Physics Reports 531 (2013) 173-199

Contents lists available at ScienceDirect S e EOAT S

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Oscillation quenching mechanisms: Amplitude vs. @wm
oscillation death

Aneta Koseska*?*, Evgeny Volkov®, Jiirgen Kurths ¢

4 Institute of Physics, Humboldt University Berlin, D-10099 Berlin, Germany

b Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
¢ Department of Theoretical Physics, Lebedev Physical Inst., Leninskii 53, Moscow, Russia

4 potsdam Institute for Climate Impact Research, D-14412 Potsdam, Germany

ARTICLE INFO ABSTRACT

Article history: Oscillation quenching constitutes a fundamental emergent phenomenon in systems of

Accepted 20 June 2013 coupled nonlinear oscillators, Its importance for various natural and man-made systems,

Available online 3 July 2013 ranging from climate, lasers, chemistry and a wide range of biological oscillators can be

editor: I. Procaccia projected from two main aspects: (i) suppression of oscillations as a regulator of certain
pathological cases and (ii) a general control mechanism for technical systems. We distin-

Keywords: guish two structurally distinct oscillation quenching types: oscillation (OD) and amplitude

Coupled oscillators

Oscillation death death (AD) phenomena. In this review we aim to set clear boundaries between these two

very different oscillation quenching manifestations and demonstrate the importance for

Amplitude death

their correct identification from the aspect of theory as well as of applications. Moreover,
we pay special attention to the physiological interpretation of OD and AD in a large class
of biological systems, further underlying their different properties. Several open issues and

challenges that await further resolving are also highlighted.
© 2013 Elsevier B.V. All rights reserved.

Contents

1. Introduction 174
General description of oscillation quenching: amplitude vs. oscillation death 176
2.1.  Oscillation death phenomenon 176
2.2. Amplitude death 177
2.3.  Turing bifurcation characterizes the transition from AD to OD 177
3.  Oscillation death: generation principle, characteristics and applications 178
3.1. Biological oscillators 178
3.1.1.  Oscillators with an N-shaped nullcline: genetic, calcium and membrane relaxation oscillators .....cumreenes 178
3.1.2. Emergence of OD in system of coupled repressilators 183
3.2. Chemical oscillators e 184
3.2.1.  Oscillators with model-specific phase portraits 184
3.3, CHAOIC OSCHIALOTS c.cvverrrrsererrreresnsrenssossssssssossssssssrssssassossssressansessosssosssesssssrsssssssissmosssssssssesestonssssssssesssssasas sasssssssssasssansassesssssassans 185
3.4, NeuTonal 0SCHIALOTS ..cocciiiirsriesimsiresnsssessiassistsmstsssssesssmessssssisimsesssssssssassesssssssassssssssnssnsassasasan 186
4. Oscillation death dominance: role of parameter mismatches....... 187

* Corresponding author at: Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund,
Germany Tel.: +49 0 231 133 2252.
E-mail address: Aneta Koseska@mpi-dortmund.mpg.de (A. Koseska).

0370-1573/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/{10.1016/j.physrep.2013.06.001



174 A. Koseska et al. / Physics Reports 531 (2013) 173-199

5.  OD-related regimes 187
5.1.  Inhomogeneous limit cycles 188
5.2. Mixed-mode oscillations 188
5.3. PartialOD 189
6.  Characteristics of the AD phenomenon 190
6.1. AD via eigenfrequency distribution of the coupled oscillators 190
6.2. Time-delayed interactions and occurrence of AD 190
6.3. Transition between AD and OD in neuronal systems and physiological implications 192
6.4. Partial amplitude death 193
7. Summary 193
Acknowledgments 194
Appendix A. Mathematical models 194
References 196

List of Abbreviations and Symbols

AD Amplitude death

oD Oscillation death

ODD Oscillation death dominance
IHSS Inhomogeneous steady state
[HLC Inhomogeneous limit cycle
HB Hopf bifurcation

PB Pitchfork bifurcation

BZ Belousov-Zhabotinsky reaction
Al Autoinducer molecule

€ Stiffness parameter

d Coupling coefficient

A Frequency mismatch

T Time delay

1. Introduction

Coupled oscillators constitute an effective and popular paradigm for the study of interacting oscillatory processes in
physics, chemistry, biology, neuroscience, climate research and engineering. Examples include arrays of Josephson junc-
tions [1,2], semiconductor lasers [3,4], relativistic magnetrons [5], chemical reactions [6-9], circadian pacemakers {10,11},
neurons [12,13), power grids [ 14] and a variety of other biological processes [ 15,16]. This research is even more strengthened
due to the fact that natural systems, which we tend to understand and exploit, are rarely isolated, and the interactions be-
tween them are frequently inevitable, determining the system'’s properties. Thus, the analysis of various oscillatory systems
has provided striking examples of different types of dynamical behavior that can be induced by the presence of coupling. In
general, the dynamical behavior observed in the different cases depends both on the coupling organization and strength, as
well as on the characteristics of the individual oscillators composing the systems.

To start with, weak coupling of nonlinear oscillators leads to synchronization, a fundamental nonlinear phenomenon in
various fields of science [17-19). Despite various physical applications [20], it has been shown that synchronization is in-
evitable for proper functioning of various biological systems. in mammals, for example, a coherent circadian output is a
result of synchronization of thousands of diverse neurons in the suprachiasmatic nucleus [21-24). Moreover, it has been
also shown that synchronization is crucial for the formation of somites in the course of vertebrate segmentation [25]. How-
ever, there is also evidence that synchronization plays a key role in the pathogenesis of several neurological diseases, such
as Parkinson’s disease and essential tremor, i.e. [26-29] and references therein. For example, it is hypothesized that Parkin-
sonian symptoms result from a synchronized pacemaker-like activity of a population of many thousands of neurons in the
basal ganglia [30,31).

Another fundamental emergent phenomenon in coupled system is oscillation quenching. The importance of this phe-
nomenon can be projected from the following perspectives: (i) oscillation suppression or disruption of oscillations is sig-
nificantly relevant in pathological cases of neuronal disorders such as Alzheimer’s and Parkinson's disease; and (ii) it can
serve as a control mechanism and an efficient regulator of system's dynamics (i.e. it can lead to stabilization in case of
coupled lasers [32,33]). Thus, this behavior is characteristic and has been observed for a wide range of natural and man-
made systems, ranging from climate systems [34], lasers [35,32,33], electronic circuits [36,37], systems exhibiting chaotic
dynamics [38,39], chemical systems [8,40], neurons [41,42], biological networks [43-45], etc.
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In general, we distinguish between two different types of oscillation quenching phenomena which differ both in the
background generation mechanisms, as well as in their manifestation: oscillation and amplitude death. Next, we give a general
introduction to these phenomena.

Let us define a system of N coupled m-dimensional oscillators, each characterized with a stable limit cycle:

D e+ d 3 0] A
L =Fe 0 +d ) -4 (1)
j=1
wherei = 1,...,mandj = 1---N, x; is the phase variable, F is a nonlinear function, and df denotes a local coupling

mechanism (i.e. scalar or vector coupling). Generally, Eq. (1) can be easily modified to incorporate other coupling types,
i.e. direct or global coupling.

In the phase space, the system generates an N-dimensional torus TV in the product space R"*N = R™ x - x R™, by taking
the Cartesian product of the limit cycles for the individual oscillators. If the oscillators are identical, the torus is covered by an
n-parameter family of periodic solutions. However, only a number of them will persist when coupling is present, depending
both on the nature and the strength of the coupling. .

For N coupled oscillators, on the other hand, linear coupling d’, can also produce a number of different steady states,
some of them are stable and have their own basins of attraction. In this case, the phase space is “split” between the limit
cycles and the steady states which coexist. Moreover, in the case of N interacting limit cycles, under well-defined conditions,
the so-called inhomogeneous steady state (IHSS) can appear. This phenomenon is characterized with different values of the
phase variables x{ in the phase space, which depend on the index of the oscillator, j. We will refer to this phenomenon as
the oscillation death (OD) phenomenon.

The idea of IHSS was already originated by Turing in his seminal paper “The chemical basis of morphogenesis” [46], where
he described the principles of symmetry-breaking of a stable steady state, which can then give raise to stable patterns. Sev-
eral years later, Prigogine and Lefever used the non-equilibrium thermodynamic formalism and extended this phenomenon
on diffusion-coupled oscillating regimes by showing that: there exists a symmetry-breaking instability beyond which the
stable steady state solution corresponds to an inhomogeneous situation (a transition from a homogeneous to an inhomoge-
neous steady state), maintained through a subtle balance between reaction rates and diffusion [47). Several experimental
realizations followed in the upcoming years [8,40] etc. .

On the other hand, when increasing the coupling in the system of N coupled limit cycle oscillators (d’r in Eq. (1)), the
dissipation in the system rises to an extent such that the phase space collapses: the oscillators pull each other off the limit
cycles and collapse into a fix point. This fix point can be that of the origin, or an entirely new one, created by the coupling.
This means that in contrast to the previous case, where oscillation death or IHSS is observed, the phase space is not shared
here—either a limit cycle or a fix point exists. Thus, the suppression of oscillations manifested through the existence of a
homogeneous steady state (HSS) [48,49,41,50,51] we will denote further as amplitude death (AD). We note here that in the
literature, the terminology “phase death” can be also found. However, this phenomenon can be always classified in one of
the two oscillation quenching types we already defined [52,53].

Although mathematically, the background mechanisms, as well as the manifestation of oscillation and amplitude death
phenomena can be clearly distinguished, misinterpretation of these two oscillation quenching types can be found often in
the literature. However, due to their significantly different representation, as an inhomogeneous (0D) vs. homogeneous (AD)
steady state, we believe that it is necessary to establish a clear distinction in their properties as well as the terminology used.
Moreover, from the viewpoint of dynamical control, both oscillation quenching types allow the generation of two completely
different dynamical regimes with different influence and meaning: i.e. OD constitutes a well-known phenomenon in neurons,
the “winner-take-all” situation [54,42], whereas AD mainly serves to suppress neuronal oscillations [49). Moreover, it has
been shown that the IHSS (OD) can be related as a background mechanism of cellular differentiation [55,56], whereas AD is
mainly used as a stabilization control in physical or chemical systems [32,33].

This report therefore aims at setting clear boundaries between oscillation and amplitude death phenomena, characteriz-
ing their background mechanisms of occurrence, manifestation properties, as well as applications in various fields, ranging
from biological, chemical, chaotic and neuronal oscillators, etc. Moreover, we overview as well dynamical regimes which
are, in most of the cases, directly related to oscillation quenching phenomena, such as oscillation death dominance (ODD)
[57,58], inhomogeneous limit cycles [59,55], partial amplitude death [60], etc. Qur intention is that this review serves as a
guideline to distinguish the main characteristics of oscillation quenching regimes, improving and broadening its applicabil-
ity in various areas.

