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The equivalent system for a multiple-rational-order
(MRO) fractional differential system is studied, where
the fractional derivative is in the sense of Caputo
or Riemann–Liouville. With the relationship between
the Caputo derivative and the generalized fractional
derivative, we can change the MRO fractional
differential system with a Caputo derivative into a
higher-dimensional system with the same Caputo
derivative order lying in (0, 1). The stability of the zero
solution to the original system is studied through the
analysis of its equivalent system. For the Riemann–
Liouville case, we transform the MRO fractional
differential system into a new one with the same order
lying in (0, 1), where the properties of the Riemann–
Liouville derivative operator and the fractional
integral operator are used. The corresponding stability
is also studied. Finally, several numerical examples are
provided to illustrate the derived results.

1. Introduction
In 1695, fractional calculus was born, with a question
about the meaning of a derivative of the order one-half.
Although fractional calculus is a mathematical topic with
more than a 300 year old history, the development of
fractional calculus was a bit slow at the early stage and
was mainly focused on the pure mathematical field. The
earliest systematic studies were made in the nineteenth
century. With the development of fractional calculus
theory, it has been found only in recent years that the
behaviours of many systems can be described by using

c© 2013 The Author(s) Published by the Royal Society. All rights reserved.
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fractional differential systems, such as viscoelastic systems, dielectric polarization, electrode–
electrolyte polarization, electromagnetic waves, power-law phenomena in fluid and complex
networks, allometric scaling laws in biology and ecology, coloured noise, boundary-layer effects
in ducts, quantitative finance, quantum evolution of complex systems, fractional kinetics, etc.

The extensive applications of fractional differential systems in various fields of science
and engineering have greatly accelerated their advance in theoretical analysis and numerical
calculation, especially in stability analysis, fractional dynamics and numerical computation, etc.
Over the past few decades, since the work of Matignon [1], the stability analysis of fractional
differential systems has become more and more interesting and important. Matignon’s stability
analysis is devoted to a linear fractional differential system with a Caputo derivative whose order
lies in (0, 1]. Recently, Qian et al. [2] investigated the stability of fractional differential systems with
Riemann–Liouville derivatives whose order belongs to (0, 1). For nonlinear fractional differential
systems, the stability analysis is much more difficult and only a few studies are available,
including the continuous dependence of the solution on the initial conditions [3,4] and the
stability in the sense of Lyapunov [5–7]. In [5], the definition of Mittag–Leffler stability was first
defined, and the corresponding theoretical theorems were also derived. The generalized Mittag–
Leffler stability was studied in [6]. All of the above literature deals with same-order fractional
differential systems. On the other hand, the stability analysis of multiple-order fractional
differential systems has been also discussed. For the multiple-rational-order (MRO) case with
MRO in (0, 1), we can refer to [8]. A survey on stability analysis of fractional differential systems
has recently been presented, where multiple-order systems are also mentioned [9].

It is often inconvenient to study the MRO system directly. However, we change it into an
equivalent system with the same derivative order. There are some studies in this respect. For
more details, see [8,10–17] and references therein, where [8,16] mainly focused on the stability
of solutions.

The rest of this paper is organized as follows. In §2, some definitions and properties are
introduced. In §3, the equivalence and stability analysis of the MRO fractional differential system
with a Caputo derivative are studied. The equivalence and stability analysis of the MRO fractional
differential system with a Riemann–Liouville derivative, together with illustrative examples, are
given in the following section. The conclusions are given in the final section.

2. Preliminaries and definitions
Let us denote by R the set of real numbers, by R+ denote the set of positive real numbers and by
Z+ denote the set of positive integer numbers.

In this section, we will recall the main definitions and properties of the relevant fractional
derivative operators. Among several definitions of the fractional derivatives, the Caputo
derivative and the Riemann–Liouville derivative are often used in applied mathematics and
engineering [1,8,18,19]. Throughout this paper, we always assume the existence of the fractional
integral and fractional derivatives of a given function, together the composite operations, as usual.
Detailed discussions of such existence can be found in [18,20,21].

Definition 2.1. The αth-order Riemann–Liouville integral of function x(t) is defined
as follows:

D−α
0,t x(t) = 1

Γ (α)

∫ t

0
(t − τ)α−1x(τ ) dτ , (2.1)

where α > 0 and Γ (·) is the Euler Gamma function. In some situations, we use RLD−α
0,t x(t) instead

of D−α
0,t x(t) for α > 0.

Definition 2.2. The αth-order Riemann–Liouville derivative of function x(t) is defined
as follows:

RLDα
0,tx(t) = 1

Γ (m − α)

dm

dtm

∫ t

0
(t − τ)m−α−1x(τ ) dτ , (2.2)

where m − 1 ≤ α < m ∈ Z+.
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Definition 2.3. The αth-order Caputo derivative of function x(t) is defined as follows:

CDα
0,tx(t) = 1

Γ (m − α)

∫ t

0
(t − τ)m−α−1x(m)(τ ) dτ , (2.3)

where m − 1 < α ≤ m ∈ Z+.

Unlike classical differentiation and integration, fractional differentiation and integration
cannot commute. Neither the Caputo-derivative nor the Riemann–Liouville-derivative operator
satisfies the semigroup property. In the following, we just list some properties of the fractional
calculus where the calculations involved are meaningful [18,19,21,22].

Property 2.4. The fractional integral operator satisfies the semigroup property, i.e.

D−α
0,t (D−β

0,t x(t)) = D−α−β

0,t x(t), (2.4)

where α, β > 0.

Property 2.5. The compositions of Riemann–Liouville derivative operators RLDα
0,t and RLDβ

0,t
are as follows:

RLDα
0,t(RLDβ

0,tx(t)) = RLDα+β

0,t x(t) −
m∑

j=1

[RLDβ−j
0,t x(t)]t=0

t−α−j

Γ (1 − α − j)
(2.5)

and

RLDβ

0,t(RLDα
0,tx(t)) = RLDβ+α

0,t x(t) −
n∑

j=1

[RLDα−j
0,t x(t)]t=0

t−β−j

Γ (1 − β − j)
, (2.6)

where n − 1 ≤ α < n, m − 1 ≤ β < m and m, n ∈ Z+.

Property 2.6. The compositions of Riemann–Liouville derivative operator RLDα
0,t and fractional

integral operator RLD−β

0,t are as follows:

RLDα
0,t(RLD−β

0,t x(t)) = RLDα−β

0,t x(t) (2.7)

and

RLD−β

0,t (RLDα
0,tx(t)) = RLDα−β

0,t x(t) −
n∑

j=1

[RLDα−j
0,t x(t)]t=0

tβ−j

Γ (1 + β − j)
, (2.8)

where n − 1 ≤ α < n ∈ Z+ and β > 0.

Properties 2.4–2.6 can be found in [19]. From [23], we can also conclude the following result on
the fractional integral.

Remark 2.7. If x(t) ∈ C0[0, T] for T > 0 and α > 0, then

[RLD−α
0,t x(t)]t=0 = 0,

i.e.

lim
t→0

1
Γ (α)

∫ t

0
(t − τ)α−1x(τ ) dτ = 0.

Definition 2.8. Yα , the convolution kernel of order α > 0 for the fractional integral, is defined
as follows:

Yα(t) �
tα−1
+

Γ (α)
∈ L1

loc(R+), (2.9)

where

tα−1
+ =

{
tα−1, t > 0,

0, t ≤ 0.
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Remark 2.9.

— According to definitions 2.1 and 2.8, the αth-order Riemann–Liouville integral of a
continuous, even L1

loc(R+), causal function x(t) can be written as

D−α
0,t x(t) = Yα � x. (2.10)

— Convolution property: Yα � Yβ = Yα+β for α > 0 and β > 0.

Definition 2.10. Y−α , the causal distribution or the generalized function in the sense of
Schwartz [24,25], is defined as follows:

Y+α � Y−α = δ, (2.11)

where δ is the Dirac distribution, which is the neutral element of convolution.

Definition 2.11. The generalized fractional derivative with order α of a casual function or
distribution x(t) (abstract fractional differential operator) is defined as

GDα
0,tx(t) � Y−α � x. (2.12)

Remark 2.12.

— Convolution property: Yα � Yβ = Yα+β holds for any real numbers α, β.
— Sequential property: GDα

0,t · GDβ

0,t = GDα+β

0,t for any real numbers α, β.
— GDα

0,t(D
−α
0,t x(t)) = D−α

0,t (GDα
0,tx(t)) = x(t), where x(t) is usually a causal function or a

distribution.
— For n − 1 < α ≤ n ∈ Z+, x(n)(t) ∈ L1

loc(R+),

CDα
0,tx = GDα

0,tx −
n−1∑
k=0

x(k)(0)Y1+k−α . (2.13)

— For n − 1 < α < n ∈ Z+, x(t) ∈ L1
loc(R+),

RLDα
0,tx(t) = GDα

0,tx(t) − δ(t)[RLDα−1
0,t x(t)]t=0 −

n−1∑
k=1

Y−k[RLDα−k−1
0,t x(t)]t=0. (2.14)

The above properties in remark 2.12 can be found in [22]. The generalized fractional derivative
is often used in abstract analysis, see [1,22] for more details.

