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Characterizing complex patterns arising from horizontal oil-water two-phase flows is a contemporary
and challenging problem of paramount importance. We design a new multisector conductance sensor and
systematically carry out horizontal oil-water two-phase flow experiments for measuring multivariate signals
of different flow patterns. We then infer multivariate recurrence networks from these experimental data
and investigate local cross-network properties for each constructed network. Our results demonstrate that a
cross-clustering coefficient from a multivariate recurrence network is very sensitive to transitions among different
flow patterns and recovers quantitative insights into the flow behavior underlying horizontal oil-water flows. These
properties render multivariate recurrence networks particularly powerful for investigating a horizontal oil-water
two-phase flow system and its complex interacting components from a network perspective.
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I. INTRODUCTION

Horizontal oil-water two-phase flow is common in a diverse
range of industrial processes and particularly in the petroleum
industry, where a mixture of oil and water often flows
through pipes for long distances for production and usage.
The investigations of horizontal oil-water flows are of great
importance, especially for the prediction of pressure drop
in the horizontal oil wells, measurement of flow parameters,
and optimization of industrial production process. However,
despite its importance, horizontal oil-water flows have not
been explored as intensively as gas-liquid flows. An important
aspect of the study of a two-phase flow is a characterization
of flow patterns. A flow pattern is the shape and spatial
distribution of the two-phase flow within the pipe. The interest
in flow patterns lies in the fact that in each pattern the flow
has certain hydrodynamic characteristics. Up to now, the
dynamical mechanisms leading to the formation of various
patterns in horizontal oil-water flows have been elusive.

The exploration of horizontal oil-water two-phase flow has
attracted much attention from physical and chemical research
fields on account of its significant importance. Trallero et al. [1]
experimentally investigated horizontal oil-water two-phase
flow in a 50.8-mm-inner-diameter (ID) pipe and classified
the horizontal oil-water flow patterns into segregated flow
and dispersed flow, in which the segregated flow includes
(1) a stratified flow pattern (ST) and (2) a stratified flow
with mixing at interface pattern (ST and MI); the dispersed
flow includes (3) a dispersion of oil in water and water flow
pattern (D O-in-W and W), (4) a dispersion of water in oil
and oil in water flow pattern (D W-in-O and D O-in-W),
(5) a dispersion of oil in water flow pattern (D O-in-W),
and (6) a dispersion of water in oil flow pattern (D W-in-
O). Angeli and Hewitt [2] combined directed observation
with conductance probes measurements to experimentally
identify different horizontal oil-water flow patterns. By using
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numerical simulations and analytical solutions, Ng et al. [3]
predicted the boundary shape of a stratified flow. Brauner and
Ullmann [4] experimentally investigated the flow structure and
interface shape of the horizontal oil-water two-phase flow. By
using a probability density function analysis and the wavelet
multiresolution technique, Chakrabarti et al. [5] studied the
transition from a water continuous to an oil continuous
flow pattern in a horizontal pipe. Piela et al. [6] conducted
experiments to study the phase inversion behavior of horizontal
oil-water flows. Kumara et al. [7] employed the particle image
velocimetry technique to characterize the flow structure of
oil-water flows in a horizontal pipe. Al-Wahaibi and Angeli
[8,9] made an experimental investigation on the transition
from a horizontal oil-water stratified flow to a nonstratified
flow and also experimentally studied the interfacial waves in
stratified horizontal oil-water flows. By using laser-induced
fluorescence, Morgan et al. [10] investigated the horizontal
liquid-liquid flow characteristics at low superficial velocities.

Despite the existing results, there still exist significant
challenges in the study of horizontal oil-water two-phase
flow. In particular, how to characterize the dynamic flow
behavior underlying horizontal oil-water flow patterns from
experimental measurements is an as yet unsolved problem.
We note that, although the approaches of nonlinear time
series analysis such as the complexity measure [11] and time-
frequency representation [12] have been successfully used to
distinguish gas-liquid flow patterns [13], these approaches
have severe limitations as applied to the investigation of
horizontal oil-water flow patterns, mainly due to the fact
that there exist intrinsic differences in the physics of the two
flow situations and there is no guarantee that the information
available for gas-liquid flows can be extended to horizontal
liquid-liquid systems. In addition, for the multivariate time
series analysis, correlation analysis is usually infeasible to
effectively identify and characterize the horizontal oil-water
flow patterns, as we will show. In this regard, characterizing
complex patterns arising from horizontal oil-water two-phase
flow is a challenging problem of significant interest.
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FIG. 1. (Color online) Structure of the four-sector conductance
sensor.