The paper is organized as follows. In Section 2 we give a general description of both oscillation quenching types, AD and
OD, for a paradigmatic model of coupled Landau-Stuart oscillators, and stress their difference by characterizing the transition
scenario between AD and OD, as discussed in [61]. In Section 3 we focus on the OD phenomenon, and overview its generation
principle and characteristics. Various models, ranging from biological, and chemical to chaotic systems are discussed in this
context. Next, an analysis how OD can dominate the parameter space is presented in Section 4. Moreover, in Section 5 we
discuss also oscillatory dynamical solutions which are in most of the cases related to the OD regime, such as inhomogeneous
limit cycles, mixed-mode oscillations and partial OD. The main routes to AD and its related dynamical solutions, as well as
the different interpretation of both oscillation quenching regimes for natural systems are given in Section 6. Finally, a brief
summary and outlook are presented in Section 7.
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Fig. 1. Manifestation of oscillation death (stable inhomogeneous steady state) for N = 2 coupled Landau-Stuart oscillators. (a) Bifurcation diagram
obtained by variation of d, to illustrate OD for identical frequencies (w; = w, = 2). Dashed-dotted lines denote unstable steady states and thick solid lines
denote stable OD. (b) Time-series representation of OD ford = 5.1.

2. General description of oscillation quenching: amplitude vs. oscillation death

As already noted, oscillation quenching mechanisms can be classified in two different types, depending on their mani-
festation properties: oscillation death, characterized with a presence of an inhomogeneous steady state, and amplitude death,
resulting in the formation of a homogeneous steady state. To clarify their differences, we use here the paradigmatic model of
a Landau-Stuart oscillator, described with the equation of motion:

g% =1 +io- | zP)z. (2)

Here, w is the eigenfrequency of the oscillator, and z(t) = x(t) + iy(t) is the phase variable.

2.1. Oscillation death phenomenon

Coupling two Landau-Stuart oscillators (Eq. (2)) diffusively, and expressing the dynamical equations in Cartesian
coordinates gives:

X12 = P1ax12 = w2512 + d(x2,1 — X1.2)
Y12 = Pioy12 +wi2%2 (3)

with P ; = 1 — |z 3|2 The parameter d governs the coupling strength. For d = 0, each oscillator has a stable limit cycle at
{z1,2] = 1 onwhich it moves at its natural frequency w; ;, rendering the equilibrium solution of system (3),z, ; = 0, linearly
unstable. We consider first the case of identical frequencies, i.e. w; = @, and particularly, without any loss of generality,
the case of wy = w; = 2. To characterize systematically the qualitative changes in the dynamical behavior that occur
in parameter space, we perform next bifurcation analysis [62] of the coupled system (Eq. (3)). Here and in the following
sections, the results are obtained mainly numerically, using the Xppaut package [63). However, when possible, analytical
solutions are also given.

Thus, the bifurcation analysis of the system Eq. (3) has revealed two sets of fixed points: the origin (0, 0, 0, 0) which is

Y1 —w? 2 _? o ae .
unstable, and the pair (xy+, y1=, —X1, —y1+), where Xy« = —wz;';——gp.}ﬁ- = d——“i—*—z——— “',d‘”. The characteristic eigenvalue
equation at the origin determines the conditions for which the nontrivial solution (x+, y{+, —X1», —yy+) is stabilized:

d= %‘—‘ = 2.5 [61]. Exactly this solution corresponds to an inhomogeneous steady state or the OD phenomenon (Fig. 1).

In general, OD is a result of a symmetry breaking of the steady state of the system through a pitchfork bifurcation (labeled
PB in Fig. 1a). Thus, the unstable homogeneous state splits into two additional branches which gain stability through Hopf
bifurcations, denoted as HB, in Fig. 1a. This means that the inhomogeneous steady state is manifested through two branches
of the stable steady state solution, corresponding to x; and x; = —x] (time series of the corresponding solution are given in
Fig. 1b). Moreover, it can be shown that prior to d = 2.5, the largest Lyapunov exponent is zero, whereas the second largest
is negative, indicating a limit cycle behavior. In particular, two distinct types, in-phase and anti-phase oscillations have been
detected in this region [61]. Additionally, an e-parameter interval can be identified where both, the IHSS, as well as the limit
cycle coexist. This confirms the statement already noted in the introduction: when the oscillation quenching mechanism
belongs to the OD type, the phase space is “shared” between the limit cycles and the steady states which coexist.
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2.2. Amplitude death

In contrast to OD, however, when the quenching of oscillations belongs to the class of amplitude death phenomena, the
limit cycle decays towards a central, in this case homogeneous steady state, lying within both (for N = 2) of the uncoupled
limit cycles. To demonstrate this, system equation (3) is again considered. Differently to the previous case however, here
the oscillators have a defined frequency mismatch

Az (@)
w2

Starting from the identical situation (A = 1), and increasing the frequency mismatch between the oscillators, first the
OD loses its stability, rendering only the limit cycle solutions stable [61]. At a critical frequency difference (A ~ 3.1) and
coupling strength (d ~ 2.91), the stability of the origin changes, and the limit cycles collapse into the origin via an inverse
Hopf bifurcation (HB, in Fig. 2a). This means that the oscillations are quenched under the coupling and the system evolves
towards the homogeneous equilibrium which is stable between two Hopf bifurcations, HB, and HB, (HB, occurring for
d = 3.78 in Fig. 2a). This allows for a stable AD effect to be observed: the oscillators pull each other off their limit cycles into
the origin, and a homogeneous steady state (stable fix point solution, Fig. 2b) emerges, as the classical analysis of oscillation
quenching have previously shown [41,50). However, it was recently shown in [61], that in contrast to classical analysis of
AD, the pitchfork bifurcation responsible for the symmetry breaking of the HSS is still present in a near proximity of HB,,
and right after AD is destabilized (PB; at d = 4.48 in Fig. 2a). Despite the presence of the symmetry breaking bifurcation,
the level of heterogeneity in this case permits only AD to be observed. Importantly, an additional stable inhomogeneous limit
cycle emerges from a secondary bifurcation branch stabilized after the pitchfork bifurcation PB, (a general description of
this solution is given in Section 5.1).
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Fig. 2. Manifestation of amplitude death (homogeneous steady state) in System (3). (a) Bifurcation diagram obtained by variation of d, to illustrate the
AD for A = 3.25. Colored (red/blue) solid lines denote stable limit cycles. (b) Time-series representation of AD for N = 2 coupled oscillators and d = 3.1.
Different oscillators are represented in different colors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

We note here that this section serves only to demonstrate the different manifestations of OD and AD as inhomogeneous
and homogeneous steady states. The generation mechanisms that lead to both types of oscillation quenching regimes will
be systematically presented in the following sections.

2.3. Turing bifurcation characterizes the transition from AD to OD

Now the question arises: is a transition between both oscillation quenching solutions possible, and if so under which
conditions? Following a recent study [61] which addresses this question in detail, the increase of A leads to a critical value
for which a qualitative changeover occurs: the AD phenomenon represented via the stable homogeneous steady state transits
to a stable inhomogeneous steady state, or an OD regime (Fig. 3). The evolution between these two, very distinct dynamical
regimes is characterized with a classical Turing-type bifurcation.

This bifurcation scenario is realized as follows: the broken symmetry bifurcation points of the HSS and the limit cycle
(PB, and PB; in Fig. 2a) come closer together for increasing 4, and at Acicr ~ 3.45 they merge. This gives birth to a
supercritical pitchfork bifurcation (PB; in Fig. 3) which allows for symmetry breaking of the stable HSS (AD regime) and a
transition to an inhomogeneous steady state and a stable OD regime. On the other hand, the supercritical Hopf bifurcation
HB, which marks the end of the AD stability region (Fig. 2a) now moves to the right, resulting in the birth of an unstable limit
cycle solution [61]. This bifurcation scenario resembles the key idea underlying the Turing mechanism that a homogeneous
equilibrium is stable to homogeneous perturbations, however, far from equilibrium instability can occur, resulting in a



178 A. Koseska et al. / Physics Reports 531 (2013) 173-199

0.04 ]

-0.04

d (coupling strength)

Fig. 3. A classical Turing bifurcation determines the transition from AD to OD. Above a critical frequency mismatch value, it is possible to observe a
transition between AD and OD phenomena. The colored line (from HB, ) denotes stable limit cycle solution.

time-independent state in which the concentrations are space dependent. Here, the number of oscillators in the system
resembles the role of a space variable.

Thus, demonstrating the occurrence and difference in generation mechanisms and manifestation, we underline here the
structural distinction between both oscillation quenching types, OD and AD, which are analyzed in detail in the following
sections.

3. Oscillation death: generation principle, characteristics and applications

The idea that the symmetry breaking of the system via a pitchfork bifurcation, as described by Turing in 1952 [46), and
mathematically formulated by Prigogine and Lefever [47] for two identical Brusselators coupled in a diffusion-like manner
(details of this case will be discussed in Section 3.2.1), has been demonstrated to represent a general dynamical solution in a
wide range of coupled systems. It has been shown theoretically that OD is model independent, persisting for large parametric
regions in several systems of diffusively coupled chemical [64], biological [43,65,44,59,42] or chaotic oscillators [39].

As revealed by experimental studies, the basis for OD is a specific, vector-type coupling, namely coupling via a slow recov-
ery variable [8]. Thus, several experimental realizations have shown the existence of OD in chemical reactors [40], chemical
nano-oscillators (micro-fluidic Belousov-Zhabotinsky-octane droplets) diffusively coupled via signaling species [66}, but
also electronic circuits [36,37], thermo-kinetic oscillators [52], etc.

This allows OD to be considered as a control mechanism of the system’s dynamics, with various applications in physics,
chemistry, medicine and biology. To that extent, in what follows, we overview the general mechanism of the occurrence of
0D in paradigmatic classes of coupled oscillators which differ in their structural properties, and coupling characteristics, as
well as the size of the observed systems. We note here once again that OD in the investigated systems is always accompanied
(coexists) in parameter space with stable limit cycle oscillations [8,67,65,44] (and references therein).

3.1. Biological oscillators

Due to the manifestation of the OD phenomenon through an inhomogeneous steady state, this oscillation quenching
mechanism allows for the formation of heterogeneity in a homogeneous medium. In that context, the idea of oscillation
death has been interpreted as a possible mechanism of pattern formation and cellular differentiation [46,55,56]. Therefore, the
characterization of OD, especially in different biological systems is significantly important. This statement is strengthened
with the fact that OD has been identified as well in neuronal competition models for the description of pattern generators
and related to mechanisms for frequency control [54,42].