3. Analysis of a multiple-rational-order fractional differential system with a
Caputo derivative

In this section, we investigate the equivalent system with the same order of the following system
of fractional differential equations:

CDα1
0,tx11(t) = f1(x̄, t),

CDα2
0,tx21(t) = f2(x̄, t),

...

and CDαn
0,txn1(t) = fn(x̄, t),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

with the initial-value conditions

x(k)
i1

(0) = x(k)
i0 (i = 1, 2, . . . , n; k = 0, 1, . . . , mi − 1), (3.2)

where the time variable t ≥ 0, x̄(t) = [x11(t), x21(t), . . . , xn1(t)]
T, the vector fields fi ∈ R, i = 1, 2, . . . , n,

are continuous. All αi, i = 1, 2, . . . , n, are rational numbers satisfying mi − 1 < αi < mi ∈ Z+. For all
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αi lying in (0, 1), the reader can refer to [8,12,13,15] for more information. We always assume that
system (3.1) with the initial-value conditions (3.2) has a solution x̄(t) ∈ C([0, b]n) for some b > 0.

(a) Equivalent system
In this subsection, we derive the equivalent system of system (3.1) together with the initial-value
conditions (3.2).

It follows from system (3.1) that there exist pi, qi ∈ Z+ such that αi = pi/qi, where pi and qi are
two co-prime numbers, i = 1, 2, . . . , n. Let M be the lower common multiple of the denominators
qi, i = 1, 2, . . . , n. Let us take γ = 1/M and N = M(α1 + α2 + · · · + αn), then one can obtain the
following equivalence result.

Theorem 3.1. System (3.1) with the initial-value conditions (3.2) is equivalent to the N-dimensional
system of fractional differential equations with derivative order γ ,

CDγ

0,tx11(t) = x12(t),

...

CDγ

0,tx1M (t) = x1M+1 (t),

...

CDγ

0,tx1(m1−1)M(t) = x1(m1−1)M+1 (t),

...

CDγ

0,tx1α1M(t) = f1(x̄, t),

CDγ

0,tx21(t) = x22(t),

...

CDγ

0,tx2M (t) = x2M+1 (t),

...

CDγ

0,tx2(m2−1)M(t) = x2(m2−1)M+1 (t),

...

CDγ

0,tx2α2M(t) = f2(x̄, t),

...

CDγ

0,txn1(t) = xn2(t),

...

CDγ

0,txnM(t) = xnM+1(t),

...

CDγ

0,txn(mn−1)M(t) = xn(mn−1)M+1(t),

...

and CDγ

0,txnαnM(t) = fn(x̄, t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)
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with the initial-value conditions

xij(0) =
{

x(k)
i0 , j = kM + 1; k = 0, 1, . . . , mi − 1,

0, otherwise,
(3.4)

where i = 1, 2, . . . , n, that is,

— whenever [x11(t), x12(t), . . . , x1α1M(t), x21(t), x22(t), . . . , x2α2M(t), . . . , xn1(t), xn2(t), . . . , xnαnM

(t)]T is a solution to system (3.3) equipped with the initial-value conditions (3.4), [x11(t),
x21(t), . . . , xn1(t)]

T ∈ Cm1 [0, b] × Cm2 [0, b] × · · · × Cmn [0, b], then [x11(t), x21(t), . . . , xn1(t)]
T

solves system (3.1) and satisfies its corresponding initial-value conditions (3.2);
— whenever [x11(t), x21(t), . . . , xn1(t)]

T ∈ Cm1 [0, b] × Cm2 [0, b] × · · · × Cmn [0, b] is a solution to
system (3.1) equipped with the initial-value conditions (3.2), then [x11(t), x12(t), . . . , x1α1M(t),

x21(t), x22(t), . . . , x2α2M(t), . . . , xn1(t), xn2(t), . . . , xnαnM (t)]T = [x11(t), CDγ

0,tx11(t), . . . , CD(α1M−1)γ

0,t

x11(t), x21(t), CDγ

0,tx21(t), . . . , CD(α2M−1)γ

0,t x21(t), . . . , xn1(t), CDγ

0,txn1(t), . . . , CD(αnM−1)γ

0,t xn1(t)]
T

satisfies system (3.3) and its initial-value conditions (3.4).

Proof. (1) Suppose that the vector [x11(t), x12(t), . . . , x1α1M(t), x21(t), x22(t), . . . , x2α2M (t), . . . ,
xn1(t), xn2(t), . . . , xnαnM (t)]T is a solution to system (3.3) with the initial-value conditions (3.4), then
the following relations hold:

CDγ

0,tx1α1M(t) = f1(x̄, t),

CDγ

0,tx2α2M(t) = f2(x̄, t),

...

and CDγ

0,txnαnM(t) = fn(x̄, t).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

From remark 2.12, system (3.3) and the initial-value conditions (3.4), we have

CDγ

0,tx1α1M (t) = CDγ

0,t · · · CDγ

0,t(CDγ

0,t · · · CDγ

0,t(CDγ

0,t(CDγ

0,t︸ ︷︷ ︸
M+1︸ ︷︷ ︸

α1M

x11(t))))

= CDγ

0,t · · · CDγ

0,t(CDγ

0,t · · · CDγ

0,t(CDγ

0,t(GDγ

0,tx11(t) − x11(0)Y1−γ )))

= CDγ

0,t · · · CDγ

0,t(CDγ

0,t · · · CDγ

0,t(GD2γ

0,t x11(t) − x11(0)Y1−2γ − x12(0)Y1−γ ))

= CDγ

0,t · · · CDγ

0,t(CDγ

0,t · · · CDγ

0,t(GD2γ

0,t x11(t) − x11(0)Y1−2γ ))

...

= CDγ

0,t · · · CDγ

0,t(GD(M+1)γ

0,t x11(t) − x11(0)Y1−(M+1)γ − x1M+1(0)Y1−γ )

...

= GDα1Mγ

0,t x11(t) − x11(0)Y1−α1Mγ − x1M+1(0)Y1−(α1M−M)γ

− x12M+1(0)Y1−(α1M−2M)γ − · · · − x1(m1−1)M+1 (0)Y1−[α1M−(m1−1)M]γ

= GDα1Mγ

0,t x11(t) − x11(0)Y1−α1 − x(1)
11

(0)Y1−(α1−1) − x(2)
11

(0)Y1−(α1−2)

− · · · − x(m1−1)
11

(0)Y1−[α1−(m1−1)]
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= GDα1
0,tx11(t) −

m1−1∑
k=0

x(k)
11

(0)Y1+k−α1

= CDα1
0,tx11(t).

Similar to the above derivation, one can obtain

CDγ

0,tx2α2M(t) = CDα2
0,tx21(t),

CDγ

0,tx3α3M(t) = CDα3
0,tx31(t),

...

and CDγ

0,txnαnM(t) = CDαn
0,txn1(t).

Also note that

x(k)
i1

(0) = CDkMγ

0,t xi1(0) = xikM+1 (0) = x(k)
i0

(i = 1, 2, . . . , n; k = 0, 1, . . . , mi − 1).

Therefore, the first part of this theorem is completed.
(2) Suppose that [x11(t), x21(t), . . . , xn1(t)]

T is a solution to system (3.1) with the initial-value
conditions (3.2). Then, we have

CDα1
0,tx11(t) = f1(x̄, t),

CDα2
0,tx21(t) = f2(x̄, t),

...

and CDαn
0,txn1(t) = fn(x̄, t),

i.e.

CDα1Mγ

0,t x11(t) = f1(x̄, t),

CDα2Mγ

0,t x21(t) = f2(x̄, t),

...

and CDαnMγ

0,t xn1(t) = fn(x̄, t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

Taking into account remark 2.12 yields

CDα1Mγ

0,t x11(t) = f1(x̄, t)

⇒ GDα1Mγ

0,t x11(t) −
m1−1∑
k=0

x(k)
11

(0)Y1+k−α1 = f1(x̄, t)

⇒ GD(α1M−1)γ

0,t (GDγ

0,tx11(t) − x11(0)Y1−γ )

−
m1−1∑
k=1

x(k)
11

(0)Y1+k−α1 = f1(x̄, t)

⇒ CDγ

0,tx11(t) = D−(α1M−1)γ

0,t f1(x̄, t) +
m1−1∑
k=1

x(k)
11

(0)Y1+k−γ

⇒ [CDγ

0,tx11(t)]t=0 = 0.
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Similarly,

CDα1Mγ

0,t x11(t) = f1(x̄, t)

⇒ GDα1Mγ

0,t x11(t) −
m1−1∑
k=0

x(k)
11

(0)Y1+k−α1 = f1(x̄, t)

⇒ GD(α1M−2)γ

0,t (GD2γ

0,t x11(t) − x11(0)Y1−2γ )

−
m1−1∑
k=1

x(k)
11

(0)Y1+k−α1 = f1(x̄, t)

⇒ CD2γ

0,t x11(t) = D−(α1M−2)γ

0,t f1(x̄, t) +
m1−1∑
k=1

x(k)
11

(0)Y1+k−2γ

⇒ [CD2γ

0,t x11(t)]t=0 = 0.