Complex network theory has undergone a strong devel-
opment in the last decade and has contributed significantly
to our understanding of complex systems [14–25]. Recently,
a variety of approaches has been proposed for investigating
time series by means of complex network approaches [26–31],
such as approaches based on the concept of quasiperiodic
cycle [26,27], correlations [28], visibility [29–31], classical
multidimensional scaling [32], and recurrence analysis (phase-
space reconstruction) [33–41]. Complex network analysis of
time series has been successfully applied in many research
fields, such as network topology estimation [42,43], financial
system [44,45], climate [46,47], human gait [48], human
brain [49], genomics [50], human ventricular fibrillation [51],
multiphase flow system [52,53], grain property networks
[54,55], and friction networks in nucleation processes [56,57].
As a particularly useful example, recurrence networks [33–41]
provide a widely applicable novel tool that has already
proven its great potential for geometrically studying complex
dynamical systems and time series. Bridging time series
analysis and complex networks can be an appealing approach
for experimental data analysis. In this paper, we design
a new multisector conductance sensor and systematically
carry out horizontal oil-water two-phase flow experiments
for measuring multivariate signals of different flow patterns.
Based on the recently proposed multivariate extensions of
recurrence networks [58], we infer and analyze multivariate
recurrence networks from our experimental data, and our
results suggest that the multivariate recurrence network can

FIG. 2. (Color online) Experimental flow loop facility.

be a particularly powerful tool for investigating flow behavior
underlying horizontal oil-water two-phase flow.

II. EXPERIMENTS AND DATA ACQUISITION

The horizontal oil-water two-phase flow experiment in
a 20 mm-inner-diameter (ID) pipe was carried out in the
multiphase flow loop at Tianjin University. The experimental
media are tap water and no. 15 industry white oil with a
viscosity of 11.984 mPa s (40 ◦C) and a surface tension of
0.035 N/m. In order to measure the local flow behavior
of horizontal oil-water flows, we design a new four-sector
conductance sensor, as shown in Fig. 1. It consists of eight
alloy titanium concave electrodes axially separated and flush
mounted on the inside wall of the flowing pipe. ET , ER , EB ,
and EL are exciting electrodes, and MT , MR , MB , and ML are
measuring electrodes. The representing geometric parameters
of the sensor are defined as follows: the exciting and measuring
electrode angle θ , the electrode height H, the inner pipe
radius R, the distance between the exciting and the measuring
electrode D. The sectors MA, MB , MC , and MD of the sensor
enable us to measure the local flow behavior in the top,
right, bottom, and left part of the horizontal pipe, respectively.
The measurement system consists of several parts: a four-
sector conductance sensor, miniconductance probes, a high-
speed video camera recorder, an exciting-signal generating
circuit, a signal modulating module, a data-acquisition device
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FIG. 3. (Color online) Scheme of the sensor system installed in
the 20-mm-ID pipe.

(PXI 4472 and 6115 card, National Instruments), and a
software for preliminary signal processing. In our experiment,
we concentrated the oil-water flows from a 125-mm-ID pipe
into a 20-mm-ID pipe by using an umbrella-shape bell mouth
to generate a high oil and water flow rate. Figure 2 shows
our experimental flow loop facility. The axial length of the
20-mm-ID pipe is 2.95 m, and all the conductance sensors are
installed in the 20-mm-ID pipe. Figure 3 shows the scheme of
the sensor system installed in the 20-mm-ID pipe.

A typical experimental run starts by generating a water flow
at a fixed rate in the pipe and then gradually increasing the oil
flow rate. When the water and oil flow rates reach a predefined
ratio, a certain flow condition is obtained and conductance
fluctuating signals are then acquired from the four-sector
conductance sensor and miniconductance probes. The high-
speed video camera recorder and the miniconductance probes
signals are mainly used for defining different horizontal
oil-water flow patterns. In our experiment, the oil and water
superficial velocities are both in the range of 0.1–3 m/s. Based
on the flow pattern definition proposed by Trallero et al. [1], we
have observed six different horizontal oil-water flow patterns
in the experiment, as shown in Fig. 4, i.e., ST flow pattern, ST
and MI flow pattern, D O-in-W and W flow pattern, D W-in-O
and D O-in-W flow pattern, D O-in-W flow pattern, and D
W-in-O flow pattern. Since the D W-in-O flow pattern is totally
nonconductive, we focus our research on five conductive flow
patterns. The flow signals from the four-sector conductance
sensor corresponding to the five conductive flow patterns are
shown in Fig. 5, where Uso and Usw represent the oil superficial
velocity and the water superficial velocity, respectively.