Next, we characterize the formation and manifestation of OD in two general classes of coupled biological oscillators:
relaxation and “repressilator” [68] types of oscillators. The dependence of OD formation with respect to the oscillator’s type,
but also the coupling characteristics and network’s topologies is overviewed in detail. The results are also generalized for
systems of N coupled oscillators, where the main characteristics of OD are investigated as well.

3.1.1. Oscillators with an N-shaped nulicline: genetic, calcium and membrane relaxation oscillators
A crucial characteristics of dynamical systems is the positioning of the nuliclines: exactly this determines their dynamical
behavior. In general, for a system described by first order dynamical equations, i.e. Eq. (1), the nullcline (x; for example) is
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Fig. 4. Overview of system’s dynamics (Eqs. (1), (5)): Characteristic N-shaped nullcline for general class of relaxation oscillators. The two nullclines of
a general two-dimensional system are represented in different colors. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

the set of points which satisfy

FX, ) +dzed -2 =0. (5)

Note that the intersection point(s) of all nullclines is an equilibrium point of the system. If the system is characterized with

one N-shaped nullcline (N-shaped curve obtained from the condition % = 0), and a second one (for %’ = 0)represented as
aline intersecting the first one (example given in Fig. 4), an occurrence of alternatively slow and fast “relaxation” oscillations
is generated over a wide range of parameter intervals. Thus, a general characteristic of these oscillators is the presence of
multiple time scales in the system. Note that time hierarchies are pervasive in biological systems, characterized by a wide
separation of time scales of the underlying processes at one and the same level of spatial organization. Thus, fast-slow
systems have become one of the major modeling tools for many biological and chemical processes. Here, we use a (synthetic)
genetic oscillator [43], a model characterizing calcium (Ca®") oscillations in the pancreatic B-cells [65], and a membrane
oscillator [69] as representative examples. We investigate further the presence of OD in the minimal model of two coupled
units, and characterize its dependence on the coupling type and the size of the system.

1. Model of synthetic genetic relaxation oscillators

In the past several years, collective rhythms of regulatory genetic networks have been a subject of considerable
interest, especially because of the fact that the advancement of molecular biology techniques has enabled experimental
observations of the dynamics of regulatory networks via engineered synthetic genetic circuits. Therefore, several theoretical
[70,71,43,72,59] and experimental models [68,73,74] of distinct synthetic oscillators or populations have been investigated
in the literature. The main means of coupling in the constructed systems has been a trans-membrane diffusion of signaling
molecules, called autoinducer (Al), into an extracellular medium. It has been also shown that a particular realization of an
Al-mediated coupling in these systems can lead to the appearance of OD [43,44,59], only if the Al is generated by the slow
variable (in contrast to the relaxation model [70] for e.g., where the fast variable regulates the production of Al).

1.1 Globally coupled oscillators

The model considered here consists of hysteresis-based relaxation genetic oscillators which *communicate” via signaling
Al molecules [43]. Omitting detailed biological explanations, we focus here on the time evolution of the elements in the
system as governed by the dimensionless Egs. (for a detailed description of the model we refer to [43]):

du;

d—‘; — af ) — u, + ash(w;)

dv,

Fl:; = o8 (y) — v

P~ eaag) — w) + 24— w) ©)

dw, do &
L -
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Here, N denotes the total number of cells (oscillators), u; and v; represent the proteins which constitute the basis of the
oscillator in the i-th cell, and w; and w, are the intra- and extra-cellular Al concentrations, respectively. The corresponding
functions are: f(v;) = 1/(1 + vf).g(u,-) =1/(1+ u,?') and h(w;) = w"/(1 4+ w"). The dimensionless parameters ;3 3.4
regulate the basic biological operation, and can be, therefore, considered as bifurcation parameters. The coupling coefficients
in the system are given by d and d, (intracellular and extracellular) and depend mainly on the diffusion properties of the
membrane, as well as on the ratio between the volume of the cells and the extracellular volume. The presence of two time
scales in the model (established for ¢ « 1) allows the system to produce relaxation oscillations which emerge via a Hopf
bifurcation (HB, ; in Fig. 5). The structure of the oscillator thus renders w; to be governed on the slow time scale of the
system, whereas u;, v; and w, follow fast dynamics.

Here, we consider the formation of OD phenomena with respect to the coupling characteristics. In particular, we overview
the properties of OD in systems of globally (Egs. (6)), as well as locally (Eq. (7)) coupled relaxation oscillators. Moreover, the
manifestation of OD depending on the network topology is also discussed.

To the best of the authors' knowledge, the background mechanism of OD is always a symmetry breaking instability, which
allows for occurrence of an inhomogeneous steady state. Thus, the bifurcation structure of the OD phenomena in the system
of coupled relaxation oscillators displayed in Fig. 5 resembles the formation of OD in the general example of Landau-Stuart
oscillators (Fig. 1). Again, the IHSS is manifested through two branches of stable steady state solution, which correspond
here to two levels of protein concentrations—one of the oscillators populates the upper, whereas the other one the lower
branch of the IHSS. Moreover, the OD coexists in the a; parameter space with in-phase oscillations, stable between HB; and
HB, [44].

In the generalized case of N coupled oscillators (N > 2), the system (Eq. (6)) demonstrates only two cluster decompo-
sitions for OD, independent of the number of oscillators. This solution corresponds to the two branches which are born as
a result of the PB through which the symmetry of the HSS of the system is broken: the OD is represented as a stable region
on the two branches of the IHSS, which the N-coupled oscillators then populate. Furthermore, in our previous studies we
have observed that for N coupled oscillators, there exist N — 1 different distributions of the oscillators between these two
stable branches [44,58,75], each characterized by a shift in the protein production level (Fig. 6a). Moreover, each of the N — 1
clustering distributions represents a stable attractor with its own basin of attraction, as shown in Fig. 6b using a bifurcation
analysis. In Fig. 6b, only the IHSS branches are shown for clarity. However, each IHSS solution is a result of the symmetry
breaking of the steady state of the system via a pitchfork bifurcation, as already discussed.

This means that in a homogeneous population of identical oscillators (cells), OD contributes to the formation of a
heterogeneous solution. In particular, the cells populate one of the two stable branches, which results in the production of
different stable protein concentrations. Differences in the protein concentrations, on the other hand, lead to different cellular
functionality, which can be interpreted as cellular differentiation [76,55,56]. Thus, the presence of OD in synthetic, and in
biological circuits in general, is critical, since it can be considered as a promising tool for cell function regulation: it provides
a stable variability of protein concentrations. On the other hand, OD can be viewed as an additional mechanism for genetic
switching based on interacting limit cycles, a mechanism substantially different from a standard synthetic genetic toggle
switch [77]. Fig. 6b demonstrates also the coexistence of the stable attractors characterizing the different OD distributions,
rendering multistability typical for a system which displays this type of oscillation quenching. This situation is significantly
important for biological systems: if one of the regimes becomes unprofitable for cell functioning, the genetic unit can easily
switch to some other coexistent regime. Moreover, it has been reported that multistability is a main mechanism for memory
storage and temporal pattern recognition [78], fields which could serve as a basis for potential biotechnological applications
of the OD phenomenon.

1.2 OD in oscillators locally coupled on a ring

It is a well known fact that chains (rings) of locally coupled identical oscillators, in contrast to the globally coupled
scenario, undergo complicated bifurcation transitions, including the coexistence of multiple periodic orbits with different
frequencies and amplitudes, spatial patterns, and modulation instabilities [79-81]). Thus, we discuss here the question
whether topologically distinct structures can enhance the dynamical structure of the OD phenomenon.

In [82], we have investigated this possibility considering several ring structures of linearly coupled synthetic relaxation
oscillators (details of the topology can be found in [82]). in general, these systems can be mathematically represented by
substituting the equations for w; and w, in the system equations (6) with:

dw;
% = e(@ag () — w) + 2dwisq + Wiy — 20). @)

Due to the spatial organization of the cells and the diffusive properties of the local, phase-repulsive coupling, OD is now
manifested via more complex dynamical structures. Hence, in addition to the standard two cluster decomposition, which
was initially thought to be the only manifestation of OD, different cooperative behavior of the oscillators is possible. The
lower (upper) level (or both) can be constituted of several sub-clusters, characterized with different protein expression
levels. Fig. 7a, b shows here two possible examples: in the case of N = 16 identical oscillators, the occurrence of OD e.g. in
the form of 2 vs. 4, as well as 4 vs. 4 cluster decompositions is possible, with different distributions of the oscillators between
the stable attractors (stable with respect to small perturbations). However, as already noted, the local coupling contributes
to the stabilization of a large number of attractors, thus, the systematic classification of the various OD manifestations for N
locally coupled oscillators awaits further analysis.
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This novel type of OD manifestation which we discussed in [82] for the first time, can play a crucial role in biotechnological
applications. One could envision a new synthetic design based on the currently investigated network properties in order to



182 A. Koseska et al. / Physics Reports 531 (2013) 173-199

a ¢ b*

OD (2 clusters vs. 4 clusters)
OD (4 clusters vs. 4 clusters)

0 0
0 200 400 600 800 1000 O 200 400 600 800 1000

time

Fig. 7. Novel OD manifestation as a (a) 2 vs. 4 cluster decomposition (distribution of the oscillators between the clusters (4:4) vs.(2:2:2:2)) and (b) 4 vs. 4
cluster decomposition (oscillator distribution (3:1:2:2) vs. (1:2:2:3)) for a system of N = 16 locally coupled relaxation genetic oscillators (Eq.(7)). Within
the clusters the oscillators exhibit identical behavior. Different clusters are denoted in different colors. Both distributions represent stable attractors [B2].
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

construct small synthetic units to serve as efficient memory devices, offering enhanced storage capabilities (depending on
the number of sub-clusters present) in contrast to the contemporary memory devices.

Based on this, we can state that the OD phenomenon has significantly different characteristics in globally and locally
coupled systems (note that qualitatively similar behavior will be observed for various models of locally coupled relaxation
oscillators). We underline here in particular the non-standard manifestation of OD, where separate stable clusters are
additionally characterized with the formation of sub-clusters. Again, there exists a possibility for different oscillator
distributions between separate (sub)clusters, which in turn leads to multiple stable attractors and a very complex dynamical
structure in systems of identical oscillators, locally coupled on a ring.

1L, OD in models of calcium and membrane oscillators

The study of OD can contribute as well to the understanding of various other biological phenomena. We demonstrate
here two case studies: the problem of Ca-metabolism in insulin-secreting pancreatic 8-cells (Eq. (A.1)) [65], and a model
of membrane oscillations used to describe the kinetics of lipid peroxidation in a cell membrane (Eq. (A.2)) [83,69]. Both
oscillators are of relaxation type characterized with N-shaped nullclines, similarly to Fig. 4.