It follows from the above reasoning that

[CD3γ

0,t x11(t)]t=0 = 0, . . . , [CD(M−1)γ

0,t x11(t)]t=0 = 0,

[CD(M+1)γ

0,t x11(t)]t=0 = 0, . . . , [CD(2M−1)γ

0,t x11(t)]t=0 = 0,

...

[CD((m1−1)M+1)γ

0,t x11(t)]t=0 = 0, . . . , [CD(α1M−1)γ

0,t x11(t)]t=0 = 0

and [CDkMγ

0,t x11(t)]t=0 = x(k)
11

(0) = x(k)
10 , k = 0, 1, 2, . . . , m1 − 1.

Then, applying repeatedly remark 2.12 and the above initial-value conditions leads to

CDγ

0,t · · · (CDγ

0,t(CDγ

0,t︸ ︷︷ ︸
k

x11(t))) = CDkγ
0,tx11(t), k = 1, 2, . . . , α1M.

Until now, we affirm that [x11(t), CDγ

0,tx11(t), . . . , CD(α1M−1)γ

0,t x11(t)]
T solves

CDγ

0,tx11(t) = x12(t),

CDγ

0,tx12(t) = x13(t),

...

CDγ

0,tx1M(t) = x1M+1(t),

...

CDγ

0,tx1(m1−1)M (t) = x1(m1−1)M+1(t),

...

and CDγ

0,tx1α1M (t) = f1(x̄, t),

and satisfies the corresponding part of the initial-value conditions (3.4).
Proceeding with the same procedure yields that the vector [x11(t), CDγ

0,tx11(t), . . . , CD(α1M−1)γ

0,t x11(t),

x21(t), CDγ

0,tx21(t), . . . , CD(α2M−1)γ

0,t x21(t), . . . , xn1(t), CDγ

0,txn1(t), . . . , CD(αnM−1)γ

0,t xn1(t)]
T solves sys-

tem (3.3) and satisfies the initial-value conditions (3.4).
The proof is now completed. �
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Now, we study the equivalent system with the same order of the following MRO fractional
differential equation:

CDαn
0,tx(t) + b1CDαn−1

0,t x(t) + · · · + bn−1CDα1
0,tx(t) + bn = f (x, t), t > 0, (3.7)

with the initial-value conditions

x(k)(0) = x(k)
0 (k = 0, 1, . . . , mn − 1), (3.8)

where x(t) ∈ R, function f ∈ R is continuous and bi, i = 1, 2, . . . , n, are constant numbers. The orders
αi, i = 1, 2, . . . , n, are rational numbers such that mi − 1 < αi < mi, mi ∈ Z+ and αn > αn−1 > · · · > α1.
In the same way, it is supposed that the initial-value problem (3.7)–(3.8) has a solution x(t) ∈ C[0, b]
for some b > 0.

Similarly, there exist pi, qi ∈ Z+ such that αi = pi/qi, where (pi, qi) = 1. Let M be the lower
common multiple of the denominators qi, i = 1, 2, . . . , n, and take γ = 1/M, N = αnM. Then, the
equivalent system of (3.7)–(3.8) is given in the following corollary, which is somewhat different
from that discussed in [15]. Since we show interest in stability analysis, we prefer to study an
MRO system like (3.7)–(3.8).

Corollary 3.2. Equation (3.7) with the initial-value conditions (3.8) is equivalent to the N-dimensional
system of fractional differential equations

CDγ

0,tx(t) = x1(t),

CDγ

0,tx1(t) = x2(t),

...

CDγ

0,txα1M−1(t) = xα1M(t),

CDγ

0,txα1M(t) = xα1M+1(t),

...

CDγ

0,txα2M(t) = xα2M+1(t),

...

and CDγ

0,txαnM−1(t) = f (x, t) − b1xαn−1M(t) − · · · − bn−1xα1M(t) − bn,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)

with the initial-value conditions

xi(0) =
{

x(k)
0 , i = kM; k = 0, 1, . . . , mn − 1,

0, otherwise,
(3.10)

where x0(t) = x(t), that is,

— whenever [x(t), x1(t), . . . , xM(t), . . . , x2M(t), . . . , xαnM−1(t)]T, x ∈ Cmn [0, b] is a solution to
system (3.9), equipped with the initial-value conditions (3.10), then x(t) solves equation (3.7)
and satisfies its corresponding initial-value conditions (3.8);

— whenever x(t), x ∈ Cmn [0, b] is a solution to equation (3.7) with the initial-value conditions (3.8),
then [x(t), x1(t), . . . , xM(t), . . . , x2M(t), . . . , xαnM−1(t)]T = [x(t), CDγ

0,tx(t), . . . , CDMγ

0,t x(t), . . . ,

CD2Mγ

0,t x(t), . . . , CD(αnM−1)γ

0,t x(t)]T satisfies system (3.9) and its initial-value conditions (3.10).

Corollary 3.2 still holds for αi = mi ∈ Z+. From the above corollary, there is a strong connection
between the ordinary differential equation (ODE) and the fractional ODE. For example,

dx
dt

= f (x, t), t > 0,
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and
x(0) = x0

is equivalent to

CD1/n
0,t x(t) = x1(t),

CD1/n
0,t x1(t) = x2(t),

...

CD1/n
0,t xn−2(t) = xn−1(t)

and CD1/n
0,t xn−1(t) = f (x, t),

with the initial-value conditions

x(0) = x0,

x1(0) = 0,

...

and xn−1(0) = 0,

for ∀n ∈ Z+.
From the above example, for a given function x(t) whose first-order derivative exists, we can

find another way to numerically compute its arbitrary order α = m/n ∈ (0, 1) by constructing an
equation and its equivalent system. For any irrational number β ∈ (0, 1), the function CDβ

0,tx(t)
can be numerically approximated according to the fact that an arbitrary irrational number can be
approached by a rational number series to arbitrary accuracy.

(b) Stability analysis
In this subsection, we always presume that the solution to a given system can be extended to +∞.
In the following, we study the stability of the zero solution to the autonomous system:

CDα1
0,tx11(t) = g1(x̄(t)),

CDα2
0,tx21(t) = g2(x̄(t)),

...

and CDαn
0,txn1(t) = gn(x̄(t)),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.11)

with the initial-value conditions

x(k)
i1

(0) = x(k)
i0 (i = 1, 2, . . . , n; k = 0, 1, . . . , mi − 1), (3.12)

where x̄, t and αi (i = 1, 2, . . . , n) are the same as those in theorem 3.1, gi : D → R, i = 1, 2, . . . , n, are
continuous, D ⊆ R

n is a domain that contains the origin x̄ = 0.
Next, we give the definition of the stability of the Caputo-type differential equation as (3.1)

[1,2,9].

Definition 3.3. The autonomous system (3.11) is said to be

— stable if and only if ∀x̄0, ∃ε > 0, ∀t ≥ 0, ‖x̄(t)‖ ≤ ε;
— asymptotically stable if and only if limt→+∞ ‖x̄(t)‖ = 0,

where x̄0 = [x(0)
10 , x(1)

10 , . . . , x(m1−1)
10 , x(0)

20 , x(1)
20 , . . . , x(m2−1)

20 , . . . , x(0)
n0 , x(1)

n0 , . . . , x(mn−1)
n0 ]T.
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By using theorem 3.1, one obtains the following stability result, which can be regarded as a
direct application of theorem 3.1.

Theorem 3.4. Assume that gi satisfy gi(0) = 0, i = 1, 2, . . . , n, and the initial-value problem (3.11)–
(3.12) has a unique solution x̄ ∈ C([0, +∞)n). Then, the zero solution to system (3.11) is asymptotically
stable if | arg(λ)| > γπ/2, where λ is the solution to the characteristic equation

det(λE − A) = 0, (3.13)

γ = 1/M is the same as that of theorem 3.1, E is the identity matrix with order N =∑n
i=1 αiM, and A is

the Jacobian matrix at the zero point of the equivalent system of (3.11)

A =

⎛
⎜⎜⎜⎜⎝

A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
...

An1 An2 · · · Ann

⎞
⎟⎟⎟⎟⎠ ,

Aii =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1

∂gi

∂xi1(t)

∣∣∣∣
x̄=0

0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

αiM×αiM

(i = 1, 2, . . . , n)

and Aij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0

∂gi

∂xj1(t)

∣∣∣∣∣
x̄=0

0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

αiM×αjM

(i 
= j, i, j = 1, 2, . . . , n).

