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Abstract – The absence of time-reversal symmetry is a fundamental property of many nonlinear
time series. Here, we propose a new set of statistical tests for time series irreversibility based on
standard and horizontal visibility graphs. Specifically, we statistically compare the distributions
of time-directed variants of the common complex network measures degree and local clustering
coefficient. Our approach does not involve surrogate data and is applicable to relatively short time
series. We demonstrate its performance for paradigmatic model systems with known time-reversal
properties as well as for picking up signatures of nonlinearity in neuro-physiological data.

editor’s  choice Copyright c© EPLA, 2013

Introduction. – Nonlinear processes govern the dy-
namics of many real-world systems. Therefore, a sophisti-
cated diagnostics and identification of such processes from
observational data is a common problem in time series
analysis important for model development. Consequently,
in the last decades, testing for nonlinearity of time series
has been of great interest. Various approaches have been
developed for identifying signatures of different types of
nonlinearity as a necessary precondition for the possible
emergence of chaos ([1], § 5.3). Since linearity of Gaussian
processes directly implies time reversibility [2–4] (see [5],
§ 4 for further details), nonlinearity results (among other
features) in an asymmetry of certain statistical properties
under time reversal [6]. Therefore, studying reversibility
properties of time series is an important alternative to the
direct quantitative assessment of nonlinearity [7]. In con-
trast to classical higher-order statistics requiring surrogate
data techniques [6], most recently developed approaches
for testing irreversibility have been based on symbolic
dynamics [8–10] or statistical-mechanics concepts [11–13].

Motivated by the enormous success of complex network
theory in many fields of science [14], in the last years sev-
eral techniques for network-based time series analysis have
been proposed [15–21]. As a particularly successful exam-
ple, visibility graphs (VGs) and related methods [16,17]

(a)E-mail: donges@pik-potsdam.de

(see “Methods” section) are based on the mutual visibility
relationships between points in a one-dimensional land-
scape representing a univariate (scalar-valued) time series.
The degree distributions of the thus constructed VGs allow
classifying time series according to the type of recorded
dynamics and obey characteristic scaling in case of fractal
or multifractal behaviour of the data under study [22,23].
These relationships make VGs promising candidates for
studying observational time series from various fields
of research such as turbulence [24], finance [23,25,26],
physiology [22,27], or geosciences [28–32].

In [33], Lacasa et al. demonstrated that horizontal

visibility graphs (HVGs) [17], an algorithmic variant of
VGs (see “Methods” section), allow discriminating be-
tween reversible and irreversible time series. Based on
a time-directed version of HVGs, they could show that
irreversible dynamics results in an asymmetry between
the probability distributions of the numbers of incoming
and outgoing edges of all network vertices, which can
be detected by means of the associated Kullback-Leibler
divergence. In this work, we thoroughly extend this idea
and provide a set of rigorous statistical tests for time series
irreversibiliby, which can be formulated based on both
standard and horizontal VGs and utilise different network
properties. Specifically, we demonstrate that for VGs
and HVGs, degrees as well as local clustering coefficients
can be decomposed into contributions from past and
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future observations, which allows studying some of the
time series’ statistical properties under time-reversal. We
find statistically significant deviations between the dis-
tributions of time-ordered vertex properties for nonlinear
systems for which the absence of time-reversal symmetry
is known, but not for linear systems. As a real-world appli-
cation, the power of the proposed approach for studying
the presence of nonlinearity in neuro-physiological time
series (EEG recordings) is demonstrated.

Methods. – Visibility graphs are based on a simple
mapping from the time series to the network domain
exploiting the local convexity of scalar-valued time series
{x(ti)}

N
i=1. Specifically, each observation xi = x(ti) is

assigned a vertex i of a complex network, which is uniquely
defined by the time of observation ti. Two vertices i and
j are linked by an edge (i, j) iff the condition [16]

xk < xj + (xi − xj)
tj − tk

tj − ti
(1)

applies for all vertices k with ti < tk < tj . This is,
the adjacency matrix (Aij) describing the VG as a simple
undirected and unweighted network reads

A
(VG)
ij = A

(VG)
ji =

j−1
∏

k=i+1

Θ

(

xj + (xi − xj)
tj − tk

tj − ti
− xk

)

,

(2)
where Θ(·) is the Heaviside function.