FIG. 4. (Color online) Experimentally observed horizontal oil-
water flow patterns.

FIG. 5. The signals from the four-sector conductance sensor for
different horizontal oil-water flow patterns. (a) ST flow (Usw =
0.1105 m/s, Uso = 0.1326 m/s). (b) ST and MI flow (Usw =
0.2210 m/s, Uso = 0.1945 m/s). (c) D O-in-W and W flow (Usw =
0.7368 m/s, Uso = 0.1945 m/s). (d) D W-in-O and D O-in-W
flow (Usw = 0.7368 m/s, Uso = 0.7368 m/s). (e) D O-in-W flow
(Usw = 1.6579 m/s, Uso = 0.7368 m/s).

032910-3



GAO, ZHANG, JIN, MARWAN, AND KURTHS PHYSICAL REVIEW E 88, 032910 (2013)

III. MULTIVARIATE RECURRENCE NETWORK
FROM TIME SERIES

Recurrence analysis is analyzing recurrence in phase space.
For a given time series, we first need to reconstruct a phase
space from the time series. In particular, when dealing with
a time series x(t) (t = 1,2,...,N ), we can use a suitable m-
dimensional embedding with a proper time delay τ :

−→
X (t) = (x(t),x(t + τ ), . . . ,x[t + (m − 1)τ ]),

t = 1,2, . . . ,N + m − 1. (1)

Given a certain threshold ε and a certain distance norm ‖ · ‖,
we can get the recurrence relationship between any two space
vectors:

R(i,j ) = �(ε− ‖ −→
X (i) − −→

X (j ) ‖), (2)

where �(·) is the Heaviside function and �(x) = {1 | x >

0; 0 | x � 0}. The embedding dimension m and delay time τ

should be properly selected to reconstruct phase space, and
we use the False Nearest Neighbor (FNN) [59] method and
C-C [60] method to determine m and τ , respectively. For more
details about the recurrence analysis (recurrence plots), see
the review paper by Marwan et al. [61]. We can interpret the
recurrence matrix, Eq. (2), as an adjacency matrix of a complex
network [34]:

A(i,j ) = R(i,j ) − δ(i,j ), (3)

where δ(i,j ) is the Kronecker delta introduced here in
order to avoid artificial self-loops. Now this definition is
extended to analyze four coupled dynamical time series
(MA,MB,MC, and MD) from the same complex system. First,
all four time series are embedded into the same phase space.
For vectors that come from the same time series (such as MA),
the autorecurrence matrix is defined as follows:

RA
auto(i,j ) = �(εA− ‖ −→

MA(i) − −→
MA(j ) ‖). (4)

As for vectors from different time series (such as MA and MB),
the cross-recurrence matrix can be defined as

RAB
cross(i,j ) = �(εAB− ‖ −→

MA(i) − −→
MB(j ) ‖). (5)

Combining the cross- and autorecurrence matrices, we can
get an intersystem recurrence matrix, i.e., a multivariate
recurrence matrix, as follows:

RM =

⎛
⎜⎜⎜⎝

RA
auto RAB

cross RAC
cross RAD

cross

RBA
cross RB

auto RBC
cross RBD

cross

RCA
cross RCB

cross RC
auto RCD

cross

RDA
cross RDB

cross RDC
cross RD

auto

⎞
⎟⎟⎟⎠ . (6)

In order to consider RM as a network of networks, the
subnetwork Rauto(·) should be only weakly linked; i.e.,
the cross recurrences should be significantly lower than
the autorecurrences:

1

N (N − 1)

∑
i �=j

RA
auto(i,j ) >

1

NANB

∑
i,j

RAB
cross(i,j ). (7)

According to Ref. [58], we fix the auto- and cross-recurrence
rate at 0.03 and 0.02, respectively. Note that the recurrence
rate reflects the edge density of a recurrence network. For
a time series, there exists a one to one mapping between

the recurrence rate and the recurrence threshold, and
one recurrence rate exclusively corresponds to one recurrence
threshold. For different time series, the same recurrence rate
can generate different recurrence thresholds. In particular, we
determine the thresholds for autorecurrence (cross-recurrence)
networks in terms of the same fixed autorecurrence
(cross-recurrence) rate, and the recurrence thresholds for
different autorecurrence (cross-recurrence) networks are
different. Therefore, the thresholds in the multivariate
recurrence matrix RM can be different. Consequently, we
obtain a multivariate recurrence network by interpreting the
multivariate recurrence matrix as a network adjacent matrix.
Mapping a multivariate time series into a recurrence network
allows investigating of the dynamical characteristics of
multivariate time series in terms of complex network theory.