In particular, if system (3.11) is a linear system, i.e. g = [g1, g2, . . . , gn]T = Bx̄, where the n × n matrix
B = (bij), then

— the zero solution to system (3.11) is asymptotically stable if and only if any solution to
equation (3.13) satisfies | arg(λ)| > γπ2;

— the zero solution to system (3.11) is stable if and only if either it is asymptotically stable (i.e.
| arg(λ)| > γπ/2), or | arg(λ)| ≥ γπ/2 and those critical solutions to equation (3.13) that satisfy
| arg(λ)| = γπ/2 have the same algebraic and geometric multiplicities, and the zero solution to
equation (3.13) has the same algebraic and geometric multiplicities if there exists the zero solution.
Here,

Aii =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
bii 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

αiM×αiM

(i = 1, 2, . . . , n)

and Aij =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
bij 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

αiM×αjM

(i 
= j, i, j = 1, 2, . . . , n).
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Proof. Based on theorem 3.1, the MRO fractional differential system (3.11) and (3.12) can be
changed into a higher-dimensional fractional differential system with the same order lying in
(0, 1). Then, combining with [1, theorem 2], [2, remark 3.4.(b)] and the linearization method of
stability analysis for fractional differential equations [26–33], one can obtain the conclusions. �

Remark 3.5. By applying the properties of the determinant, equation (3.13) is equivalent to the
following equation:

det(diag(λα1M, λα2M, . . . , λαnM) − G) = 0, (3.14)

where

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂g1

∂x11

∂g1

∂x21

· · · ∂g1

∂xn1
∂g2

∂x11

∂g2

∂x21

· · · ∂g2

∂xn1
...

...
...

∂gn

∂x11

∂gn

∂x21

· · · ∂gn

∂xn1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x̄=0

is an n × n matrix.

Likewise, we consider the stability of the following autonomous MRO fractional differential
equation:

CDαn
0,tx(t) + b1CDαn−1

0,t x(t) + · · · + bn−1CDα1
0,tx(t) + bn = f (x(t)), t > 0, (3.15)

with the initial-value conditions

x(k)(0) = x(k)
0 (k = 0, 1, . . . , mn − 1), (3.16)

where x, mn, bi, αi, (i = 1, 2, . . . , n) are the same as those in corollary 3.2, f : D → R is continuous,
D ⊆ R is a domain that contains the origin x(t) = 0. One can then derive the following result.

Corollary 3.6. Suppose that f (y(t)) is a real-valued continuous function such that f (0) = bn, and
equation (3.15) with the initial-value conditions (3.16) has a unique solution x(t) ∈ C[0, +∞). Then, the
zero solution to equation (3.15) is asymptotically stable if | arg(λ)| > γπ/2, where λ is the solution to the
characteristic equation

det(λE − A) = 0, (3.17)

γ = 1/M is the same as that of theorem 3.1, E is the identity matrix with order N = αnM, and A is the
Jacobian at the zero point of the equivalent system with the same rational order of (3.15) as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1

aN1 aN2 aN3 aN4 · · · aNN

⎞
⎟⎟⎟⎟⎟⎟⎠

and aNj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂f
∂x

∣∣∣∣
x=0

, j = 1,

−bn−i, j = αiM + 1, i = 1, 2, . . . , n − 1,

0, otherwise.

(3.18)

In particular, if equation (3.15) is a linear equation and bn = 0, i.e. f (x(t)) = b0x(t), where the constant
number b0 ∈ R, then

— the zero solution to equation (3.15) is asymptotically stable if and only if any solution λ to
equation (3.17) satisfies | arg(λ)| > γπ/2;
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— the zero solution to equation (3.15) is stable if and only if either it is asymptotically stable (i.e.
| arg(λ)| > γπ/2) or | arg(λ)| ≥ γπ/2 and those critical solutions to equation (3.17) that satisfy
| arg(λ)| = γπ/2 have the same algebraic and geometric multiplicities, and the zero solution to
equation (3.17) has the same algebraic and geometric multiplicities if there exists a zero solution.
Here,

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1

aN1 aN2 aN3 aN4 · · · aNN

⎞
⎟⎟⎟⎟⎟⎟⎠

and aNj =

⎧⎪⎪⎨
⎪⎪⎩

b0, j = 1,

−bn−i, j = αiM + 1, i = 1, 2, . . . , n − 1,

0, otherwise.

(3.19)

Remark 3.7. By applying the properties of the determinant, equation (3.17) is equivalent to the
following equation:

λN − aNNλN−1 − aN,N−1λ
N−2 − . . . − aN2λ − aN1 = 0. (3.20)

(c) Several examples
In the sequel, we will give several concrete examples to illustrate theorem 3.1 and corollary 3.2.

Example 3.8. We consider the following MRO system of fractional differential equations:

CD3/2
0,t x11(t) = f1(x11 , x21 , t)

and CD4/3
0,t x21(t) = f2(x11 , x21 , t),

⎫⎬
⎭ (3.21)

with the initial-value conditions

x11(0) = x(0)
10 , x′

11
(0) = x(1)

10 ,

x21(0) = x(0)
20 and x′

21
(0) = x(1)

20 .

⎫⎬
⎭ (3.22)

By using theorem 3.1, system (3.21), together with (3.22), is equivalent to a 17-dimensional
system that reads

CD1/6
0,t x11(t) = x12(t),

CD1/6
0,t x12(t) = x13(t),

...

CD1/6
0,t x19(t) = f1(x11 , x21 , t),

CD1/6
0,t x21(t) = x22(t),

CD1/6
0,t x22(t) = x23(t),

...

and CD1/6
0,t x28(t) = f2(x11 , x21 , t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.23)
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with the initial-value conditions

x11(0) = x(0)
10 ,

x12(0) = x13(0) = . . . = x16(0) = 0,

x17(0) = x(1)
10 ,

x18(0) = x19(0) = 0,

x21(0) = x(0)
20 ,

x22(0) = x23(0) = . . . = x26(0) = 0,

x27(0) = x(1)
20

and x28(0) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.24)

Next, we will give another example to illustrate how to obtain the equivalent system with the
same order of an MRO fractional differential equation.

Example 3.9. We study the MRO fractional differential equation

CD5/2
0,t x(t) + b1CD4/3

0,t x(t) + b2CD1/6
0,t x(t) + b3 = f (x, t), t > 0, (3.25)

with the initial-value conditions

x(0) = x(0)
0 , x(1)(0) = x(1)

0 and x(2)(0) = x(2)
0 . (3.26)

Applying corollary 3.2, one has that system (3.25) with the corresponding initial-value
conditions (3.26) is equivalent to the following system in R

15:

CD1/6
0,t x(t) = x1(t),

CD1/6
0,t x1(t) = x2(t),

...

CD1/6
0,t x13(t) = x14(t)

and CD1/6
0,t x14(t) = f (x, t) − b1x8(t) − b2x1(t) − b3,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.27)

with the initial-value conditions

x(0) = x(0)
0 ,

x1(0) = x2(0) = . . . = x5(0) = 0,

x6(0) = x(1)
0 ,

x7(0) = x8(0) = . . . = x11(0) = 0,

x12(0) = x(2)
0

and x13(0) = x14(0) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.28)

At last, we consider an interesting model in vibration mechanics.

Example 3.10. Consider the famous Bagley–Torvik equation [34]

x′′(t) + aCD3/2
0,t x(t) + bx(t) = f (t), t > 0, (3.29)

with the initial-value conditions

x(0) = x(0)
0 and x′(0) = x(1)

0 . (3.30)

This model was originally established by Bagley and Torvik. They considered the motion of a
half-space Newtonian viscous fluid induced by a prescribed transverse motion of a rigid plate on
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the surface. Their aim was to demonstrate that the resulting shear stress at any point in the fluid
can be characterized directly in terms of a fractional derivative of the fluid velocity profile. In the
above model, we assume that the mass of the plate, which is immersed in the Newtonian fluid
with density ρ and viscosity μ, is a unit. This thin rigid plate is connected by a massless spring
of stiffness K to a fixed point outside the fluid. f (t) relates to the force, the constant coefficient a
depends upon the area of the plate, the fluid density ρ, and viscosity μ, and b relies on the stiffness
K of the spring outside the Newtonian fluid.

It is easy to know that equation (3.29) with initial conditions (3.30) is equivalent to

CD1/2
0,t x(t) = x1(t),

CD1/2
0,t x1(t) = x2(t),

CD1/2
0,t x2(t) = x3(t)

and CD1/2
0,t x3(t) = f (t) − ax3(t) − bx(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.31)

with the initial-value conditions

x(0) = x(0)
0 ,

x1(0) = 0,

x2(0) = x(1)
0

and x3(0) = 0,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.32)

by utilizing corollary 3.2.
Next, we consider the stability of the Bagley–Torvik equation without the external forcing

term, i.e. f (t) = 0. That is to say, we consider the stability of the following system with the same
order:

CD1/2
0,t x(t) = x1(t),

CD1/2
0,t x1(t) = x2(t),

CD1/2
0,t x2(t) = x3(t)

and CD1/2
0,t x3(t) = −ax3(t) − bx(t).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.33)

Here, M = 2, γ = 1
2 , α1 = 1, α2 = 3

2 , α3 = 2 and

A =

⎛
⎜⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

−b 0 0 −a

⎞
⎟⎟⎟⎠ .