Horizontal VGs provide a simplified version of this
algorithm [17]. For a given time series, the vertex sets
of VG and HVG are the same, whereas the edge set of
the HVG maps the mutual horizontal visibility of two
observations xi and xj , i.e., there is an edge (i, j) iff
xk < min(xi, xj) for all k with ti < tk < tj , so that

A
(HVG)
ij = A

(HVG)
ji =

j−1
∏

k=i+1

Θ(xi − xk)Θ(xj − xk). (3)

VG and HVG capture essentially the same properties of
the system under study (e.g., regarding fractal properties
of a time series), since the HVG is a subgraph of the VG
with the same vertex set, but possessing only a subset of
the VG’s edges. Note that the VG is invariant under a
superposition of linear trends, whereas the HVG is not.

Time-directed vertex properties. Since the definition
of VGs and HVGs takes the timing (or at least time-
ordering) of observations explicitly into account, the direc-
tion of time is intrinsically interwoven with the resulting
network structure. To account for this fact, we define a
set of novel statistical network quantifiers based on two
simple vertex characteristics:

i) On the one hand, the degree ki =
∑

j Aij measures
the number of edges incident to a given vertex i.
For a (H)VG, we can decompose this quantity for
a vertex corresponding to a measurement at time ti

into contributions due to other vertices in the past
and future of ti,

kr
i =

∑

j<i Aij , (4)

ka
i =

∑

j>i Aij (5)

with ki = kr
i + ka

i , being referred to as the retarded

and advanced degrees, respectively, in the following.
Note that kr

i and ka
i correspond to the respective in-

and out-degrees of time-directed (H)VGs as recently
defined in [33]. While the degrees of an individual
vertex can be significantly biased due to the finite
data [30], the resulting frequency distributions of
retarded and advanced degrees are equally affected.
Since the method to be detailed below is exclusively
based on these distributions, we will not further
discuss this question here.

ii) On the other hand, the local clustering coefficient

Ci =
(

ki

2

)−1 ∑

j,k AijAjkAki is another vertex prop-
erty of higher order characterising the neighbourhood
structure of vertex i [14]. Here, for studying the
connectivity due to past and future observations
separately, we define the retarded and advanced local

clustering coefficients

Cr
i =

(

kr

i

2

)−1 ∑

j<i,k<i AijAjkAki, (6)

Ca
i =

(

ka

i

2

)−1 ∑

j>i,k>i AijAjkAki. (7)

Hence, both quantities measure the probability that
two neighbours in the past (future) of observation i

are mutually visible themselves. Note that the de-
composition of Ci into retarded and advanced contri-
butions is not as simple as for the degree and involves
degree-related weight factors and an additional term
combining contributions from the past and future of
a given vertex.

Testing for time irreversibility. Time irreversibility
of a stationary stochastic process or time series {xi} re-
quires that for arbitrary n and m, the tuples
(xn, xn+1, . . . , xn+m) and (xn+m, xn+m−1, . . . , xn) have
the same joint probability distribution [3]. Instead of
testing this condition explicitly (which is practically unfea-
sible in most situations due to the necessity of estimating
high-dimensional probability distribution functions from
a limited amount of data), for detecting time series irre-
versibility it can be sufficient to compare the distributions
of certain statistical characteristics obtained from both
vectors (e.g., [1]). Following the decomposition of ver-
tex properties into time-directed contributions proposed
above, (H)VG-based methods appear particularly suited
for this purpose. Specifically, in the following we will
utilise the frequency distributions p(kr) and p(ka) (p(Cr)
and p(Ca)) of retarded and advanced vertex properties as
representatives for the statistical properties of the time
series when viewed forward and backward in time.
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In the case of time reversibility, we conjecture that both
sequences {kr

i } and {ka
i } (or {Cr

i } and {Ca
i }) should be

drawn from the same probability distribution, because the
visibility structure towards the past and future of each
observation has to be statistically equivalent. In turn, for
an irreversible (i.e., nonlinear) process, we expect to find
statistically significant deviations between the probability
distributions of retarded and advanced characteristics.

As an alternative to the Kullback-Leibler distance
between the empirically observed distribution functions
used by Lacasa et al. [33], we propose utilising some
standard statistics for testing the homogeneity of the
distribution of random variables between two independent
samples. In this framework, rejecting the null hypothesis
that {kr

i } and {ka
i } ({Cr

i } and {Ca
i }) are drawn from the

same probability distribution, respectively, is equivalent
to rejecting the null hypothesis that the time series under
investigation is reversible. Since for sufficiently long time
series (representing the typical dynamics of the system
under study), the available samples of individual ver-
tex properties approximate the underlying distributions
sufficiently well, we can (despite existing correlations
between subsequent values) consider the Kolmogorov-
Smirnov (KS) test for testing this null hypothesis. Specif-
ically, a small p-value of the KS test statistic (e.g., p <