IV. CHARACTERIZATION OF A MULTIVARIATE
RECURRENCE NETWORK BY LOCAL CLUSTERING

COEFFICIENTS

Based on the experimental signals measured from our
four-sector conductance sensor, we construct multivariate
recurrence networks for different horizontal oil-water flow
patterns. In particular, representing the four signals from
the four-sector conductance sensor through a corresponding
recurrence network, we can then study the flow behavior from
complex network analysis. Through analyzing the constructed
networks, we find that all the multivariate recurrence networks
exhibit the topological structure of a “network of networks.” In
order to characterize the local flow behavior from the structure
of a network of networks, we employ the recently proposed
local cross-clustering coefficient. A clustering coefficient of
a node [62] quantifies how close its neighbors are to being a
clique. Based on the definition of a clustering coefficient, a lo-
cal clustering coefficient of a node v [37,40], denoted as CL(v),
can be defined in terms of conditional probabilities as follows:

CL(v) = P (A(i,j ) = 1 | A(v,i) = 1,A(v,j ) = 1)

= P (A(i,j ) = 1,A(v,i) = 1,A(v,j ) = 1)

P (A(v,i) = 1,A(v,j ) = 1)
, (8)

using Bayes’s theorem, with

P (A(v,i) = 1,A(v,j ) = 1)

= 1

(N − 1)(N − 2)

N∑
i=1

N∑
j=1,j �=i

A(v,i)A(v,j ) (9)

and a similar expression for P (A(i,j ) = 1,A(v,i) =
1,A(v,j ) = 1), where A(i,j ) is the adjacent matrix and N
is the number of nodes in the complex network. For the
recurrence network analysis of a single time series, the
local clustering coefficient has been found to be an effective
tool for uncovering the dynamic flow behavior underlying
vertical upward bubbly oil in water flows [63]. More recently,
a new concept of a local cross-clustering coefficient was
derived from a local clustering coefficient [58,64]. For two
subnetworks A and B, a local cross-clustering coefficient of
node i in subnetwork A can be defined as follows:

CAB
cross(i) =

{ ∑
j �=k RAB

cross(i,j )RAB
cross(i,k)RB

auto(j,k)

kAB
i (kAB

i −1)
, kAB

i � 2

0, else
, (10)
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(a)

(b)

FIG. 6. (Color online) Global cross-clustering coefficients for the
horizontal oil-water ST flow. (a) Cross-clustering coefficients of all
pairs of subnetworks for the flow condition Uso = 0.1326 m/s, Usw =
0.1105 m/s. (b) Distributions of CCA

global, C
CB
global, and CCD

global for different
flow conditions, where the means and the standard deviations are
presented.

where Rcross(i,j ) is the cross-recurrence matrix, Rauto(i,j ) is
the autorecurrence matrix, and ki

AB is the cross degree, i.e.,
the number of edges which connect node i with any node in
subnetwork B. Actually, for node i belonging to subnetwork
A, its local cross-clustering coefficient CAB

cross(i) estimates the
probability that two randomly drawn neighbors of node i from
subnetwork B are also neighbors. The global cross-clustering
coefficient of subnetwork A is the average value of local cross-
clustering coefficients over all NA nodes in subnetwork A:

CAB
global = 1

NA

∑
i

CAB
cross(i). (11)

Next, this technique will be applied to our data.

V. APPLICATION TO CHARACTERIZE HORIZONTAL
OIL-WATER FLOW PATTERNS

Four signals measured from one flow condition correspond
to a multivariate recurrence network. It should be pointed out
that the flow condition here refers to the flow behavior under
different ratios between the water flow rate and the oil flow rate
in a horizontal pipe. One flow condition corresponds to one
certain flow pattern, but one flow pattern may include many
different flow conditions. We totally construct 39 multivariate
recurrence networks corresponding to five types of flow
patterns from the experimental signals measured under 39

(a)

(b)

FIG. 7. (Color online) Global cross-clustering coefficients for the
horizontal oil-water ST and MI flow. (a) Cross-clustering coefficients
of all pairs of subnetworks for the flow condition Uso = 0.1326 m/s,
Usw = 0.2210 m/s. (b) Distributions of CCA

global, CCB
global, and CCD

global for
different flow conditions, where the means and the standard deviations
are presented.