If the zero solution to the characteristic equation of (3.33) satisfies the condition of corollary 3.6,
then the stability problem will be settled. The characteristic equation can be written as∣∣∣∣∣∣∣∣∣

λ −1 0 0
0 λ −1 0
0 0 λ −1
b 0 0 λ + a

∣∣∣∣∣∣∣∣∣
= 0.

We obtain the solutions to the characteristic equation satisfying λ3(λ + a) + b = 0.
If b = 0 but a 
= 0 (i.e. the thin rigid plate is immersed in the fluid, but is free from the spring),

we can see that the characteristic equation has a zero solution, whose algebraic multiplicity is not
equal to the geometric multiplicity. So, in this situation, the zero solution of equation (3.29) with
the force f (t) = 0, b = 0, a 
= 0 is unstable. Such a theoretical result fits well the real situation.
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4. Analysis of a multiple-rational-order fractional differential system with a
Riemann–Liouville derivative

For simplicity, we first study the MRO with fractional order lying in (0, 1) as

RLDα1
0,tx11(t) = f1(x̄, t),

RLDα2
0,tx21(t) = f2(x̄, t),

...

and RLDαn
0,txn1(t) = fn(x̄, t),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

with the initial-value conditions

[RLDαi−1
0,t xi1(t)]t=0 = xi0 (i = 1, 2, . . . , n), (4.2)

where the time variable t > 0, x̄(t) = [x11(t), . . . , xn1(t)]
T, [f1, f2, . . . , fn]T ∈ R

n. All αi, i = 1, 2, . . . , n,
are rational numbers satisfying 0 < αi < 1. Also, we assume that the initial-value problem (4.1)–
(4.2) has a unique solution x̄(t) ∈ (C1[0, T])n.

(a) Equivalent system
For the rational number αi ∈ (0, 1), i = 1, 2, . . . , n, we note that there exist pi, qi ∈ Z+ such that
αi = pi/qi, where pi and qi are two co-prime numbers, i = 1, 2, . . . , n. Let M be the lower common
multiple of the denominators qi, i = 1, 2, . . . , n. Let us take γ = 1/M and N = M(α1 + α2 + · · · +
αn), then one can obtain the following equivalence result.

Theorem 4.1. System (4.1) with the initial-value conditions (4.2) is equivalent to the N-dimensional
system (4.3) of fractional differential equations with order γ ,

RLDγ

0,tx11(t) = x12(t),

RLDγ

0,tx12(t) = x13(t),

...

RLDγ

0,tx1α1M(t) = f1(x̄, t),

RLDγ

0,tx21(t) = x22(t),

RLDγ

0,tx22(t) = x23(t),

...

RLDγ

0,tx2α2M(t) = f2(x̄, t),

...

RLDγ

0,txn1(t) = xn2(t),

RLDγ

0,txn2(t) = xn3(t),

...

and RLDγ

0,txnαnM(t) = fn(x̄, t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

subject to the initial-value conditions

[RLDγ−1
0,t xij(t)]t=0 =

{
xi0, j = αiM,

0, otherwise,
(4.4)
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where i = 1, 2, . . . , n, that is,

— whenever [x11(t), x12(t), . . . , x1α1M(t), x21(t), x22(t), . . . , x2α2M(t), . . . , xn1(t), xn2(t), . . . , xnαnM

(t)]T with [x11(t), x21(t), . . . , xn1(t)]
T ∈ (C1[0, b])n is a solution to system (4.3), equipped with

the initial-value conditions (4.4), then [x11(t), x21(t), . . . , xn1(t)]
T solves system (4.1) and satisfies

its corresponding initial-value conditions (4.2);
— whenever [x11(t), x21(t), . . . , xn1(t)]

T ∈ (C1[0, b])n i = 1, 2, . . . , n, is a solution to system (4.1)
with the initial-value conditions (4.2), then the vector [x11(t), x12(t), . . . , x1α1M(t), x21(t), x22

(t), . . . , x2α2M(t), . . . , xn1(t), xn2(t), . . . , xnαnM (t)]T = [x11(t), RLDγ

0,tx11(t), . . . , RLD(α1M−1)γ

0,t x11

(t), x21(t), RLDγ

0,tx21(t), . . . , RLD(α2M−1)γ

0,t x21(t), . . . , xn1(t), RLDγ

0,txn1(t), . . . , RL D(αnM − 1)γ

0,t
xn1(t)]

T satisfies system (4.3) and its initial-value conditions (4.4).

Proof. (1) Suppose that [x11(t), x12(t), . . . , x1α1M(t), x21(t), x22(t), . . . , x2α2M (t), . . . , xn1(t), xn2(t), . . . ,
xnαnM(t)]T is a solution to system (4.3) with the initial-value conditions (4.4), then the following
relations hold:

RLDγ

0,tx1α1M (t) = f1(x̄, t),

RLDγ

0,tx2α2M (t) = f2(x̄, t),

...

and RLDγ

0,txnαnM(t) = fn(x̄, t).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

First, using repeatedly the composition formula of the fractional integral operator and the
Riemann–Liouville derivative operator (2.8) and initial-value conditions (4.4), we have

RLDγ−1
0,t x1α1M(t) = RLDγ−1

0,t (RLDγ

0,tx1α1M−1(t))

= RLD2γ−1
0,t x1α1M−1(t) − [RLDγ−1

0,t x1α1M−1(t)]t=0
t−γ

Γ (1 − γ )

= RLD2γ−1
0,t x1α1M−1(t)

= RLD2γ−1
0,t (RLDγ

0,tx1α1M−2(t))

= RLD3γ−1
0,t x1α1M−2(t) − [RLDγ−1

0,t x1α1M−2(t)]t=0
t−2γ

Γ (1 − 2γ )

= RLD3γ−1
0,t x1α1M−2(t)

...

= RLDα1Mγ−1
0,t x11(t)

= RLDα1−1
0,t x11(t),

i.e.
[RLDα1−1

0,t x11(t)]t=0 = [RLDγ−1
0,t x1α1M(t)]t=0 = x10. (4.6)

In the same manner, we have

[RLDα2−1
0,t x21(t)]t=0 = [RLDγ−1

0,t x2α2M (t)]t=0 = x20,

[RLDα3−1
0,t x31(t)]t=0 = [RLDγ−1

0,t x3α3M (t)]t=0 = x30,

...

and [RLDαn−1
0,t xn1(t)]t=0 = [RLDγ−1

0,t xnαnM(t)]t=0 = xn0.

So, the initial-value conditions (4.2) are valid.
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Second, using repeatedly the composition formula of fractional integral operator and the
Riemann–Liouville derivative operator (2.5) and the initial-value conditions (4.4) yields

RLDγ

0,tx1α1M(t) = RLDγ

0,t(RLDγ

0,tx1α1M−1(t))

= RLD2γ

0,t x1α1M−1(t) − [RLDγ−1
0,t x1α1M−1(t)]t=0

t−γ−1

Γ (−γ )

= RLD2γ

0,t x1α1M−1(t)

= RLD2γ

0,t (RLDγ

0,tx1α1M−2(t))

= RLD3γ

0,t x1α1M−2(t) − [RLDγ−1
0,t x1α1M−2(t)]t=0

t−2γ−1

Γ (−2γ )

= RLD3γ

0,t x1α1M−2(t)

...

= RLDα1Mγ

0,t x11(t)

= RLDα1
0,tx11(t)

= f1(x̄, t).

Similar to the above derivation, one can obtain

RLDγ

0,tx2α2M(t) = RLDα2
0,tx21(t) = f2(x̄, t),

RLDγ

0,tx3α3M(t) = RLDα3
0,tx31(t) = f3(x̄, t),

...

and RLDγ

0,txnαnM(t) = RLDαn
0,txn1(t) = fn(x̄, t).

Therefore, the vector [x11(t), x21(t), . . . , xn1(t)]
T solves system (4.1) and satisfies its

corresponding initial-value conditions (4.2), and the first part of this theorem is completed.
(2) Suppose that [x11(t), x21(t), . . . , xn1(t)]

T, xi1(t) ∈ C1−αi [0, b], i = 1, 2, . . ., n, is a solution of
system (4.1) with the initial-value conditions (4.2), then we have

RLDα1
0,tx11(t) = f1(x̄, t),

RLDα2
0,tx21(t) = f2(x̄, t),

...

and RLDαn
0,txn1(t) = fn(x̄, t),

i.e.

RLDα1Mγ

0,t x11(t) = f1(x̄, t),

RLDα2Mγ

0,t x21(t) = f2(x̄, t),

...

and RLDαnMγ

0,t xn1(t) = fn(x̄, t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

For i = 1, 2, . . . , n, it follows from the initial-value conditions (4.2) that

[RLDkγ−1
0,t xi1(t)]t=0 = 0 (k = 1, 2, . . . , αiM − 1). (4.8)
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In fact, from (2.4), we have

RLDkγ−1
0,t xi1(t) = RLD−(αi−kγ )

0,t (RLD−(1−αi)
0,t xi1(t)).