(i) An important control center in the glucose homeostasis is the insulin-secreting pancreatic S-cell, localized in the Islets
of Langerhans. Insulin secretion is a complex multicellular process, which relies on the interaction between 8-cells within
an islet, as well as on the interactions between islets in the pancreas. Under normal conditions, glucose stimulation evokes
well-synchronized oscillations of the cytosolic Ca?* concentration ([Ca?*];) in the B-cells in an islet, which in turn triggers
pulses of insulin secretion [84,85]. It has been suggested that a disturbance in the Ca?* oscillations could contribute to the
irregularity of insulin oscillations in diabetes patients. Therefore it is of utmost interest to investigate and characterize the
mechanism underlying the disruption or suppression of Ca** oscillations in this case.

The dynamical behavior of this system using a Morris-Lecar-like 8-cell model (Egs. (A.1)) was investigated in the regions
of strong [65] and moderate coupling [58] and shown that in the case of identical cells, symmetry breaking in the system
allows for classical OD to be observed. However, this oscillation quenching regime coexists over the full parameter range
with synchronous oscillations which are a necessary precondition for proper insulin secretion (Fig. 8a). This means that the
diffusion of calcium through gap junctions, if too strong, can have a de-synchronizing effect by promoting 0D, from which
it was concluded that Ca®* gap-junctional diffusion does not make an important contribution to the normal function of
pancreatic Islets of Langerhans.

(ii) The membrane model (Eq. (A.2)) used to describe the kinetics of lipid peroxidation in a cell membrane, and also
interpreted as a model for the cell cycle of mammalian cells [83,69] is another strong relaxation oscillator generating a
limit cycle due to an N-shaped nulicline. The phase portrait of this model is in general very similar to the structure of
the synthetic genetic oscillator discussed previously (Eq. (6)). However, due to its biological relevance, a different coupling
type, namely local coupling via the slow variable seems more appropriate here. The occurrence and manifestation of OD for
identical oscillators is qualitatively the same as in the previously considered examples (Fig. 8b). Moreover, for any value of
the coupling coefficient for which OD is present in the system, there is a clear coexistence of the OD regime with the full
amplitude oscillatory regimes (limit cycle solution between HB; and HB, in Fig. 8b).

Thus, we can conclude that in systems of coupled relaxation oscillators, OD is always a result of a symmetry breaking of
the system via a pitchfork bifurcation. The two branches of the IHSS which occurs in this case are further stabilized via Hopf
bifurcations. Moreover, distinct topological structures can give birth to more complex OD regimes: lower (upper) level (or
both) can be constituted of several sub-clusters [82]. However, we have to emphasize here the fact that the manifestation of
the OD phenomenon in chains of locally coupled oscillators is not exploited in full detail and awaits further investigations.
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Fig. 8. Manifestation of: (a) coexistence of OD and limit cycle oscillations (red lines) for a system of N = 2 coupled identical Morris-Lecar-like f-cells
(Eq. (A.1)) for coupling coefficient g..c, = 0.05: and (b) coexistence of OD and limit cycle oscillations for a system of N = 2 coupled identical membrane
oscillators (Eq. (A.2)) with coupling strength d = 1.0. The remaining parameters are the same as in [58] (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Manifestation of: (a) OD for a system of N = 2 coupled identical repressilators. The HB on the boundaries of OD results in stable IHLC oscillations
(blue lines); and (b) clustering in the IHSS regime for N = 3. The figure is reproduced with parameters from [86]. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

3.1.2. Emergence of OD in system of coupled repressilators

Despite relaxation, phase oscillators constitute a significant modeling tool to study various physical or biological
systems [68]. In order to demonstrate the existence and manifestation of OD in this class of systems, we use a well-studied
model of a synthetic oscillator termed a repressilator and developed in Escherichia coli from a network of three transcriptional
repressors (tetR(A), cI(B), and lacl(C)) that inhibit each other in a cyclic way [68]. The coordinated behavior of a population
of coupled oscillators and its transition to synchrony was studied through the influence of a chemical coupling (quorum-
sensing mechanism realized via Al signaling molecules) [71], whereas a slight modification of the coupling mechanisms
leads to the presence of various dynamical regimes [59].

In contrast to the relaxation oscillators, where OD results from the symmetry breaking of the unstable steady state, in
the model of coupled repressilators (Eq. (A.3)), the situation is slightly different: the pitchfork bifurcation which results in
the IHSS is born here from a stable steady state (Fig. 9a). Moreover, the boundaries of the stable IHSS are not obligatory Hopf
bifurcations (as in Figs. 5, 8), but stable OD can be marked as well with saddle-node bifurcations (LP; in Fig. 9a). The model
system (Eq. (A.3)) possesses another very important characteristic: OD, or more precisely, the boundary supercritical Hopf
bifurcation of stable OD gives birth to a stable limit cycle, the so-called inhomogeneous limit cycle (JHLC, discussed in detail
in Section 5.1) [86].

Therefore, the phase space is now “split” between the HSS, the IHSS and two different limit cycles, an IHLC (born from
HBs; in Fig. 9) and anti-phase oscillations emerging from HB, (the stable limit cycle emerging from HB, is not displayed in
the figure for improved clarity). Moreover, for N coupled oscillators, N — 1 different distributions between the 2-cluster
decompositions of IHSS are again possible, similarly to the situation described in Section 3.1.1. Let us define the different
cluster states by the notation ml[(N — m)u, which denotes a cluster of m oscillators in the low-protein concentration state
I, while the remaining N — m oscillators populate the upper state u, characterized by higher protein concentration. In [55]
we have determined the following dependency: clusters of the type 1/](N — 1)u require small coupling values Q, while the
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(N — I 1u exist for large Q (Fig. 9b). Each possible partition, as in the case of relaxation oscillators, shows slightly different
levels in the protein concentrations, and hence, a fine tuning of the protein levels can be accomplished by choosing a specific
coupling interval for proper partition of the oscillators.

3.2. Chemical oscillators

The problem of coupling two chemical oscillators was first dealt with by Prigogine and Lefever [47] who showed that
two Brusselators, when coupled in a diffusion-like manner can break symmetry and arrive at the IHSS, setting therefore the
ground work on the OD phenomenon (a brief description of the proof is given in Appendix A.4). Bar-Eli later on extended
this study by discussing the formation of OD in systems of N coupled identical, as well as almost identical Brusselators [64].

The first experimental results on OD were however reported by Dolnik and Marek by demonstrating the extinction
of oscillations in chemical reactors coupled by mutual mass exchange [40]. Later, Crowley and Epstein investigated the
Belousov--Zhabotinsky reaction in stirred tank reactors coupled by mass flow and showed that the basis for OD is a
specific, vector-type coupling, namely coupling via the slow recovery variable of the system [8]. Moreover, they showed
experimentally the existence of all dynamical regimes and the relations between them, i.e. the coexistence of IHSS and
in-phase oscillations, as we have shown for various biological systems in the previous section. Similar experimental
observations were also made in [87]. Moreover, the existence of OD was also shown for different models of chemical
oscillators, such as the Field-Kérds-Noyes model [88], as well as observed experimentally in chemical nano-oscillators
(micro-fluidic Belousov-Zhabotinsky-octane droplets) with diffusive coupling [66].

In what follows, we overview the mathematical formalism and the manifestation of the OD phenomenon in systems
characterized with model-specific phase portraits, i.e. Brusselators, Oregonators and chemical droplets.

3.2.1. Oscillators with model-specific phase portraits

In this section we investigate conditions necessary for the emergence of OD in systems which differ in their dynamical
structure from the previously investigated oscillators with N-shaped nullclines. In particular, we consider two chemical
models, the well-known Brusselator model and a model describing the Belousov-Zhabotinsky (BZ) reaction (using a
simplified Oregonator model (Egs. (A.5)) and a model of chemical droplets), both characterized with specific phase portraits.
In general, the Brusselator has a particular triangle-like phase portrait (Fig. 10a), with three distinct times (or rates) on the
cycle: Tyou (Th2) being the time of a phase point motion on the slow (left) part of the x-nulicline, the time of jump to the
y-nulicline is denoted as Tyt (T23, Ta1), and Troderare (T34) characterizes the time of motion of the phase point on the
y-nullcline. The relaxation of the oscillators is defined as: Tsou/(Tjast + Trmoderare)- ON the other hand, the Oregonator model
has a more specific structure of the phase portrait, marked by the coexistence of homogeneous and inhomogeneous steady
states [58]. In contrast to the models describing the oscillators with an N-shaped nullcline which contain the parameter ¢
in an explicit form, the stiffness in these two models is controlled by the kinetic parameters. In what follows, we analyze in
detail the conditions necessary for the appearance of OD separately in both systems.

1. Model of diffusively coupled Brusselators

The Brusselator is an autocatalytic model involving two intermediates (the general form is described by Eq. (A.4).).
It illustrates how the fundamental laws of thermodynamics and chemical kinetics as applied to open systems far from
equilibrium can give rise to self-organizing behavior and dissipative structures in the form of temporal oscillations and
spatial pattern formation. In the simplest form, the Brusselator model includes two coupled variables representing the
concentrations of the intermediate products. Thus, the classical model for two identical Brusselators with vector coupling
(viay) through a semipermeable membrane is described by:

dx.

— =A-(B+Dx + 2y

dt

d .

% = Bx; — xyi + d@; — y) (8)

with x; and y; being the phase variables, and A, B the system’s parameters. The point x, ; = A, y1,2 = B/A defines the steady
state of the system. Evaluating the eigenvalues of the Jacobian at this point, we get that Re A, = 0 for B = A’ +1,and
Re A3 4 = O for B = A? + 1 + 2D, following that a Hopf bifurcation occurs when two of the complex conjugate eigenvalues
cross the imaginary axis. Furthermore, when A4 = 0 for B = A%/2D + 1, a pitchfork bifurcation (PB; in Fig. 10b) occurs,
defining branch switching points: the one of the origin (x;; = A, 12 = B/A) and the inhomogeneous steady state (IHSS),
which is symmetric to the interchange (x;, ¥1 <> X2, ¥2), and is therefore double degenerate [89,67].

Characteristic for this system, similarly to the repressilator case, is the existence of a stable inhomogeneous limit cycle
from the HB, which determines the boundary of the IHSS (Fig. 10b). Moreover, it was shown that in the general case of N
coupled Brusselators [64,58], the manifestation of OD does not change: the oscillators populate the upper or the lower level
of the IHSS, with a possibility for different distributions of the oscillators between the two stable branches.