different flow conditions. For each generated multivariate
recurrence network, there exist four subnetworks, denoted as
subnetworks A,B,C,and D, resulting from the four different
signals measured from the four sector sensor signals, MA,
MB , MC , and MD , respectively. We calculate the global cross-
clustering coefficients between all pairs of subnetworks for
each constructed network to investigate the local flow behavior
of different flow patterns. Note that, for each flow condition,
we divide the four signals MA, MB , MC , and MD , into six
parts with equal length, i.e., MA(i), MB(i), MC(i), MD(i),
i = 1,2,3, . . . ,6. Then we construct the network and calculate
the global cross-clustering coefficient for each part, and finally
we obtain the ensemble mean and standard deviation of the
global cross-clustering coefficients for the six parts (for one
flow condition). Figures 6–8, 10, and 11 show ensemble
means and standard deviations (error bars) of the global
cross-clustering coefficients for the different flow conditions
from ST flow, ST and MI flow, D O-in-W and W flow, D
W-in-O and D O-in-W flow, and D O-in-W flow, respectively.

Figure 6 shows the distributions of global cross-clustering
coefficients for the horizontal oil-water stratified flow (ST) pat-
tern. Figure 6(a) shows the cross-clustering coefficients of all
pairs of subnetworks for a flow condition Uso = 0.1326 m/s,
Usw = 0.1105 m/s. ST flow includes four different flow
conditions, and, correspondingly, four multivariate recurrence
networks are constructed and analyzed. Figure 6(b) presents
the global cross-clustering coefficients for subnetwork C,
i.e., for subnetwork C and A(CCA

global), subnetwork C and
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(a)

(b)

FIG. 8. (Color online) Global cross-clustering coefficients for the
horizontal oil-water D O-in-W and W flow. (a) Cross-clustering
coefficients of all pairs of subnetworks for the flow condition
Usw = 0.7368 m/s, Uso = 0.1945 m/s. (b) Distributions of CCA

global,
CCB

global, and CCD
global for different flow conditions, where the means and

the standard deviations are presented.

B(CCB
global), and subnetwork C and D(CCD

global). Similarly, in the
Appendix, Figs. 14(a)–14(c) show the global cross-clustering
coefficients for subnetworks A, B, and D, respectively. Note
that subnetworks A,B,C, and D correspond to the signals
measured from the upper, right, bottom, and left part of the
pipe, as shown in Fig. 5. For the stratified flow, the upper part of
the horizontal pipe is a continuous oil phase and the bottom part
of the pipe is a continuous water phase. The ST flow pattern
can be characterized by a smooth oil-water interface with no
droplets and only small waves, as shown in Fig. 4(a). For
the multivariate recurrence network from the ST flow pattern,
subnetworks A and C reflect the flow behavior of continuous
oil and water phases, respectively; subnetworks B and D

reflect the interface fluctuation behavior. Note that the physical
properties reflected by the cross-clustering coefficients are
the local conductivity of the fluids. For example, if A is a
nonconductive phase and C is a conductive phase, the global
cross-clustering coefficient CAC

global > CCA
global. For the ST flow

pattern, the conductivity of subnetwork A (continuous oil
phase) is smaller than that of subnetworks B,C, and D, and
the conductivity of subnetwork C (continuous water phase) is
larger than that of subnetworks A, B, and D. Correspondingly,
the global cross-clustering coefficients for A-B, A-C, and
A-D are large and CAB

global > CBA
global, CAC

global > CCA
global, and

CAD
global > CDA

global, as shown in Fig. 14(a) in the Appendix, while
the global cross-clustering coefficients for C-A, C-B, and
C-D are rather small, and CCA

global < CAC
global, CCB

global < CBC
global,

FIG. 9. Pearson correlation coefficient for the signals from the
horizontal oil-water D O-in-W and W flow. (a) For the flow condition
Usw = 0.7368 m/s, Uso = 0.1945 m/s. (b) For the flow condition
Usw = 0.7368 m/s, Uso = 0.4421 m/s.