Taking into account [RLD−(1−αi)
0,t xi1(t)]t=0 = xi0, in other words, there exists δ > 0 such that the

function RLD−(1−αi)
0,t xi1(t) is bounded on the interval [0, δ]. Then, we arrive at

[RLDkγ−1
0,t xi1(t)]t=0 = [RLD−(αi−kγ )

0,t (RLD−(1−αi)
0,t xi1(t))]t=0

= 0,

with the conclusion of remark 2.7.
Next, using repeatedly (2.5) and (4.8), we obtain

RLDγ

0,t(RLDγ

0,txi1(t)) = RLD2γ

0,t xi1(t) − [RLDγ−1
0,t xi1(t)]t=0

t−γ−1

Γ (−γ )

= RLD2γ

0,t xi1(t),

RLDγ

0,t(RLDγ

0,t(RLDγ

0,txi1(t))) = RLD3γ

0,t xi1(t) − [RLD2γ−1
0,t xi1(t)]t=0

t−γ−1

Γ (−γ )

= RLD3γ

0,t xi1(t),

...

and RLDγ

0,t(RLDγ

0,t · · · RLDγ

0,t︸ ︷︷ ︸
αiM

xi1(t)) = RLDαiMγ

0,t xi1(t) − [RLD(αiM−1)γ−1
0,t xi1(t)]t=0

t−γ−1

Γ (−γ )

= RLDαiMγ

0,t xi1(t)

= fi(x̄, t),

where i = 1, 2, . . . , n. In addition, for i = 1, 2, . . . , n and k = 1, 2, . . . , αiM − 2,

RLDγ−1
0,t (RLDkγ

0,txi1(t)) = RLD(k+1)γ−1
0,t xi1(t) − [RLDkγ−1

0,t xi1(t)]t=0
t−γ

Γ (1 − γ )

= RLD(k+1)γ−1
0,t xi1(t),

that is to say,

[RLDγ−1
0,t (RLDkγ

0,txi1(t))]t=0 =
[

RLD(k+1)γ−1
0,t xi1(t) − [RLDkγ−1

0,t xi1(t)]t=0
t−γ

Γ (1 − γ )

]
t=0

= [RLD(k+1)γ−1
0,t xi1(t)]t=0

= 0

and

[RLDγ−1
0,t (RLD(αiM−1)γ

0,t xi1(t))]t=0 =
[

RLDαi−1
0,t xi1(t) − [RLD(αiM−1)γ−1

0,t xi1(t)]t=0
t−γ

Γ (1 − γ )

]
t=0

= [RLDαi−1
0,t xi1(t)]t=0

= xi0.

So, the vector [x11(t), RLDγ

0,tx11(t), . . . , RLD(α1M−1)γ

0,t x11(t), x21(t), RLDγ

0,tx21(t), . . . . , RLD(α2M−1)γ

0,t

x21(t), . . . , xn1(t), RLDγ

0,txn1(t), . . . , RLD(αnM−1)γ

0,t xn1(t)]
T satisfies system (4.3) and its initial-value

conditions (4.4). The proof is completed. �
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Next, we extend theorem 4.1 to the more general MRO system of the following form:

RLDα1
0,tx11(t) = f1(x̄, t),

RLDα2
0,tx21(t) = f2(x̄, t),

...

and RLDαn
0,txn1(t) = fn(x̄, t),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.9)

with the initial-value conditions

[RLDαi−ki
0,t xi1(t)]t=0 =

{
xi0, ki = 1,

0, ki = 2, 3, . . . , mi,
(4.10)

where i = 1, 2, . . . , n, the time variable t > 0, x̄(t) = [x11(t), x21(t), . . . , xn1(t)]
T, [f1, f2, . . . , fn]T ∈ R

n.
All αi, i = 1, 2, . . . , n, are rational numbers satisfying mi − 1 < αi < mi ∈ Z+.

With almost the similar reasoning as theorem 4.1, we obtain the following theorem.

Theorem 4.2. System (4.9) with the initial-value condition (4.10) is equivalent to the N-dimensional
system of equations with derivative order γ

RLDγ

0,tx11(t) = x12(t),

RLDγ

0,tx12(t) = x13(t),

...

RLDγ

0,tx1(α1−m1+1)M(t) = x1(α1−m1+1)M+1(t),

...

RLDγ

0,tx1α1M(t) = f1(x̄, t),

RLDγ

0,tx21(t) = x22(t),

RLDγ

0,tx22(t) = x23(t),

...

RLDγ

0,tx2(α2−m2+1)M(t) = x2(α2−m2+1)M+1(t),

...

RLDγ

0,tx2α2M(t) = f2(x̄, t),

...

RLDγ

0,txn1(t) = xn2(t),

RLDγ

0,txn2(t) = xn3(t),

...

RLDγ

0,txn(αn−mn+1)M(t) = xn(αn−mn+1)M+1(t),

...

and RLDγ

0,txnαnM(t) = fn(x̄, t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.11)
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subject to the initial-value conditions

[RLDγ−1
0,t xij(t)]t=0 =

{
xi0, j = αiM,

0, otherwise,
(4.12)

where αi = pi/qi, pi and qi are two co-prime numbers, i = 1, 2, . . . , n. M is the lower common multiple of
the denominators qi, i = 1, 2, . . . , n, and γ = 1/M, N = M(α1 + α2 + . . . + αn). That is

— whenever [x11(t), x12(t), . . . , x1α1M(t), x21(t), x22(t), . . . , x2α2M(t), . . . , xn1(t), xn2(t), . . . , xnαnM

(t)]T with [x11(t), x21(t), . . . , xn1(t)]
T ∈ Cm1 [0, b] × Cm2 [0, b] × · · · × Cmn [0, b] is a solution to

system (4.11), equipped with the initial-value conditions (4.12), then [x11(t), x21(t), . . . , xn1(t)]
T

solves system (4.9) and satisfies its corresponding initial-value conditions (4.10);
— whenever [x11(t), x21(t), . . . , xn1(t)]

T ∈ Cm1 [0, b] × Cm2 [0, b] × · · · × Cmn [0, b] is a solution to
system (4.9) with the initial-value conditions (4.10), then the vector [x11(t), x12(t), . . . , x1α1M(t),
x21 (t), x22 (t), . . . , x2α2M (t), . . . , xn1 (t), xn2 (t), . . . , xnαnM(t)]T = [x11 (t), RLDγ

0,tx11 (t), . . . ,

RLD(α1M−1)γ

0,t x11(t), x21(t), RLDγ

0,tx21(t), . . . , RLD(α2M−1)γ

0,t x21(t), . . . , xn1(t), RLDγ

0,txn1(t), . . . ,

RLD(αnM−1)γ

0,t xn1(t)]
T satisfies system (4.11) and its initial-value conditions (4.12).

Now, we study the equivalent system with the same order of the following MRO fractional
differential equation:

RLDαn
0,tx(t) + a1RLDαn−1

0,t x(t) + · · · + an−1RLDα1
0,tx(t) + an = f (x, t), t > 0, (4.13)

with the initial-value condition

[RLDαn−1
0,t x(t)]t=0 = x0, (4.14)

where x ∈ R, function f ∈ R, and ai, i = 1, 2, . . . , n, are constant numbers. The orders αi, i =
1, 2, . . . , n, are rational numbers such that 0 < αi < 1 and αn > αn−1 > · · · > α1. Here, we assume
that the initial-value problem (4.13)–(4.14) has a solution x(t) ∈ Lαn(0, b) for some b > 0.

Similarly, there exist pi, qi ∈ Z+ such that αi = pi/qi, where (pi, qi) = 1. Let M be the lower
common multiple of the denominators qi, i = 1, 2, . . . , n, and take γ = 1/M, N = αnM.

Corollary 4.3. Equation (4.13) with the initial-value conditions (4.14) is equivalent to the
N-dimensional system of fractional differential equations,

RLDγ

0,tx(t) = x1(t),

RLDγ

0,tx1(t) = x2(t),

...

RLDγ

0,txα1M−1(t) = xα1M(t),

RLDγ

0,txα1M(t) = xα1M+1(t),

...

RLDγ

0,txα2M(t) = xα2M+1(t),

...

and RLDγ

0,txαnM−1(t) = f (x, t) − a1xαn−1M(t) − · · · − an−1xα1M(t) − an,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.15)

with the initial-value conditions

[RLDγ−1
0,t xi(t)]t=0 =

{
x0, i = αnM − 1,

0, otherwise,
(4.16)
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where x0(t) = x(t), that is,

— whenever [x(t), x1(t), . . . , xαnM−1(t)]T, x ∈ C1[0, b] x(t) ∈ C1−αn [0, b], for some b > 0, is a
solution to system (4.15), equipped with the initial-value conditions (4.16), then x(t) solves
equation (4.13) and satisfies its corresponding initial-value conditions (4.14);

— whenever x(t) ∈ C1[0, b] is a solution to equation (4.13) with the initial-value conditions (4.14),
then [x(t), x1(t), . . . , xαnM−1(t)]T = [x(t), RLDγ

0,tx(t), RLD2γ

0,t x(t), . . . , RLD(αnM−1)γ

0,t x(t)]T satis-
fies system (4.15) and its initial-value conditions (4.16).