0.05) implies that the time series has likely been generated
by an irreversible stochastic process or dynamical system.
Even more, these p-values are distribution free in the limit
of N → ∞. Neglecting possible effects of the intrinsic
correlations between the properties of subsequent vertices
on the estimated p-values (which shall be addressed in
future research), this implies that we do not need to
construct surrogate time series for obtaining critical values
of our test statistics as in other irreversibility tests. Note
that other (not network-related) statistical properties
sensitive to the time-ordering of observations could also
be exploited for constructing similar statistical tests for
time series irreversibility. A detailed discussion of such
properties is, however, beyond the scope of this letter.

Model systems. – Let us illustrate the potentials
of the proposed method for two simple model systems:
a) a linear-stochastic first-order autoregressive (AR(1))
process

xt = αxt−1 + ξt (8)

with α = 0.5 and the additive noise term ξt taken as
independent realizations of a Gaussian random variable
with zero mean and unit variance, and b) the x-component
of the nonlinear-deterministic Hénon map

xt = A − x2
t−1 + Byt−1, yt = xt−1 (9)

with A = 1.4 and B = 0.3. In both cases, we generate
ensembles of independent realisations with random initial
conditions and discard the first 1000 points of each time
series to avoid possible transients.

As expected, for the linear (reversible) AR(1) process,
the empirical distributions of retarded/advanced vertex

A B

DC

Fig. 1: (Colour on-line) Distributions of retarded (black) and
advanced (red) degrees kr

i , ka
i ((A), (C)) and local clustering

coefficients C
r
i , C

a
i ((B), (D)) of the standard VG for two

simple model systems: AR(1) process ((A), (B)) and Hénon
map (x-component) ((C), (D)). Time series of length N = 500
have been used for estimating the probability density functions
(PDF) p(kr), p(ka), p(Cr) and p(Ca) with a kernel density
estimator. The mean (solid lines) and standard deviation
(dashed lines) of the PDFs have been computed based on
an ensemble of M = 1000 realizations with random initial
conditions for both systems.

properties collapse onto each other (fig. 1(A), (B)). Con-
sequently, the null hypothesis of reversibility is never
rejected by the test based on the degree (fig. 2(A)), and
only rarely rejected by the clustering-based test well below
the expected false rejection rate of 5% (fig. 2(B)). Similar
results are obtained for AR1 realizations very close to
Brownian motion with α = 0.9 and 0.99. In contrast, for
the irreversible Hénon map the distributions of retarded
and advanced VG measures appear distinct already by
visual inspection (fig. 1(C), (D)). In accordance with
this observation, the null hypothesis of reversibility is
nearly always (degree, fig. 2(C)) or always (local clustering
coefficient, fig. 2(D)) rejected. Consistently, an even
higher rejection rate is found for the highly nonlinear and
infinite-dimensional Mackey-Glass system [34] in periodic
and hyperchaotic regimes. All results are qualitatively
independent of the chosen network construction algorithm
(VG or HVG).

To further evaluate the performance of the tests for
varying sample size N , we consider the fraction q(N) of
time series from an ensemble of realisations for which the
null hypothesis of reversibility can be rejected (fig. 3). For
the AR(1) process, it is known that the null hypothesis
is true. Hence, q(N) estimates the probability of type-

I errors (incorrect rejections of true null hypothesis) for
both tests (fig. 3(A), (C)). To put it differently, 1 − q(N)
measures the specificity of the test. Notably, for the
standard VG, q(N) is always zero for the degree-based
test, while it fluctuates clearly below the expected type-I
error rate of 0.05 for the clustering-based test (fig. 3(A)).
For the HVG-based tests, q(N) takes slightly higher
values, which, however, remain below the acceptable error
level (fig. 3(C)).
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A

D

x

C

B

Fig. 2: (Colour on-line) Frequency distributions of p-values
of the KS statistic for comparing the distributions of re-
tarded/advanced degree kr

i , ka
i ((A), (C)) and local clustering

coefficient Cr
i , Ca

i ((B), (D)) of standard VGs from an ensemble
of M = 1000 realisations of model system time series of length
N = 500: AR(1) process ((A), (B)), Hénon map ((C), (D)).
Vertical red lines indicate the typical significance level of 0.05
where appropriate (note the different scale in panel (D)).