and CCD
global < CDC

global, as shown in Fig. 6(b). The global cross-
clustering coefficients for B-A and D-A are small and for
B-C,B-D,D-B,and D-C are large, as shown in Figs. 14(b)
and 14(c). In addition, we find that the global cross-clustering
coefficient is very sensitive to the flow conditions. With an
increase of the mixture flow rate, large amplitude fluctuations
gradually appear on the oil-water interface and droplets in
different size occur near the interface, indicating the onset of a
stratified flow with mixing at interface pattern (ST and MI), as
shown in Fig. 4(b). Figure 7 shows the distributions of global
cross-clustering coefficients for the horizontal oil-water ST
and MI flow pattern. Similar to the ST flow pattern, subnetwork
A of the ST and MI pattern reflects the flow behavior of
the continuous oil phase, and the global cross-clustering
coefficients for A-B, A-C, and A-D are large, as shown in
Fig. 15(a). In contrast to the ST flow pattern, there exist
large amplitude interface fluctuations and a large number of
droplets occurs near the interface. Correspondingly, the global
cross-clustering coefficients for C-A are small but for C-B
and C-D are large. Specifically, for a fixed oil flow rate, with
an increase of the water flow rate, the global cross-clustering
coefficients for B-C and B-D gradually decrease and C-B
and C-D gradually increase; e.g., for a fixed Uso = 0.1326
m/s, Usw increases from 0.2210 to 0.3864 m/s, as shown
in Figs. 7(b) and 15(b), indicating the gradual appearance of
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(a)

(b)

FIG. 10. (Color online) Global cross-clustering coefficients for
the horizontal oil-water D W-in-O and D O-in-W flow. (a) Cross-
clustering coefficients of all pairs of subnetworks for the flow
condition Usw = 1.1052 m/s, Uso = 1.1052 m/s. (b) Distributions
of CCA

global, CCB
global, and CCD

global for different flow conditions, where the
means and the standard deviations are presented.

droplets that are formed by a breakup of the interfacial waves
induced by the increase of water flow rate. The droplets are still
kept close to the interface, since neither of the phases contains
sufficient energy to distribute the droplets across the pipe.

The stratified flow pattern (ST) and the stratified flow with
mixing at interface pattern (ST and MI) belong to a segregated
flow, where the oil and water are completely separated.
With a further increase of the mixture flow rate, more and
more liquid droplets appear on the oil-water interface. The
hydrodynamics and buoyancy simultaneously work on the
droplets. In particular, the hydrodynamics works as agitation
to make the droplets distribute on the cross section of the
pipe, while the buoyancy works against the descending trend
induced by the gravity. With a gradual increase of liquid
drops, the horizontal oil-water two-phase flow evolves from
a stratified flow to a dispersed one. Dispersed flows are flows
in which one phase is either fully or partially dispersed in the
other. Depending on flow conditions, different dispersed flow
patterns can appear there, such as a dispersion of oil in water
and water flow pattern (D O-in-W and W), dispersion of water
in oil and oil in water flow pattern (D W-in-O and D O-in-W),
and dispersion of oil in water flow pattern (D O-in-W).

A D O-in-W and W flow pattern occurs at a high water flow
rate and a middle oil flow rate. Figure 8 shows the distributions
of global cross-clustering coefficients for a horizontal oil-water
D O-in-W and W flow pattern. For the multivariate recurrence
network from the D O-in-W and W flow pattern, subnetwork
A reflects the flow behavior of dispersed oil droplets flowing

(a)

(b)

FIG. 11. (Color online) Global cross-clustering coefficients for
the horizontal oil-water D O-in-W flow. (a) Cross-clustering coef-
ficients of all pairs of subnetworks for the flow condition Usw =
1.6579 m/s, Uso = 0.1945 m/s. (b) Distributions of CCA

global, CCB
global,

and CCD
global for different flow conditions, where the means and the

standard deviations are presented.

in the water continuous phase and subnetwork C reflects the
flow behavior of a water continuous phase; subnetworks B

and D reflect the flow behavior associated with the number
of dispersed oil droplets. Correspondingly, the global cross-
clustering coefficients for A-B, A-D, C-A, C-B, and C-D are
large while for A-C and B-C are small, as shown in Figs. 8(b)
and 16(a)–16(c) in the Appendix. In addition, for a fixed water
flow rate, with an increase of the oil flow rate, the global
cross-clustering coefficients for C-A, C-B, and C-D gradually

FIG. 12. (Color online) Joint distribution of CDA
global, CDB

global, and
CDC

global for different flow patterns.
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FIG. 13. (Color online) Joint distribution of S2
dev and Sall

dev for D
W-in-O and D O-in-W and D O-in-W flow pattern. S2

dev is the standard
deviation of the cross-clustering coefficients CDB

global and CDC
global; Sall

dev is
the standard deviation of the cross-clustering coefficients for all pairs
of subnetworks.