Remark 4.4. In suitable conditions, the solutions to Riemann–Liouville-type fractional
differential equations can be extended to +∞ [35].

(b) Stability analysis
In the following, we study the stability of the zero solution of the linear MRO fractional
differential system that is widely used in control processing:

RLDα1
0,tx11(t) =

n∑
i=1

a1ixi1(t),

RLDα2
0,tx21(t) =

n∑
i=1

a2ixi1(t),

...

and RLDαn
0,txn1(t) =

n∑
i=1

anixi1(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.17)

with the initial-value conditions

[RLDαi−1
0,t xi1(t)]t=0 = xi0 (i = 1, 2, . . . , n), (4.18)

where x̄, t and αi (i = 1, 2, . . . , n) are the same as those in theorem 4.1, and A = (aij) ∈ R
n×n.

In the following, we introduce the stability definition of system (4.17) [2,9].

Definition 4.5. The linear fractional differential system (4.17) is said to be

— stable if and only if ∀x̄0 = [x10, x20, . . . , xn0]T, there exist ε > 0 and δ > 0 such that ‖x̄(t)‖ ≤ ε

for t ≥ δ;
— asymptotically stable if and only if system (4.17) is stable and limt→+∞ ‖x̄‖ = 0.

When α1 = α2 = · · · = αn = α, the stability of system (4.17) has been studied in [2], the
corresponding conclusion is as follows. Since system (4.17) is a linear one with a constant
coefficient matrix, we can obtain the necessary and sufficient condition of the stability of the
solution to this system.

Lemma 4.6. The linear fractional differential system (4.17) equipped with the initial-value conditions
(4.18), where α1 = α2 = . . . = αn = α, 0 < α < 1, is

— asymptotically stable if and only if all the non-zero eigenvalues of A satisfy |arg(spec(A))| >
απ/2, or A has k-multiple zero eigenvalues corresponding to a Jordan block diag(J1, J2, . . . , Ji),
where Jl is a Jordan canonical form with order nl,

∑i
l=1 nl = k, and nlα < 1, 1 ≤ l ≤ i.

— stable if and only if either it is asymptotically stable, or those critical eigenvalues that satisfy
|arg(spec(A))| = απ/2 have the same algebraic and geometric multiplicities, or A has k-multiple
zero eigenvalues corresponding to a Jordan block matrix diag(J1, J2, . . . , Ji), where Jl is a Jordan
canonical form with order nl,

∑i
l=1 nl = k, and nlα ≤ 1, 1 ≤ l ≤ i.
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By using theorem 4.1 and lemma 4.6, one has the following stability result.

Theorem 4.7. If the solution of system (4.17) with the initial-value conditions (4.18) satisfies
theorem 3.1, then system (4.17) is

— asymptotically stable if and only if all the non-zero eigenvalues of Ā satisfy |arg(spec(Ā))| >
γπ/2, or Ā has k-multiple zero eigenvalues corresponding to a Jordan block diag(J1, J2, . . . , Ji),
where Jl is a Jordan canonical form with order nl,

∑i
l=1 nl = k, and nlγ < 1, 1 ≤ l ≤ i;

— stable if and only if either it is asymptotically stable, or those critical eigenvalues that satisfy
|arg(spec(Ā))| = γπ/2 have the same algebraic and geometric multiplicities, or Ā has k-multiple
zero eigenvalues corresponding to a Jordan block matrix diag(J1, J2, . . . , Ji), where Jl is a Jordan
canonical form with order nl,

∑i
l=1 nl = k, and nlγ ≤ 1, 1 ≤ l ≤ i,

where γ = 1/M is the same as that of theorem 4.1, spec(Ā) denotes the eigenvalues of matrix Ā. Ā = (Aij),

Aii =
(

0 Eii
aii 0

)
αiM×αiM

and

Aij =
(

0 Oij
aij 0

)
αiM×αjM

(i 
= j; i, j = 1, 2, . . . , n).

where Eii are the identity matrices with orders αiM − 1 and Oij are (αiM − 1) × (αjM − 1) zero matrices,
i, j = 1, 2, . . . , n.

Proof. Based on theorem 4.1, the MRO fractional differential system (4.17) and (4.18) can be
changed into a higher-dimensional fractional differential system with the same order γ lying in
(0,1),

RLDγ

0,tX(t) = ĀX(t), t > 0,

with the initial-value condition
[RLDγ−1

0,t X(t)]t=0 = X0,

where the vector X(t) = [x11(t), x12(t), . . . , x1α1M(t), x21(t), x22(t), . . . , x2α2M (t), . . . , xn1(t), xn2(t), . . . ,
xnαnM(t)]T and X0 = [0, 0, . . . , x10, 0, 0, . . . , x20, . . . , 0, 0, . . . , xn0]T.

Then, according to lemma 4.6, one can obtain conclusions. �

Remark 4.8. By applying the properties of the determinant, the eigenvalues of matrix Ā in
theorem 4.7, i.e. the zero solutions λ of

det(λE − Ā) = 0,

satisfy the following equation:

det(diag(λα1M, λα2M, . . . , λαnM) − A) = 0,

where E is the identity matrix with order N =∑n
k=1 αiM.

In the following, we study the stability of the linear nonautonomous differential system
associated with system (4.9)

RLDα1
0,tx11(t) =

n∑
i=1

(a1i + b1i(t))xi1(t),

RLDα2
0,tx21(t) =

n∑
i=1

(a2i + b2i(t))xi1(t),

...

and RLDαn
0,txn1(t) =

n∑
i=1

(ani + bni(t))xi1(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.19)
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subject to the initial-value conditions (4.10), where i = 1, 2, . . . , n, the time variable t > 0, x̄(t) =
[x11(t), x21(t), . . . , xn1(t)]

T, aji ∈ R, bji(t) : [0, +∞) → R are continuous functions, j = 1, 2, . . . , n. All
αi, i = 1, 2, . . . , n, are rational numbers satisfying mi − 1 < αi < mi ∈ Z+.

From theorem 4.1, we know that system (4.19) equipped with the initial-value conditions (4.10)
is equivalent to the N-dimensional differential system with the same order γ ,

RLDγ

0,tX(t) = AX(t) + B(t)X(t), t > 0, (4.20)

with the initial-value condition
[RLDγ−1

0,t X(t)]t=0 = X0, (4.21)

where γ and N are the same as those of theorem 4.2, the vector X(t) = [x11(t), x12(t), . . . , x1α1M(t),
x21(t), x22(t), . . . , x2α2M(t), . . . , xn1(t), xn2(t), . . . , xnαnM(t)]T, X0 = [0, 0, . . . , x10, 0, 0, . . . , x20, . . . , 0,
0, . . . , xn0]T. A = (Aij), B(t) = (Bij(t)),

Aii =
(

0 Eii
aii 0

)
αiM×αiM

(i = 1, 2, . . . , n),

Aij =
(

0 Oij
aij 0

)
αiM×αjM

(i 
= j; i, j = 1, 2, . . . , n)

and Bij(t) =
(

0 Oij
bij(t) 0

)
αiM×αjM

(i, j = 1, 2, . . . , n),

where Eii are the identity matrices with orders αiM − 1 and Oij are (αiM − 1) × (αjM − 1) zero
matrices.

Equation (4.20) is a linear system but with a variable coefficient matrix, so we only obtain the
sufficient condition of the stability of its solution.

Theorem 4.9. Suppose that the matrix A satisfies |spec(A)| 
= 0, | arg(spec(A))| ≥ γπ/2, the critical
eigenvalues that satisfy | arg(spec(A))| = γπ/2 have the same algebraic and geometric multiplicities, and∫∞

0 ‖B(t)‖ dt is bounded. Then, the zero solution of (4.19) is stable, where spec(A) denotes the eigenvalues
of matrix A.

Likewise, we consider the stability of the following autonomous MRO fractional differential
equation:

RLDαn
0,tx(t) + a1RLDαn−1

0,t x(t) + · · · + an−1RLDα1
0,tx(t) + anx(t) = 0, t > 0, (4.22)

with the initial-value conditions
[RLDαn−1

0,t x(t)]t=0 = x0, (4.23)

where x, ai, αi, i = 1, 2, . . . , n, are the same as those in corollary 4.3.
It follows from corollary 4.3 that equation (4.22) with the initial-value conditions (4.23) is

equivalent to the following system:

RLDγ

0,tx(t) = x1(t),

RLDγ

0,tx1(t) = x2(t),

...

RLDγ

0,txα1M(t) = xα1M+1(t),

...

and RLDγ

0,txαnM−1(t) = −a1xαn−1M(t) − · · · − an−1xα1M(t) − anx(t),

with the initial-value conditions

[RLDγ−1
0,t xi(t)]t=0 =

{
x0, i = αnM − 1,

0, otherwise,
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i.e.