A B

C D

Fig. 3: Fraction q(N) of model time series of length N

from ensembles of M = 1000 realisations for which the null
hypothesis of reversibility was rejected at the 0.05 significance
level: AR(1) process ((A), (C)), Hénon map ((B), (D)). The
results have been obtained using VGs ((A), (B)) and HVGs
((C), (D)) with degree- (solid lines) and clustering-based tests
(dash-dotted lines), respectively. The null hypothesis is never
rejected for the VG degree-based test applied to the AR(1)
time series (A).

In contrast to the linear AR(1) process, for the irre-
versible Hénon map the null hypothesis of reversibility is
known to be false. Therefore, q(N) measures the power of
the test, whereas 1 − q(N) gives the probability of type-

II errors (failure to reject a false null hypothesis), i.e.,
its sensitivity (fig. 3(B), (D)). Interestingly, the power of
the clustering-based test increases markedly earlier than
that of the degree-based test. For the standard VG-based
test (fig. 3(B)), the former reaches q(N) ≈ 1 already
around N = 200, whereas the latter requires twice as
many samples to arrive at the same power. Notably,
the convergence towards q(N) = 1 is much faster for the
HVG algorithm (fig. 3(D)), leading to a perfect hit rate
at N = 100 and 200 for local clustering coefficients and
degrees, respectively.

A

C

B

D

Fig. 4: (A), (B): ROC curves for the ((A), (C)) VG- and
((B), (D)) HVG-based tests for reversibility comparing the
rejection rates for each M = 10000 realisations of AR1
(false positive rate) and Hénon time series (true positive rate)
with varying critical p-value of the KS statistic (N = 100).
(C), (D): area under the ROC curve (AUC) characterising the
discriminative performance of all tests depending on time series
length N . Solid and dash-dotted lines indicate degree- and
clustering-based tests, respectively.

Receiver operating characteristics (ROC curves) enable
a more systematic comparison between the VG- and HVG-
based tests. For varying the critical p-value of the KS
statistic for rejecting the reversibility hypothesis, the
rejection probability for AR1 (false positive rate) and
Hénon (true positive rate) time series is plotted. Given
a fixed true positive rate, the VG-based tests typically
have a higher error probability (false positive rate) than
those utilising HVGs (fig. 4(A), (B)). As the length N of
the individual records increases, VG-based tests display
better convergence properties towards the ideal ROC
curve with area under ROC curve AUC = 1, whereas the
HVG-based tests show substantial fluctuations even for
relatively long time series (fig. 4(C), (D)). We attribute
the faster convergence, but larger residual error proba-
bility of the HVG-based tests to the stronger constraints
imposed during network construction in comparison with
the standard VG algorithm. Since the VG involves more
edges than the HVG, the former is more robust and less
resilient to statistical fluctuations, but a larger number of
vertices is necessary for identifying irreversible behaviour
in the data under study. Notably, particularly for HVGs,
the clustering-based tests systematically perform slightly
better than those using degree (fig. 4(D)).

Real-world example. – To further demonstrate the
potentials of (H)VG-based irreversibility tests for real-
world data, we apply them to continuous electroencephalo-
gram (EEG) recordings for healthy and epileptic patients
that were previously analysed by Andrzejak et al. [35].
The data consist of five sets of M = 100 representative
time series segments of length N = 4096 comprising
recordings of brain activity for different patient groups
and recording regions (table 1). To look for traces of
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Table 1: Results of (H)VG-based tests for irreversibility of EEG time series put into context with the results from [35] based
on the nonlinear prediction error P and the effective correlation dimension D2,eff as statistics to test the null hypothesis H lin

0

that the time series are compatible with a stationary linear-stochastic Gaussian process. qk (qC) denotes the fraction of time
series from a set of M = 100 segments for which the null hypothesis of reversibility was rejected by the proposed (H)VG-based
tests using the retarded/advanced degrees (local clustering coefficients) (see also fig. 5).

Andrzejak et al. [35] VG HVG
Set State Recording sites P D2,eff qk qC qk qC

A healthy, mixed no reject H lin
0 no reject H lin

0 0.00 0.07 0.01 0.08
eyes open

B healthy, mixed reject H lin
0 no reject H lin

0 0.07 0.16 0.17 0.37
eyes closed

C pathological, hippocampal reject H lin
0 no reject H lin

0 0.13 0.22 0.10 0.21
no seizure formation

D pathological, epileptogenic zone reject H lin
0 reject H lin

0 0.36 0.37 0.35 0.55
no seizure

E pathological, mixed reject H lin
0 reject H lin

0 0.87 0.94 0.87 0.93
seizure

A D

C B

Fig. 5: (Colour on-line) Frequency distributions of p-
values of the KS test for comparing the distributions of
retarded/advanced degree kr

i , ka
i ((A), (C)) and local clustering

coefficient C
r
i , C

a
i ((B), (D)) of standard VGs from a set of

M = 100 EEG time series segments of length N = 4096.
Recordings originate from healthy subjects with eyes open
(data set A) ((A), (B)) and epileptic patients during seizure
(data set E) ((C), (D)). Vertical red lines indicate the chosen
significance level of 0.05.