decrease, as shown in Fig. 8(b), indicating intense movements
of large numbers of oil droplets from the upper to the middle
part of the horizontal pipe induced by an increase of the oil

FIG. 14. (Color online) Distributions of global cross-clustering
coefficients for the horizontal oil-water ST flow.

flow rate. For example, when the water flow rate is fixed at
0.7368 m/s, the global cross-clustering coefficients for C-
A, C-B, and C-D gradually decrease from 0.9 to 0.6 as the
oil flow rate increases from 0.1326 to 0.4421 m/s. Note that
the Pearson correlation coefficient widely used in correlation
analysis is infeasible to characterize the complex horizontal
oil-water flow patterns. For example, we show the Pearson
correlation coefficients for all pairs of signals for two different
D O-in-W and W flow conditions in Fig. 9. For signals A

and B, the Pearson correlation coefficient can be calculated as
follows:

rAB =
∑n

i=1(Ai − A)(Bi − B)√∑n
i=1(Ai − A)2

√∑n
i=1(Bi − B)2

. (12)

As can be seen, the Pearson correlation coefficients cannot
clearly indicate the change of the flow condition and it is rather
hard to extract an effective index to identify and characterize
different flow behavior from the Pearson correlation analysis.
Similar results can be observed for other flow patterns. In
this regard, the Pearson correlation analysis does not allow
uncovering of the flow behavior in the transitions of different
horizontal oil-water flow conditions.

A D W-in-O and D O-in-W flow pattern occurs at a high
water flow rate and a high oil flow rate. For the multivariate
recurrence network from a D W-in-O and D O-in-W flow
pattern, subnetwork A reflects the flow behavior of dispersed
water droplets flowing in the oil continuous phase and
subnetwork C reflects the flow behavior of oil droplets flowing
in the water continuous phase; subnetworks B and D reflect the
flow behavior associated with the number of dispersed water
and oil droplets. Correspondingly, in contrast to a D O-in-W
and W flow pattern, the global cross-clustering coefficients
of D W-in-O and D O-in-W flow for A-B, A-C, A-D,
and B-C are large while for C-A,C-B, and C-D are small,
as shown in Figs. 10(b) and 17(a)–17(c). Furthermore, the
global cross-clustering coefficients for C-A,C-B, and C-D
are also very sensitive to the flow transition induced by an
increase of the oil flow rate, as shown in Fig. 10(b). For
example, when the water flow rate is fixed at 1.1052 m/s, the
global cross-clustering coefficients for C-A,C-B, and C-D
gradually decrease from 0.6 to 0.2 as the oil flow rate increases
from 0.7368 to 1.4737 m/s. When the water flow rate is very
high, the horizontal oil-water flow evolves into a D O-in-W
flow pattern. For the multivariate recurrence network from a D
O-in-W flow pattern, subnetworks A,B,C, and D all reflect
the flow behavior of dispersed oil droplets flowing in the
water continuous phase. Correspondingly, the distributions
of global cross-clustering coefficients for a D O-in-W flow
pattern are very concentrated, as shown in Fig. 11, which are
quite different than distributions of other flow patterns.

To get a better visualization, we plot a three-dimensional
figure for all flow conditions by regarding CDA

global, CDB
global,

and CDC
global without error bars as the x axis, y axis, and

z axis, respectively, as shown in Fig. 12. As can be seen,
except for the D W-in-O and D O-in-W and D O-in-W flow
patterns, the global cross-clustering coefficients for different
flow patterns are located in clearly distinct regions. For the
D W-in-O and D O-in-W and D O-in-W flow patterns, we
further extract two features from each flow condition: one is the
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standard deviation of the global cross-clustering coefficients
CDB

global and CDC
global, denoted as S2

dev; the other is the standard
deviation of the global cross-clustering coefficients for all
pairs of subnetworks, denoted as Sall

dev. We plot these two
extracted features in Fig. 13 and find that the two extracted
standard deviations clearly allow us to distinguish a D W-in-O
and D O-in-W flow pattern from a D O-in-W flow pattern.
Note that there exists one overlapped point in Fig. 13 and
this point corresponds to the flow condition at the transition
from a D W-in-O and D O-in-W flow to a D O-in-W flow
pattern. Therefore, the global cross-clustering coefficients
can faithfully identify the distinct patterns of the horizontal
oil-water two-phase flow. For example, when a transition
in the flow pattern occurs, a characteristic change in the
distributions of the global cross-clustering coefficients arises.
These results suggest that cross clustering coefficients of a
multivariate recurrence network is potentially a powerful tool
for distinguishing different horizontal oil-water flow patterns
and further allows for quantitatively uncovering the local flow
behavior of the horizontal oil-water two-phase flow, a task
that the existing method based on the Pearson correlation
coefficient fails to achieve.