RLDγ

0,tX(t) = BX(t), t > 0,

with the initial-value condition

[RLDγ−1
0,t X(t)]t=0 = [0, 0, . . . , 0, x0]T,

where

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1

bN1 bN2 bN3 bN4 · · · bNN

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

bNj =

⎧⎪⎪⎨
⎪⎪⎩

−an, j = 1,

−an−i, j = αiM, i = 1, 2, . . . , n − 1,

0, otherwise,

(4.24)

and N = αnM.
One can derive the following result.

Corollary 4.10. The zero solution to equation (4.22) is

— asymptotically stable if and only if | arg(λ)| > γπ/2, where λ is the solution of the characteristic
equation

det(λE − B) = 0, (4.25)

γ = 1/M is the same as that of corollary 4.3, E is an identity matrix with order N =
αnM; or equation (4.25) has k-multiple zero eigenvalues corresponding to a Jordan block
diag(J1, J2, . . . , Ji), where Jl is a Jordan canonical form with order nl,

∑i
l=1 nl = k, and nlγ < 1,

1 ≤ l ≤ i;
— stable if and only if either | arg(λ)| > γπ/2 or | arg(λ)| ≥ γπ/2 and those critical solutions of

equation (4.25) that satisfy | arg(λ)| = γπ/2 have the same algebraic and geometric multiplicities,
or equation (4.25) has k-multiple zeros corresponding to a Jordan block matrix diag(J1, J2, . . . , Ji),
where Jl is a Jordan canonical form with order nl,

∑i
l=1 nl = k, and nlγ ≤ 1, 1 ≤ l ≤ i.

Proof. This corollary can be proved in the same manner as that in the proof of theorem 4.7, so is
omitted here. �

Remark 4.11. By applying the properties of the determinant, equation (4.25) is equivalent to
the following equation:

λN − bNNλN−1 − bN,N−1λ
N−2 − · · · − bN2λ − bN1 = 0. (4.26)

(c) Several examples
In this subsection, we will give several numerical simulations to illustrate the main results derived
in this section.
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Example 4.12. Consider the following fractional differential system:

RLD1/2
0,t x11(t) = a11x11(t) + a12x21(t)

and RLD1/3
0,t x21(t) = a21x11(t) + a22x21(t),

⎫⎬
⎭ (4.27)

with the initial-value conditions

[RLD−1/2
0,t x11(t)]t=0 = x10

and [RLD−2/3
0,t x21(t)]t=0 = x20.

⎫⎬
⎭ (4.28)

It is obvious that γ = 1
6 , N = 5, and it follows from theorem 4.1 that system (4.27) equipped

with the initial-value conditions (4.28) is equivalent to a five-dimensional system that reads

RLD1/6
0,t x11(t) = x12(t),

RLD1/6
0,t x12(t) = x13(t),

RLD1/6
0,t x13(t) = a11x11(t) + a12x21(t),

RLD1/6
0,t x21(t) = x22(t)

and RLD1/6
0,t x22(t) = a21x11(t) + a22x21(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.29)

with the initial-value conditions

[RLD−5/6
0,t x11(t)]t=0 = 0,

[RLD−5/6
0,t x12(t)]t=0 = 0,

[RLD−5/6
0,t x13(t)]t=0 = x10,

[RLD−5/6
0,t x21(t)]t=0 = 0

and [RLD−5/6
0,t x22(t)]t=0 = x20.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.30)

Now, taking a11 = −2, a12 = 0.2, a21 = 0 and a22 = −1.3, we obtain

Ā =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0

−2 0 0 0.2 0
0 0 0 0 1
0 0 0 −1.3 0

⎞
⎟⎟⎟⎟⎟⎠ .

Using a simple calculation yields the eigenvalues λk (k = 1, 2, 3, 4, 5) of Ā,

λ1 = 3√2
(

cos
π

3
+ i sin

π

3

)
,

λ2 = 3√2(cos π + i sin π),

λ3 = 3√2
(

cos
π

3
− i sin

π

3

)
,

λ4 = 2
√

1.3
(

cos
π

2
+ i sin

π

2

)
and λ5 = 2

√
1.3

(
cos

π

2
− i sin

π

2

)
,

which satisfy | arg(λk)| > γπ/2 = π/12, so system (4.27) with the initial-value condition (4.28) is
asymptotically stable from theorem 4.7. At the same time, we give a figure to demonstrate this,
see figure 1.
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Figure 1. (a) Numerical solution of system (4.27) with the initial values x10 = −5 and x20 = 3.5 and (b) numerical solution of
system (4.27) with the initial values x10 = 3.5 and x20 = −5. (a,b) Solid line, x11 (t); dotted line, x21 (t). (Online version in colour.)

Example 4.13. Consider the following MRO fractional differential equation:

RLD1/3
0,t x(t) + a1RLD1/6

0,t x(t) + a2x(t) = 0, t > 0, (4.31)

with the initial-value condition

[RLD−2/3
0,t x(t)]t=0 = x0. (4.32)

In the same way, based on corollary 4.3, we see that γ = 1
6 and N = 2 from equation (4.31).

Furthermore, equation (4.31) with the initial-value condition (4.32) is equivalent to the following
system in R

2:

RLD1/6
0,t x(t) = x1(t)

and RLD16
0,tx1(t) = −a1x1(t) − a2x(t),

⎫⎬
⎭ (4.33)

with the initial-value conditions

[RLDγ−1
0,t x(t)]t=0 = 0

and [RLDγ−1
0,t x1(t)]t=0 = x0.

⎫⎬
⎭ (4.34)

Next, we take a1 = 0.002, a2 = 0.05 and investigate the stability of equation (4.31) with the
initial-value condition (4.32). According to corollary 4.10, it is needed to compute the eigenvalues
of the coefficient matrix of system (4.33). The coefficient matrix of system (4.33) can be written as

B =
(

0 1
−0.05 −0.002

)
,

and it is easy to obtain the eigenvalues of B,

λ1 = −0.002 + √
0.199996i

2
and λ2 = −0.002 − √

0.199996i
2

.

We can see that λ1 and λ2 satisfy | arg(λk)| > γπ/2 = π/12, k = 1, 2. Therefore, the zero solution to
equation (4.31) is asymptotically stable. In figure 2, we numerically simulate the above stability
result in the light of different initial values.
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Figure 2. (a) Numerical solution of equation (4.31) with the initial values x0 = 5 and (b) numerical solution of equation (4.31)
with the initial values x0 = −3. (Online version in colour.)

Example 4.14. For simplicity, we consider the following linear nonautonomous fractional
differential system:

RLD3/2
0,t x11(t) = −x11(t) + 1

(t + 1)2 x21(t)

and RLD4/3
0,t x21(t) = 2x11(t) − 3x21(t),

⎫⎪⎬
⎪⎭ (4.35)

with the initial-value conditions

[RLD1/2
0,t x11(t)]t=0 = x10, [RLD−1/2

0,t x11(t)]t=0 = 0,

[RLD1/3
0,t x21(t)]t=0 = x20 and [RLD−2/3

0,t x21(t)]t=0 = 0.

⎫⎬
⎭ (4.36)

Next, we determine the stability of the zero solution to system (4.35). According to theorem 4.2,
we can change it into the following equivalent system in R17:

RLD1/6
0,t x11(t) = x12(t),

RLD1/6
0,t x12(t) = x13(t),

...

RLD1/6
0,t x19(t) = −x11(t) + 1

(t + 1)2 x21(t),

RLD1/6
0,t x21(t) = x22(t),

RLD1/6
0,t x22(t) = x23(t),

...

and RLD1/6
0,t x28(t) = 2x11(t) − 3x21(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.37)

with the initial-value conditions

[RLD−5/6
0,t x11(t)]t=0 = · · · = [RLD−5/6

0,t x18(t)]t=0 = 0,

[RLD−5/6
0,t x19(t)]t=0 = x10,

[RLD−5/6
0,t x21(t)]t=0 = · · · = [RLD−5/6

0,t x27(t)]t=0 = 0

and [RLD−5/6
0,t x28(t)]t=0 = x20.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.38)
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Figure 3. (a) Numerical solutions of system (4.35)with the initial values x10 = −0.5 and x20 = 0.3 and (b) numerical solutions
of system (4.35) with the initial values x10 = 1.6 and x20 = −5. (Online version in colour.)

By tedious calculation, the matrix B(t) and the eigenvalues λk (k = 1, 2, . . . , 17) of system matrix
A in system (4.35) satisfy the conditions of theorem 4.9, so the zero solution of system (4.35) is
stable. After numerical simulations, we also find that its zero solution is stable, see figure 3, which
coincides with the theoretical analysis.

5. Conclusion
In this paper, we study Caputo-type and Riemann–Liouville-type MRO fractional differential
systems. By using the properties of the fractional calculus, we can change the original systems
in Caputo and Riemann–Liouville senses into their respective equivalent ones. Through these
systems, we can conveniently study the stability of the equilibria to the original systems. Various
examples are also displayed, which support the theoretical results.

The present work was partially supported by the National Natural Science Foundation of China under grant
no. 10872119, the Key Program of Shanghai Municipal Education Commission under grant no. 12ZZ084, and
the Shanghai Leading Academic Discipline Project under grant no. S30104.
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