IL. Model of coupled BZ-oscillators: oregonators and chemical droplets

One of the most frequently used models to investigate the dynamics of chemical systems is the model constructed from
two, nearly identical Belousov-Zhabotinsky (BZ) oscillators. In most of the cases, this setup usually includes large reactors
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Fig. 10. (a)Nullcline representation (dashed lines) in a triangle limit cycle (Brusselator model, Eq.(8)); and (b) OD realization for two identical Brusselators.
The HB that stabilizes the OD solution gives birth to an IHLC denoted with blue lines. Parameters as in [58).

connected directly by small channels for controlled mass exchange of bulk solution. One manifestation of such a system is
given through a 3-variable Oregonator model (Egs. (A.5)), used in [8] to elucidate how the chemistry of the system generates
the various behaviors (such as OD, in-phase and anti-phase oscillations) observed in experiments. In the case of identical
elements, the bifurcation diagram is a non-standard one compared to the systems with an N-shaped nullcline. Here, in a
large part of the parameter interval, there is a coexistence of OD with the stable steady state of the system, and an additional
coexistence with the in-phase oscillations [58].

In living systems, however, coupling often occurs through signaling molecules, as a synaptic communication (excitatory
or inhibitory) or chemotaxis [90]. To mimic such distinct communication scenarios in chemical systems, micro-fluidic
devices have been used [66]. In particular, the experimental construct consists of a linear array of droplets of very small
volume containing a BZ solution separated by octane drops in a glass capillary. This allows the characteristic time of, here
inhibitory communication, to be smaller than the period of the oscillations.

This type of systems are significantly important for the investigation of OD phenomena, since they inevitably resemble
biological systems (in particular the type of systems that were discussed in Sections 3.1.1(1)and 3.1.2). Here, the clear analogy
of the chemical droplets to living cells, each containing separate oscillators, can be established. However, in contrast to
cellular populations, these systems allow an efficient control of the characteristic time of diffusion. Moreover, the individual
dynamical behavior of each droplet can be observed. Thus, by changing the concentration of one of the constituents of the
BZ oscillators, the authors in [66] observed the formation of a stationary Turing pattern, which is in general the classical
OD regime. As reported in this work, the transition to OD goes through intermediate anti-phase oscillations, or almost
immediately, depending on the concentration of the phase variable which is experimentally manipulated.

3.3. Chaotic oscillators

The investigations of coupled chaotic oscillators have been generally focused on synchronization transition scenarios
(i.e. phase, lag and complete synchronization [91] or anti-phase synchronization [92]), whereas the possibilities of oscillation
quenching have been limited to the case of amplitude death, or the disappearance of oscillations and the transition to a stable
homogeneous fixed point [93-95,38]. It is only recently that the conditions for OD in systems of coupled chaotic oscillators
have been addressed [96,39], in particular by studying linearly coupled identical chaotic oscillators without time delay, such
as the Lorenz system (A.6) or coupled Pikovsky-Rabinovich (PR) oscillators (A.7) [97].

In [39] it was shown that the transition to OD is model-dependent, i.e. Lorenz oscillators have to be coupled by conjugate
or negative coupling, whereas standard diffusion of one component is sufficient for a pair of PR oscillators to exhibit OD. In
order to demonstrate the general principles of OD occurrence in systems displaying chaotic behavior, we overview next a
specific case of dissimilarly coupled identical Lorenz oscillators as given in Eq. (A.6). For a given parameter set, the coupled
system is characterized, among others, with non-symmetrical equilibrium A, ;; and A;, which is the basis for the occurrence
of OD as the coupling coefficient moves from zero (Fig. 11a). For further details on the OD solutions in the system of coupled
Lorenz oscillators we refer the reader to [39].

The OD is here stable between a subcritical Hopf and a transcritical bifurcation (TB in Fig. 11a), and it resembles the
manifestation observed and extensively discussed previously: one of the coupled Lorentz oscillators populates the upper,
whereas the second oscillator populates the lower stable branch of the OD solution.

Moreover, in systems of coupled chaotic oscillators the transition process to OD is also interesting to study. In particular,
for the case of Lorenz oscillators described here (Eq. (A.6)), before OD is stabilized the system is characterized with an
asymmetrical chaotic regime with laminar intervals of synchronous chaos. On the other hand, for a slightly different coupling
matrix (via the x variable), the system transits from a symmetrical chaos regime to a non-symmetric limit cycle, then to a
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Fig. 11. (a) Manifestation of OD in system of coupled Lorenz oscillators (A.6). (b) Stable OD and IHLC in system of coupled Pikovsky-Rabinovich circuits
(A7)

non-symmetric quasi-periodic regime, and finally to the coexistence of anti-phase synchronization and a quasi-periodic
regime until OD is stabilized via a Hopf bifurcation [39). These nontrivial transitions from chaotic dynamics to an oscillation
quenching state, and in particular the one of OD, thus opens valuable possibilities for chaos control applications that need
to be further exploited.

It is also important to note here observations of OD for the system of coupled Pikovsky-Rabinovich circuits (Eqs. (A.7))
due to its remarkable analogy with the dynamics of coupled periodic elements. Interestingly, in this case, the coexistence
of OD with synchronous chaos has been established [39), similarly to our previous observations of OD in general systems,
as presented in Sections 3.1-3.2. Moreover, analogously to the case of coupled repressilators (Eqgs. (A.3)) or Brusselators
(Egs. (8)), where the HB which stabilizes OD gives rise to a stable IHLC solution, here the anti-symmetrical OD (stable between
a Hopf and a pitchfork bifurcation, HB;; and PB, in Fig. 11b) transits to an inhomogeneous limit cycle (stable between HB;,
and a torus bifurcation TR, in Fig. 11b), and then to inhomogeneous chaos with decreasing coupling strength d. Thus, the
manifestation of OD (and OD-related regimes) in systems of coupled chaotic oscillators provides a rich dynamics which
deserves detailed future investigations.

3.4. Neuronal oscillators

Recent studies of firing-rate models for neuronal competition, as observed in binocular rivalry and central pattern
generators [54,42], have investigated the importance and physiological meaning of oscillation quenching mechanisms.
Although the framework for neuronal competition initially appeared in the descriptions of neuronal development, it has
been further applied in the modeling of various neuronal computational tasks, resulting in the detection of the oscillation
death phenomenon, termed in the neuroscience literature as “winner-take-all” behavior. In neuronal systems, this behavior
represents the state when one (sub)population remains active, whereas the other one is indefinitely inactive as a result of
the inhibitory interactions, so the switching between states does not take place any longer. Exactly this type of behavior has
been previously proposed in the literature as a model for a short term memory and attention [98], or for the selection and
switching in part of the basal ganglia under both normal and pathological conditions [99,100].

The mechanism of occurrence of OD in neuronal models follows the classical bifurcation scenario that we have described
so far: symmetry breaking of the unstable homogeneous steady state of the system (via a pitchfork bifurcation, PB in Fig. 12)
leads to the appearance of an inhomogeneous steady state, further stabilized via Hopf bifurcations (HBs s, in Fig. 12) [54,42].
Here, we demonstrate this behavior on a minimal model of two inhibitory coupled cells, with a slow process in the form of
spike frequency adaptation and/or synaptic depression, (Eq. (A.8)) that respond to two competing stimuli of equal strength,
as shown in (Fig. 12).

The winner-take-all behavior, or the OD may persist for a long time in a neuronal population. However, this might not be
indefinite, if some mechanism for slow fatigue or adaptation is present. It is important to note, however, that OD in neuronal
systems appears both as a consequence of changes in the inhibition strength (an internal parameter of the system) [101], as
well as in the case presented here—due to changes in the stimulus strength [54]. However, it is necessary to underline the
fact that OD in neuronal systems has been observed for non-diffusive coupling, in contrast to the observations made in the
examples presented previously in this review.

Even though the theoretical characterization of OD for neuronal systems is obvious, the evidence for its direct relation to
physiological behavior, such as the one proposed for short-term memory for example, is currently limited and speculative.
1t will be therefore of significant interest to consider this dynamical solution and its importance for the characterization and
manifestation of different physiological conditions in future.
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Fig. 12. Manifestation of OD in system of coupled identical neuronal oscillators (Egs. (A.8)) when the external stimulation I is varied. Thin solid lines
represent homogeneous steady state, thick solid lines—OD, whereas dash-dotted lines represent unstable steady state. The figure is reproduced with
parameters from [42],

4. Oscillation death dominance: role of parameter mismatches

In the previous sections we have discussed extensively the fact that the phase space of systems of linearly-coupled os-
cillators is “split” between limit cycles and inhomogeneous steady state, that is the regions of stability of OD and different
oscillatory solutions (i.e. in-phase oscillations) always coexist. Considering however, that OD can be regarded as a stabi-
lization criteria in systems of coupled chaotic oscillators [39], or it can be directly related to distinct biological phenomena
[65,42,55], it is important to discuss under which conditions an 0D solution will dominate the parameter space. To that
extent, we have established in [57] that detuning can abolish limit cycle oscillations, and replace them with OD at a certain
appropriate magnitude of the coupling strength, a phenomenon which we termed “oscillation death dominance (ODD)". In
what follows we overview the basic characteristics of this effect.

We consider next the case of coupled genetic relaxation oscillators described with Eq. (6), with the seeming difference
to Section 3.1.1: here, it is assumed that detuning between different oscillators exists, expressed in the variability of the
a-parameter values as:

] asi)
¥

dyj = (9)

As a result of the detuning present in system (Eqs. (6) and (9)), the HSS corresponding to cells being identical (Fig. 13a),
here splits into slightly different steady states with different protein concentrations which both coupled oscillators populate
(Fig. 13b). Moreover, the presence of even a 4% difference between the distinct cells leads to a destabilization of the limit
cycles in the parameter region where OD is stable: the detuning abolishes completely the oscillatory solutions in a large
part of the parameter plane, replacing them completely with OD for critical values of the coupling strength (Fig. 13c). The
detailed relation between the detuning (d;) and the coupling parameter (d) for the occurrence of ODD is given in [57]. The
limit cycle which is now stabilized between the Hopf bifurcations of the stable homogeneous and inhomogeneous steady
states is the branch of the asymmetric oscillations, allowing the dominance of the OD regime to be established (Fig. 13c).

The effect of ODD is rather general and valid for systems where global intensive inhibitor diffusion takes place. It has
been shown to exist for multiple systems that exhibit the OD phenomenon (in particular, for all of the systems discussed
in Sections 3.1.1-3.2) [58]. Moreover, the particular detuning dependent dominance of OD demonstrates once more the
difference between the OD and AD regimes, since disorder of frequency dispersion has been shown to eliminate AD [102].
Additionally, if we consider that OD can be interpreted as an extension of Turing’s mechanism in oscillatory media (although
the phase space is shared with a limit cycle), then it can be stated that ODD enlarges the robustness of the Turing structures
in oscillatory media. Furthermore, ODD provides an additional parameter, the value of detuning, as a controlling mechanism
for the transitions between steady and oscillating states in developing, in particular, in biological systems.