FIG. 15. (Color online) Distributions of global cross-clustering
coefficients for the horizontal oil-water ST and MI flow.

VI. CONCLUSIONS

Despite tremendous knowledge about multiphase flows, our
understanding of horizontal oil-water flow patterns is still quite
limited. We have designed a new multisector conductance
sensor and systematically carried out horizontal oil-water
two-phase flow experiments for measuring multivariate signals
of different flow patterns. By applying the method of a
multivariate recurrence network to multivariate experimental
signals, we arrive at a result of a network of networks, which
provides a new and powerful framework for characterizing
local flow behavior underlying different horizontal oil-water
flow patterns. Our results demonstrate that the cross-clustering
coefficient of a multivariate recurrence network allows distin-
guishing of complex patterns arising from horizontal oil-water
two-phase flow and can yield quantitative insights into the
local flow behavior underlying different horizontal oil-water
flow patterns. These results provide important clues for the
prediction of pressure drop in the horizontal oil wells and
measurement of flow parameters. These interesting findings
render the multivariate recurrence network particularly pow-
erful for investigating horizontal oil-water two-phase flow.
This research provides an application of recurrence network
theory in multivariate signal analysis and suggests that the
multivariate recurrence network analysis allows identifying
and characterizing of complex patterns of dynamical systems

FIG. 16. (Color online) Distributions of global cross-clustering
coefficients for the horizontal oil-water D O-in-W and W flow.
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from experimental measurements, which makes a multivariate
recurrence network a useful tool for the analysis of various
complex systems from interdisciplinary research fields.
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APPENDIX

There are 39 flow conditions corresponding to five different
flow patterns. We calculate 12 different cross-clustering coef-
ficients for each flow conditions. Three global cross-clustering
coefficients, i.e., CCA

global, CCB
global, and CCD

global, are shown in the

FIG. 17. (Color online) Distributions of global cross-clustering
coefficients for the horizontal oil-water D W-in-O and D O-in-W
flow.

main text, and the other 12 cross-clustering coefficients are
shown in the Appendix. Note that the in the construction of
a multivariate recurrence network the embedding dimension
m and the delay time τ are determined by the FNN [59]
method and the C-C [60] method (two standard methods),
respectively. Specifically, for the stratified flow pattern (ST)
m = 3 and τ = 18; for the stratified flow with mixing at an
interface pattern (ST and MI) m = 3 and τ = 24; for the
dispersion of oil in water and water flow pattern (D O-in-W
and W) m = 3 and τ = 10; for the dispersion of water in
oil and oil in water flow pattern (D W-in-O and D O-in-W)
m = 3 and τ = 11; for the dispersion of oil in water flow
pattern (D O-in-W) m = 3 and τ = 17. Figures 14–18 show
the distributions of global cross-clustering coefficients for the
horizontal oil-water ST flow, ST and MI flow, D O-in-W
and W flow, D W-in-O and D O-in-W flow, and D O-in-W
flow, respectively. As can be seen from Fig. 14, for the ST
flow, the global cross-clustering coefficients for B-A and
D-A are small, and for B-C,B-D,D-B, and D-C they are
large. We can see from Fig. 15, for the ST and MI flow,
for a fixed oil flow rate, with an increase of the water flow
rate, the global cross-clustering coefficients for B-C and B-D
gradually decrease; e.g., for a fixed Uso = 0.1326 m/s, Usw

increases from 0.2210 to 0.3864 m/s, indicating the gradual
appearance of droplets that are formed by a breakup of the
interfacial waves induced by the increase of the water flow

FIG. 18. (Color online) Distributions of global cross-clustering
coefficients for the horizontal oil-water D O-in-W flow.
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rate. For the D O-in-W and W flow, the global cross clustering
coefficients for A-B and A-D are large, while for A-C and B-C
they are small, as shown in Fig. 16. In contrast to a D O-in-W
and W flow pattern, the global cross-clustering coefficients of
D W-in-O and D O-in-W flow for A-B,A-C,A-D, and B-C

are large, as shown in Fig. 17. As can be seen from Fig. 18,
the distributions of global cross-clustering coefficients for
D O-in-W flow are very concentrated, indicating that all
subnetworks reflect the same flow behavior of dispersed oil
droplets flowing in the water continuous phase.
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