low-dimensional nonlinear dynamical behaviour in the
data, Andrzejak et al. [35] used the nonlinear prediction
error P and the effective correlation dimension D2,eff as
statistics to test the null hypothesis H lin

0 that the time
series are compatible with a stationary linear-stochastic
Gaussian process.

Since irreversibility is a signature of nonlinear dynamics,
we expect the results of our (H)VG-based tests to be
consistent with those of [35]. Indeed, the rate of rejections
q of the null hypothesis of reversibility increases markedly
from hardly any rejections for set A, where H lin

0 could
not be rejected by [35], to q ≈ 1 for set E, where H lin

0

was rejected using both test statistics (table 1). Hence,
consistently with the results of [35], the (H)VG-based tests
indicate probably reversible dynamics for healthy subjects
(set A, fig. 5(A), (B)) and clearly irreversible (nonlinear)

dynamics during epileptic seizures (set E, fig. 5(C), (D)).
The other data sets (B–D) are identified as intermediate
cases with respect to the proposed tests, suggesting time-
reversal asymmetry and, hence, nonlinear dynamics.

In summary, our tests perform consistently with those
applied by [35] which are arguably more complicated both
technically and conceptually. Furthermore, the results of
the (H)VG-based tests are consistent with those obtained
using a third-order statistics ( [6], p. 84) together with
standard and amplitude adjusted Fourier surrogates [36],
a classical test for time series irreversibility.

Conclusions. – The statistical tests for irreversibility
of scalar-valued time series proposed in this work provide
an example for the wide applicability of complex network-
based approaches for time series analysis problems. Utilis-
ing standard as well as horizontal VGs for discriminating
between the properties of observed data forwards and
backwards in time has at least two important benefits:

i) Unlike for some classical tests (e.g., [6]), the reversibil-
ity properties are examined without the necessity of
constructing surrogate data. Hence, the proposed
approach saves considerable computational costs in
comparison with such methods and, more impor-
tantly, avoids the problem of selecting a particular
type of surrogates. Specifically, utilising the KS test
statistic or a comparable two-sample test for the
homogeneity (equality) of the underlying probability
distribution functions directly supplies a p-value for
the associated null hypothesis that the considered
properties of the data forward and backward in time
are statistically indistinguishable.

ii) The proposed approach is applicable to data with
non-uniform sampling (common in areas like palaeo-
climate [30] or astrophysics) and marked point
processes (e.g., earthquake catalogues [31]). For such
data, constructing surrogates for nonlinearity tests in
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the most common way using Fourier-based techniques
is a challenging task, which is avoided by (H)VG-
based methods.

We emphasise that our method exploits the time-
information explicitly used in constructing (H)VGs. Other
existing time series network methods (e.g., recurrence
networks [19–21]) not exhibiting this feature cannot be
used for the same purpose.

While this letter highlights the potentials of the pro-
posed approach, there are methodological questions such
as the impacts of sampling, observational noise, and
intrinsic correlations in vertex characteristics as well as
a systematic comparison to existing methods for testing
time series irreversibility that need to be systematically
addressed in future research. Furthermore, (H)VG-
based methods are generally faced with problems such as
boundary effects and the ambiguous treatment of missing
data [30], which call for further investigations.

Finally, we note that other measures characterising
complex networks on the local (vertex/edge) as well as
global scale could be used for similar purposes as those
studied in this work. However, since path-based network
characteristics (e.g., closeness, betweenness, or average
path length) cannot be easily decomposed into retarded
and advanced contributions, the approach followed here is
mainly restricted to neighbourhood-based network mea-
sures like degree, local and global clustering coefficient,
or network transitivity. As a possible solution, instead of
decomposing the network properties, the whole edge set of
a (H)VG could be divided into two disjoint subsets that
correspond to visibility connections forwards and back-
wards in time, as originally proposed by Lacasa et al. [33].
For these directed (forward and backward) (H)VGs, also
the path-based measures can be computed separately and
might provide valuable information. However, path-based
measures of (H)VGs are known to be strongly influenced
by boundary effects [30], so that they could possibly lose
their discriminative power for irreversibility tests.
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