5. OD-related regimes

The symmetry breaking phenomenon resulting in the emergence of an IHSS as described here is not only characteristic for
steady state solutions. In particular, after the existence of IHSS was shown for two identical coupled Brusselators [47], Tyson
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Fig. 13. The effect of ODD: OD dominates the phase space in system of coupled genetic oscillators (Eqs. (6) and (9)). (a) In the case of identical oscillators,
0D and limit cycle (red line) share the phase space (d = 0.008, d; = 1). (b) Presence of detuning between parameters starts removing the limit cycles
(red and blue lines) from the region where OD is stable, thus allowing a stable ODD window for d; = 0.98, whereas (c) increased detuning, ie.d; =095
allows for complete dominance of OD in parameter space. The limit cycles (red lines) are pushed to the sides of OD. Other parameters as in Fig. 5. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and Kauffman discovered a spatially inhomogeneous limit cycle (IHLC) [89]. Additionally, complex spatiotemporal behavior
was observed near the stability boundaries of inhomogeneous steady states in the form of mixed-mode oscillations [103,42]
and partial oscillation death [82]. In the following we overview the main characteristics of these dynamical regimes and their
relation to the existence of a stable IHSS solution (OD).

5.1. Inhomogeneous limit cycles

The inhomogeneous limit cycle is defined as a periodic solution of a system of coupled oscillators rotating around two
spatially nonuniform centers (Fig. 14a). It emerges from the Hopf bifurcation of the inhomogeneous steady state and if this
Hopf bifurcation is supercritical, then the IHLC is stable (stable IHLC are shown in Figs. 9a, 10b) [89,67,86,55]. Contrary
to oscillators with an N-shaped nullcline, the system of two coupled Brusselators or repressilators, for example, easily
demonstrate a spatially inhomogeneous limit cycle with high frequency oscillations and amplitudes very sensitive to the
coupling.

Furthermore, for increased size of the system, the parametric region where both inhomogeneous solutions (steady state
and limit cycle) are stable is significantly increased at the expense of the HSS (the relation between stable /HSS and the size
of the system we already discussed in detail in the previous sections). The reason for this is the clustering that occurs, and in
the case of the IHLCs, the oscillators exhibit identical behavior within a single sub-cluster, but with various phase relations
among them. The number of oscillators in a given cluster also affects the amplitude and period of the IHLC oscillations [55].
This means that the presence of an JHLC has as a consequence a well pronounced multirhythmicity in the system, and can
be seen as an additional mechanism of generating heterogeneity in initially homogeneous systems. Exactly this property of
the inhomogeneous dynamical solutions is crucial for biological systems and has been further related to cellular and stem
cell differentiation [55,56].

5.2. Mixed-mode oscillations

In systems characterized with fast and slow dynamics and for a certain range of control parameters, the IHSS can transit
to a mixed-mode regime [103,42]. In general, the mixed-mode oscillations are defined as complex oscillatory patterns
consisting of small-amplitude high-frequency oscillations that alternate with the single large-amplitude long-period cycle
(Fig. 14b) [104-107,42]. The parametric area of stability of the mixed-mode oscillations depends on the stiffness of the
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Fig. 14. OD-related oscillatory solutions. (a) Inhomogeneous limit cycle is characterized with small oscillations around the two spatially nonuniform
centers—the stable OD branches (JHLC manifestation for the system of coupled repressilators (Eq. (A.3))). (b) Mixed-mode oscillations consist of small-
amplitude high-frequency oscillations that alternate with the single large-amplitude long-period cycle (representative example for the system of coupled
neurons—Eq. (A.8)). (c) Partial OD regime represents a complex oscillatory solution where part of the oscillators populate the upper and lower branches
of the 0D, others perform low amplitude oscillations around these solutions, whereas others run along the full cycle. Within each cluster the oscillators
exhibit identical behavior. Demonstration of this solution is given for the system of coupled genetic oscillators (Eq.(7)). Here, a 4-clusters manifestation is
shown, with 4 oscillators in each cluster. All solutions are for systems of N = 16 coupled oscillators. Different colors denote different stable clusters. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

investigated oscillators. In the membrane model (Section 3.1.1 and [103]) for example, it has been shown that the transition
from IHSS to anti-phase mixed-mode oscillations is realized via an infinite period bifurcation in the region of strong
interactions. In this system, the appearance of the mixed-mode solution can be considered as a result of the interaction
between the anti-phase mode and the spatially inhomogeneous limit cycle: the IHLC locates around an unstable focus that
is an inhomogeneous stationary solution outside the region of stable IHSS, and the frequency of small oscillations in the
mixed-mode corresponds to the frequency associated with the unstable focus and the IHLC. The existence of one-, two- and
n-looped mixed-mode regimes as isolas (closed curve without any evidence of bifurcations to other attractors) that coexist
with the neighbors have been shown in this model. In neuronal systems (A.8), on the other hand, the transition between OD
and mixed-mode oscillations is determined by a singular Hopf bifurcation [42]. Characteristic for this transition is that there
is an equilibrium point of the original system in the neighborhood where small oscillations occur. Then the intersection of
the stable and unstable manifolds of this equilibrium point, together with those of the stable and unstable slow manifolds,
contribute to the generation of the mixed-mode solutions in the vicinity of the OD. The classification of mixed-mode
oscillations and their relation to OD is especially important in neuronal systems, since they have been found to exist in
central pattern generators such as the lower brain stem network that generates the respiratory rhythm in mammals [108],
or in electrophysiological studies of spiny stellate cells in layer Il medial entorhinal cortex [109].

5.3. Partial OD

The importance of OD and its interpretation, especially for biological systems, renders it necessary to address also the
question of the complexity of dynamical regimes in the vicinity of a non-classical stable IHSS solution, as the one described
inSection 3.1.1. There, we discussed the fact that local coupling structures can give rise to a large number of stable attractors,
among which the novel manifestation of OD via multiple stable branches was of particular interest. This solution is in turn
directly related to a number of different mixed complex solutions, where some of the oscillators are located in the stable
OD regimes, whereas others perform oscillatory behavior with various amplitude values [82]. Here, we term these solutions
as partial OD regimes. In the most simple case of 3 locally coupled genetic relaxation oscillators, the partial OD regime is
defined as a solution where two of the oscillators populate the two stable branches of OD (the upper and the lower one),
whereas the third oscillator runs along a full cycle providing low amplitude oscillations of the other two. In the general case,
for N > 3, the oscillatory solutions around OD, and thus the partial OD regime are more complex. A representative example
of a partial OD regime is given in Fig. 14c for N = 16 coupled genetic relaxation oscillators. In this manifestation, part of the
oscillators populate the upper and lower branches of OD, others perform low amplitude oscillations around these solutions,
whereas the remaining oscillators run along the full cycle. What is important to note is that the partial OD regime can be also
found for other models exhibiting stable IHSS, i.e. the membrane model (A.2). However, the manifestation of this solution
is model-dependent, thus no clear classification of these regimes could be provided.

Generally, the dynamical solutions associated with the OD regime, as well as the complex behavior and various OD
manifestations that can be obtained for an increased size of the systems or different coupling structures point to an
inhomogeneous regime enhancement. These solutions have in turn direct implications on the characteristics or functionality
of the investigated physical, chemical or biological systems. Moreover, it is also necessary to differentiate these solutions
from their counterparts in the AD oscillation quenching type (i.e. between partial OD and partial AD regime, discussed further
in Section 6.4), mainly due to their different physiological meaning, for example, in neuronal systems. It is important to state
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however, that the characterization of OD and OD-related regimes contributes to their understanding, which can serve as a
basis to establish mechanisms to control the dynamical behavior of natural and man-made systems of coupled oscillators.

6. Characteristics of the AD phenomenon

In contrast to OD, amplitude death is manifested with the presence of a homogeneous steady state—for certain coupling
strength, the oscillations are entrained and the oscillators populate the same stable steady state of the system. As recently
overviewed in [51], several different routes can lead to stabilization of an unstable steady state and manifestation of AD:
difference between the frequencies of the oscillators, time-delayed interactions, dynamic, nonlinear and velocity coupling,
linear augmentation, etc. In what follows, we discuss very briefly the most common mechanisms that lead to AD; for a
more extensive discussion on AD manifestation and control we refer the reader to [51]. Moreover, by characterizing the
occurrence of AD and OD in a single system of coupled neuronal oscillators, we stress once more the difference between
these two distinct dynamical regimes, and point out the importance of a proper classification of the oscillation quenching
type not only from a viewpoint of dynamical control, but also from application aspects. Additionally, the identification of the
differences between the oscillation-quenching-related dynamical regimes, such as partial amplitude and oscillation death
support as well the arguments presented here.

6.1. AD via eigenfrequency distribution of the coupled oscillators

One of the early observations that coupling can stabilize the origin of a system of coupled oscillators was made by
Yamaguchi and Shimizu [110], who found that two ingredients are needed for AD to occur: (i) sufficiently strong coupling and
(ii) a critical width of the natural frequency distribution of the coupled oscillators. Further on, it was shown that AD is a robust
phenomenon persisting for a wide range of systems independent of the spatial symmetries or coupling characteristics, as
well as the number of different frequency distributions: the homogeneous steady state, and thus AD can be stabilized for
a random distribution of frequencies between the coupled oscillators, as well as when the natural frequencies are equally
spaced at certain intervals [48,111,41,94,112,113].

In particular, examining a system of coupled Landau-Stuart oscillators under global coupling

dzl' 2 .
P (1 = |zil* + iwn)z; + d({z) — z)) (10)
where (z) = :lv ZN:, z;, it can be shown that the stability of the AD solution depends on whether the characteristic equation
of system (Eq.(lof) has roots u; with Re ; < d — 1 > 0. Generally, the main conditions for the occurrence of AD in systems
of coupled oscillators with a random distribution of the natural frequencies can be writtenas: d > 1,f(d — 1) < d~'[50].
This means that for sufficiently strong coupling and frequency dispersion, the oscillators pull each other off their limit cycles
into the origin, which is stabilized via an inverse Hopf bifurcation, as we already discussed in Section 2.2.

