, indicating the 

presence of fast vagal and slower sympathetic controls. 

 The results of these first performance tests of the eSCT 

show promise for future applications of this method. We 

could show that our new method is indeed capable of 

detecting changes occurring in a complex system during 

transient behavior while reproducing the results of the 

classic method for stationary epochs. In a first application 

to a transient process, we were able to identify dynami-

cal changes in coupling strength, direction, and occurring 

time lags in the baroreflex action. In all tests, the eSCT 

method outperformed the classic SCT measure and the 

windowed cross-correlation. 

 A couple of major challenges still have to be met in 

the future. The first one concerns the creation of suitable 
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 Figure 8      Results of the eSCT for systolic blood pressure and beat-to-beat interval recordings during an orthostatic test. 

 Time and time lags are shown as indices of the respective beat-to-beat intervals. The regular structure (as seen in Figure 6) is disrupted 

during the event around time point  t  = 0. In the direct aftermath of the event, a growing symmetric influence of blood pressure on the 

 beat-to-beat intervals can be observed (baroreflex). After the outburst around  t  = 20, the regular structure is restored quite fast, although 

a lingering effect from blood pressure on the heart rate can be seen (  τ   = 1).    
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ensembles, where two different cases need to be distin-

guished. One consists of the situations where certain 

events in one subject occur several times (e.g., event-

related potentials, sleep arousals), allowing to build 

ensembles using similar events for each subject. In the 

other, more complicated case, there is one experiment 

performed on several subjects (e.g., orthostatic tests). 

Here the ensembles are built across the subjects. To do 

this, a reasonable grouping of the subjects has to be 

done, as different subjects will react differently in the 

same situation. In our first test, we did not perform such 

a grouping, but looked at all subjects together to get an 

ensemble that is as large as possible. The next step would 

be to look for differences in different groups, always 

keeping a minimal ensemble size in mind. Finally, we 

aim to develop an automated selection technique based 

on principal and independent component analysis, and 

similar methods. 

 The first results of our new method show a great poten-

tial to allow new insights into the short-term nonlinear 

cardiovascular regulation and to better predict potential 

health risks using the ensemble approach. Our next steps 

are to compare several coupling measures to select appro-

priate measures for transients and nonstationary physi-

ological data, exploiting the generality of the ensemble 

approach, which permits us to use the scope of nonlinear, 

multivariate measures already developed. The coupling 

measures to be applied will be chosen from among well-

known methods such as Granger causality [ 10 ], informa-

tion theoretic techniques [ 20 ,  29 ], and others like in [ 24 , 

 26 ] according to their suitability and performance.   
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