Moreover, the stabilization of the steady state in this manner was shown experimentally using electrochemical oscillators
coupled through an external electronic circuit [114], thus confirming the theoretical predictions that the invariant torus
of the coupled system shrinks to zero as the coupling of the system is increased [111]. Similar observations of AD have
been also discussed for lasers [35,115], as well as theoretical models of oscillatory cardiac pacemaker cells surrounded by
passive fibroblast elements [116]. It is interesting to note here once again that introducing random frequency deviations
from a regular, smooth trend of the natural frequencies of the coupled oscillators can eliminate AD [102], in contrast to the
parameter mismatch as introduced in Section 4, which was shown to enhance the dominance of an 0D regime.

6.2. Time-delayed interactions and occurrence of AD

If the frequencies of the oscillators are identical, then the formation of AD can occur if time-delayed interactions of the
form
dz;

5 == |zi1? + i)z + d(z(t — ©) — ) (11)

are present in the system [117,118]. Here, T is a measure of the time delay. In particular, for the coupled Landau-Stuart

-1 -1
oscillators in the form given by Eq.(11), the region of intersection between the curves T = %@ andt = %}J%ﬂ
determines the only stability region (of the origin) that takes place as a function of 7 [117]. In [117], the authors also discuss
AD occurrence for an arbitrary number of coupled identical oscillators.

Since a time delay effect arises naturally from the finite propagation time of information signals exchanged between the
coupled units, oscillation quenching via time delay has been significantly investigated both theoretically and experimentally.
It has been shown, for example, that distributed delays enlarge the AD stability regions in the parameter space [119].
Moreover, when the variance in the distribution is larger than a given threshold, the death region is unbounded, and AD
can occur for Yt > 0[119]. Additionally, detailed theoretical studies for oscillators locally coupled on a ring [120}, as well
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Fig. 15. Manifestation of AD for two chaotic Lorenz oscillators coupled via dissimilar variables (System (A.9)). Parameters as in [123].

as experimental manifestations of AD for optothermal oscillators located on the same interferometric device and thermally
coupled [121] and electronic circuits [122] have been performed.

A large class of interest here are systems of coupled chaotic oscillators and the conditions for AD occurrence, since AD
can be seen as a stabilization criterion and a possibility to control chaotic dynamics [94,95,38]. It is interesting to discuss the
route to AD in chaotic systems and compare it with previous observations of OD in the same systems. In particular, for time-
delayed coupled identical chaotic Lorenz oscillators it has been shown that the transition to AD occurs directly from chaotic
dynamics to a fixed point [38], in contrast to the OD case (the details of the chaos — OD transitions for the Lorenz system
are discussed in Section 3.3 and [39]). A similar transition occurs also for chaotic Lorenz oscillators coupled via dissimilar
variables [123], where the transition from chaotic dynamics to stable AD occurs via a Hopf bifurcation, as shown in Fig. 15.
We underline here once more the differences between AD and OD: in the case of OD, the coupled Lorenz oscillators populate
the different branches of the stable IHSS, whereas when stable AD is observed, the coupled Lorenz oscillators go to the same
homogeneous steady state.

In general, this transition mechanism, especially for time-delayed systems, implies that even though neither an unstable
periodic orbit is stabilized, nor new periodic solutions are created, the time-delayed interaction is a sufficient condition to
stabilize the fixed point directly, leading to an abrupt change in the largest Lyapunov exponent of the system, which becomes
negative for a given t, thus determining the onset of AD.

However, it has been also shown that the stability region of AD in systems of N delay-coupled oscillators can be reduced if
aspecific, i.e. gradient coupling is used [ 124]. Consider for example the situation when Landau-Stuart oscillators are coupled
with an anisotropic time-delay coupling with their neighbors in the form

dz;
o = (0~ P +io)z + @+ NGt = 1) = 2) + @ = D@t~ 1) ~2) (12)
where r here is the gradient coupling strength and z, as before, denotes the delay in the interaction. An increasing strength
of the gradient coupling monotonically reduces the domain of the death islands in the (d, t) parameter space, and thus the
AD stability islands can be completely eliminated once the gradient coupling r exceeds a critical threshold. The value of this
threshold was found to be constant if the number of coupled oscillators N is sufficiently large [124].

Thus, the importance of AD has been noted by many authors in relation to various, physical, chemical or biological
phenomena, since many natural or man-made systems can be studied as systems of coupled oscillators. It has been verified
that AD is a general phenomenon, realized for periodic, chaotic, hypercaotic and time delayed systems and also for various
coupling types, i.e. diffusive, replacement, conjugate coupling, coupling via scalar signals, nonlinear and velocity coupling,
etc.([125,53,126] and others).

This clearly shows that both oscillation quenching types, AD and OD are important regulators of a system's dynamics
and can be used as stabilization routes in a wide range of systems. However, we emphasize here once more the fact that
AD and OD refer to two structurally distinct dynamical regimes, homogeneous and inhomogeneous steady states. Thus,
classifying this difference is significantly important, especially for biological systems, since it leads to diverse meaning and
interpretation of the dynamical state of the system. We therefore analyze next a system of coupled neuronal oscillators,
stressing once more the necessity to distinguish between both oscillation quenching types discussed in the work.
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6.3. Transition between AD and OD in neuronal systems and physiological implications

Firing rate models of neuronal oscillators have been extensively studied in the literature, as a means to understand various
dynamical behavior, such as neural competition, central pattern generators, frequency control in neuronal networks, etc.
This is important because various dynamical regimes have been directly related to certain pathological cases, i.e. it has been
speculated that the essential tremor that occurs in Alzheimer's or Parkinson’s disease is a direct consequence of synchronous
firing of neuronal populations {27,29,28], whereas OD has been implied as a background mechanism for selection and
switching in the basal ganglia under normal and pathological conditions {99,100]. Under such conditions, the oscillation
quenching type plays a crucial role, since it can lead either to a stabilization phenomenon, i.e. AD in the case of Parkinson’s
disease, or a different pathological situation (OD-related effects in the basal ganglia). Therefore, by studying next a model
of coupled neuronal oscillators, the Wilson-Cowan system, we emphasize once more the structural difference between AD
and OD, underlying the fact that both oscillation quenching types can occur in a single neuronal population and can lead to
a different dynamical behavior with different physiological meaning, as already stated.

Generally, the Wilson-Cowan model (Eq. (A.10)) describes the interactions between an excitatory and inhibitory
population of neurons [49]. For simplicity, we treat here one such network as a single oscillator. In this case, the system
is characterized with a non-diffusive, synaptic coupling, displaying a stable limit cycle behavior for a wide parameter range.
Additionally, quenching of oscillations in the form of AD can be also observed when only excitatory-excitatory (Bee) coupling
between the neurons is present (Fig. 16a and [49]).
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Fig. 16. Amplitude and oscillation death in the Wilson-Cowan model of interacting neuronal populations. (a) AD is observed for excitatory-excitatory
(B..) coupling, (b) whereas presence of additional inhibitory-inhibitory (£) coupling leads also to stabilization of OD. The transition AD — ODis of Turing

type.

In this case, the formation of AD is significantly different than the routes to AD previously described (a difference in the
frequencies or time-delay in the interactions). AD here appears due to the lack of uniformity of the local frequency along
the limit cycle of the coupled system. An important characteristic of this mechanism is that the coupling does not vanish
identically when the oscillators (or the neuronal populations) are in the same phase. Thus, the oscillations are quenched
and the homogeneous steady state is stabilized via an infinite period bifurcation (8. ~ 5.3 in Fig. 16a). This means that
AD can be used to stabilize neuronal oscillations, and therefore represents a possible control mechanism. However, what is
important to stress here is that the systems display as well an inhomogeneous steady state, or OD, which is unstable under
these conditions (the reason for OD appearance is the symmetry breaking of the HSS via a PB, as discussed in Section 3
and shown in Fig. 16a. We note that the possibility for OD has not been identified in [49]). Introducing additionally an
inhibitory-inhibitory coupling in the system allows for a supercritical pitchfork bifurcation to occur, resulting in a stable
0D solution (Fig. 16b). Moreover, a transition from AD to OD characterized with a Turing-type bifurcation (as discussed in
Section 2.3) is again observed. Physiologically speaking, a transition from a dynamical state where a certain pathological
condition of firing neurons has been stabilized (AD), to a “winner-take-all” regime (OD) could be possibly related to the
occurrence of novel pathological conditions in the basal ganglia, as previously suggested [100]. However, the implications
of the transition between both oscillation quenching types in neuronal populations awaits physiological interpretations.
Nevertheless, the example presented here underlines two very important facts: (i) AD and OD are two structurally distinct
dynamical regimes, which is in turn directly related to the interpretation and control of the (physiological) observations and
(i) the transition scenario between both oscillation quenching types persists to exist under various conditions (different
mechanism of AD occurrence and different coupling types).
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Fig. 17. Manifestation of AD for two nonidentical Landau-Stuart oscillators (A = 5), diffusively coupled via both variables. One of the oscillators performs
small-amplitude oscillation around the origin, whereas the second one exhibits high-amplitude oscillations.

6.4. Partial amplitude death

Similarly to OD, AD is also accompanied (in parameter space) by an additional dynamical regime, the partial amplitude
death. Partial AD is defined as a dynamical solution where a part of the coupled oscillators is almost quenched, whereas
the others remain to oscillate [60] (manifestation of partial AD for a system of coupled Landau-Stuart oscillators is given
in Fig. 17). Even though this definition of partial AD, and thus its manifestation resembles the characteristics of partial OD
which we previously discussed (Section 5.3 and Fig. 13c), these two regimes are significantly different. Generally, partial AD
occurs when the individual coupled units are significantly different (in amplitude and phase) [127]. For example, the authors
in {102] considered a special case where the natural frequencies of the oscillators are distributed in a regular monotonic
trend and determined the limiting frequency mismatch for which partial AD can be observed. Moreover, they also showed
that partial amplitude death is weakened by introducing random deviations from the linear trend of frequencies.

Generally speaking, in a certain interval of the coupling strength, a manifestation of partial AD follows this particular
scenario: some of the coupled oscillators are damped (the amplitude is not exactly zero, thus they perform small
amplitude oscillations around the homogeneous origin of the system which remains unstable), whereas the rest of the
population continues to exhibit high-amplitude oscillations (see Fig. 17). In this case, the damped oscillators go to the same
homogeneous steady state of the system, which distinguishes this regime from the partial OD solution: when partial OD is
observed, part of the oscillators exhibit damped oscillations in the vicinity of the two stable OD branches of the IHSS (Fig. 13c),
which are spatially separated, whereas the remaining oscillators, similarly to the partial AD case, perform high amplitude
oscillations. Importantly, a significant difference is also underlined by the fact that partial OD occurs for identical units. We
emphasize here that the difference in partial AD and OD regimes is a direct consequence of the structural difference and the
distinction in the generation mechanisms of both oscillation quenching types, AD and OD.

Moreover, partial AD has been proposed as a “transition solution” which occurs during the road to complete AD, where
all of the oscillators are suppressed and go to the homogeneous steady state of the system [125]. Additionally, partial AD has
been also observed for coupled chaotic oscillators [128]. In terms of the studied networks, partial AD can be related to the
formation of spatial patterns consisting of oscillating and suppressed units.

7. Summary

Oscillation quenching in the form of AD and OD, as well as the characterization of their mechanisms of occurrence, has
attracted considerable attention in the past decades due to the generality of these phenomena and their broad application
purposes. Even though the mathematical classification clearly separates them as distinct dynamical regimes, very often AD
and OD have been used in the literature without a strong discrimination. Therefore, this review aimed at highlighting the
specificities of the inhomogeneous (0D) and homogeneous steady states (AD), as a means to set clear definition boundaries
between both oscillation quenching types.

The main part was here devoted to the OD phenomenon, as it is significantly less studied than AD. The generality of
the symmetry breaking scenario which leads to a formation of an IHSS via a pitchfork bifurcation of the steady state in the
presence of stable coupled limit cycles, was demonstrated for systems that differ in their dynamical structure and coupling
organization. This characteristic bifurcation scenario further opens the possibility for coexistence of OD and oscillations,
both periodic and chaotic, as a typical solution for systems exhibiting an IHSS. Moreover, the principle of OD generation
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underlines additionally its clear difference with AD, which generally emerges via a Hopf or a saddle-node bifurcation from
a limit cycle to a homogeneous steady state, through which it is manifested. The different generation, and consequently
manifestation scenarios of OD and AD distinguish further their application purposes: oscillation quenching can induce either
stabilization (AD) or variability (OD) in a given oscillatory system. Thus, the role of OD, manifested as two stable branches
on the IHSS, especially for biological (biochemical) systems was extensively discussed. OD can be directly related to basic
biochemical phenomena, such as cellular differentiation [55,56], pattern formation {66], dynamical behavior of neuronal
populations [42], etc. Here, it is necessary to stress the importance of OD for technical systems as well: thermo-kinetic
oscillators, for which OD manifestation has been experimentally shown, are of direct relevance to industrial processes [35].
In these cases, OD can play a vital role in the safety measures. In contrast to this, AD can be understood in terms of stabilizing
a specific homogeneous steady state by different means, mainly frequency difference or time-delayed interactions. This
question is of significant importance for technical systems, i.e. laser or chaotic systems, as well as natural, e.g. neuronal
networks and certain pathological conditions that occur.

On the other hand, the interaction between OD and small parameter mismatches can be seen as an amplifier of the
variability that is produced by this oscillation quenching mechanism. This interplay allows OD to dominate in parameter
space, removing completely the coexisting oscillatory solutions. Thus, the ODD effect, which was shown to be model-
independent, provides an efficient regulator that can be used for technological purposes.

Additional to the classical OD manifestation, and the fact that it provides heterogeneity in a stable homogeneous medium,
partial OD strongly extends the variability of the observed limit cycle solutions. Even though partial OD in the case of
identical oscillators was found to be model-specific, the richness of the exhibited dynamical solutions, even in the case
of coupled identical oscillators is notable. Examples are asymmetric oscillations characterized with a large difference in the
amplitude between the oscillators, or the so-called “dynamic-trap” solution [129], where the oscillators placed at a largest
distance oscillate in anti-phase, where the middle one(s) perform small amplitude oscillations. All these solutions extend
the dynamical structures which can occur around the stability region of OD, and can be further exploited for application
purposes. Moreover, we can expect that for small parameter mismatches, similarly to the ODD example, partial OD is model
independent and occupies larger areas in parameter space.

The fact that it is possible to observe both AD and OD in a single system highlights further the necessity for proper
distinction between both regimes, since they lead to different dynamical behavior, further resulting in diverse meanings
and interpretations. This is significantly pronounced when studying neuronal networks for example, where a large amount
of work, especially on the physiological interpretation still lies ahead.

Throughout this review we tried to summarize the current knowledge for the characterization of both oscillation
quenching phenomena, OD and AD, pointing not only to their theoretical significance, but also possibilities for their
application as control mechanisms. It is however, important to note here that effects, inverse of OD and AD have been
postulated in the literature. For example, in 1974 S. Smale discussed the possibility to “produce oscillations due to linear
coupling of two different kind of processes, each processes in itself stationary” [130]. This idea has been regarded as a
mechanism inverse to OD and AD, since, as shown in this review, quenching of oscillations occurs due to the coupling present
in the systems. Thus, Smale’s effect can be considered as a motivation for new investigations in this direction.
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Appendix A. Mathematical models

Here we list the mathematical models used in the examples of this paper:
o Morris-Lecar-like S-cell model [131,65]

dv; 1
dar E;(’app = lix = ligarny = licy — liviy — i)

= = fon(=ale, (V) = ke, + Be.cs (G = ) (A1)

where V; represents the membrane potential, and ¢; accounts for the cytosolic calcium concentration, [Ca®*]; in the
i-th oscillator. The parameter kf,',",,m denotes the plasma membrane C2*ATP ase pump rate, and is used as a bifurcation
parameter here. Other variables have the same notation and values as in Ref. [65].

¢ The membrane model [83,69]

dx; 1 ,  1.5yx
— =~ {k+0.5xy, —x; —
dt ¢ ( + ORI =X Xi+4é

dy; @ 0.5yx;
e A — 1.5x;y; — Dy; —
ar " A A

+dWiv1 — ¥i)- (A.2)



A. Koseska et al. / Physics Reports 531 (2013) 173-199 195

The parameter & controls the stiffness of the oscillators and could vary between 0.1 and 0.01, and d denotes the coupling
strength. k, y, D, § and 5 are the rates of influx and efflux of participants. The first four are kept fixed (k = 0.05,y = 0.5,
D = 0.2, 5 = 0.15) and 7 is considered as a bifurcation parameter. These equations are derived from a realistic set of
chemical equations, but for our purposes here, we will omit all physico-chemical details and consider this system as a
paradigmatic model for an oscillator of relaxation type.

e Repressilator model:

) o
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where S, = QS,and § = -,‘q f’z, Si- ai(A). bi(B;) and ¢;(C;) represent the concentrations of mRNA(protein) molecules
transcribed from the genes of tetR, cI and lacl, respectively, and S; denotes the concentration of Al molecules. Q is the
coupling coefficient and will be used as a bifurcation parameter. The parameters are defined as in [86].

o Model of coupled Brusselators:

In [47], Prigogine and Lefever considered the model:

dx; i

e AD — (B + 1)x; + 22y + dy(%; — x;)

d

% = Bx; — xyi + dy (9 — ¥)) (A4)

where A and B are the system's parameters, and d, and d, are coupling coefficients. The system possesses a single
homogeneous steady state for

Xi =A, yi=B/A i=1,2
which becomes unstable when
B = B, = (1/2d))(A? + 2d,A* + 2d, + 4d,d,)

determining that instability occurs only for a finite range of values of the diffusion coefficients. Thus, for (i) B < B, only
the homogeneous steady state solution is stable. All other solutions do not have physical meaning, and are therefore
not considered; (ii) for B > B, there exist two solutions: one is the continuation of the HSS and the other is the IHSS.
The stability boundaries of the IHSS depend on the parameter values. The inhomogeneous solution is double degenerate,
since the indices 1 and 2 are interchangeable. Thus, the two oscillators, although identical, will not have the same values
of the phase variables, which corresponds to the definition of OD: two stable branches of the IHSS which are separated
in space.
e Oregonator model:

dx; 1 xi—q
T s (X.(1 —x)—fz s )
dzl
dt
where ¢, g and f are kinetic parameters related to the reagent reaction rates, x and z are proportional to the concentration

of HB, 0, and metal ions, and d is the coupling coefficient [8].
o Chaotic oscillators: Lorenz system

=Xi—2zZ + d(Zj — ) (A.5)
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The non-symmetrical equilibria of the system are characterized with Ay = (x}, X, — 1,%5, %5, 7 — 1), (i) where x5 =
/ 1% 2> 42 2

2d—xj,andx] = d++/b(r — 1) — d? for A, and (ii)x; = d — /b(r — 1) — d? for A;: and Ay4 = (0,0, %,x;, x5, r—=1)
with x5 = (d + /a® + 4b(r — 1))/2 for A3. The values of A2 and A3 are represented in Fig. 11a. Here,o = 10,1 = 28

andb = 4.

o Coupled Pikovsky-Rabinovich (PR) circuits:
dx. — . — .
s = yi(t) — Bzi(t)
dy;
F};- = —x;(t) + 2yyi(t) + az;(t) + d;(t) — yi(t)) (A7)
dz;
5 = ®O - z(t)’ + z(t))/

where «, 8, y and p are system's parameters (@ = 0.165,8 = 1,y = 0.26, 4 = 0.4) and d is the coupling strength. The
origin of the uncoupled PR circuit is an unstable steady state.

e Two-cell inhibitory neural network with adaptation

du

—d—l = —uy + S(I — Buz — gay)

t

dllz

2 __ S — -

I uz + S(I — puy — gaz)

d01

— =-—a u A8
£ 14w (A8)
e _ i

R

where ¢ > 1 and S is a nonlinear gain function that satisfies the following conditions: (i) S is differentiable, (ii) is
monotonically increasing from limy_, _o0 S(X) = 0 to limy, o S(x) = 1 and with (iii) convexity-change at x = . §
is a sigmoidal function and it depends on two parameters (positive r and real ¢) that control its slope and activation
threshold: S(x) = ﬁ?plm Competition in the model is achieved through mutual inhibition of the neurons of strength
B and a negative feedback (such as spike frequency adaptation) of strength g. Additionally, each cell has an external
stimulation of equal strength I. The parameters are chosen from [42].

o Lorentz oscillators coupled via dissimilar variables

dX'

d_l”l =oyi—x)

d .

% =X — ¥i — Xizi +d(yj — %;) (A.9)
dZ'

d—t'- — xl.yl. —_— bzi

witho = 10,r =28 and b = &.
e Wilson-Cowan model of coupled neuronal oscillators

dE; .
_d?J = —Ej + S(aeeE; — atiel; + BeeEx — Bielk — ve)
e —I; + S(ateiEj — aiily + BeiEx — Biilk — Vi) (A.10)

where E(t) and I(t) determine the respective firing rates of the excitatory and inhibitory neurons (neuronal populations).
The parameters aee, ie, @i and a;; determine the synaptic strength between both neuronal populations, v, and v; are the
respective threshold for firing, whereas Bee; e:¢i;ii represent the coupling between the two populations. For example, B
is the coupling between the inhibitory cells from population j to excitatory cells from population k and so on. S is here a
piecewise-linear function defined as S(u) = .5(1 + tanh(u)).
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