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This paper analyzes the dynamics of the spread of tuberculosis (TB) on complex metapopulation,
that is, networks of populations connected by migratory flows whose configurations are described
in terms ol connectivity distribution of nodes (patches) and the conditional probabilities of
connections among classes of nodes sharing the same degree. The migration and transmission
processes occur simultaneously. For uncorrelated networks, we give a necessary and sufficient
condition for the instability of the disease-free equilibrium. The existence of endemic equilibria
is also discussed. Finally, the prevalence of the TB infection across the metapopulation as a
function of the path connectivity is studied using numerical simulations.

Keywords: Dynamical systems; tuberculosis; complex metapopulation; uncorrelated networks;
basic reproduction number; stability.

Tuberculosis (abbreviated as TB for tubercle bacil-  circulatory system, the genital-urinary system,
lus) is a common deadly infectious disease caused  bones, joints and even the skin. Tuberculosis
mainly by the Mycobacterium tuberculosis (MTB). can spread through cough, sneeze, speak, kiss or
It basically attacks the lungs (pulmonary TB), but  spit from active pulmonary TB persons. It can
can also affect the central nervous system, the also spread through use of an infected person’s
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unsterilized eating utensils and in rare cases a preg-
nant woman with active TB can infect her foe-
tus (vertical transmission) [Global Fund to Fight
AIDS, Tuberculosis and Malaria, 2006; WHO,
2009]. Transmission can only occur from people
with active TB but not latent TB. This transmis-
sion from one person to another depends upon the
number of infectious droplets expelled by a car-
rier, the effectiveness of ventilation, duration of the
exposure and virulence of the MTB strain. The
chain of transmission can therefore be broken by
isolating patients with active disease and start-
ing effective anti-tuberculosis therapy [Global Fund
to Fight AIDS, Tuberculosis and Malaria, 2006;
WHO, 2009; Dye, 2000; Snider et al., 1994; Bloom,
1994]. At present, about 95% of the estimated 8
million new cases of TB occurring each year are
in developing countries, where 80% occur among
people between the ages of 15-59 years [Global
Fund to Fight AIDS, Tuberculosis and Malaria,
2006]. More than 36 million patients have been suc-
cessfully treated via the World Health Organiza-
tion (WHO) strategy for tuberculosis control since
1995. Despite predictions of a decline in global inci-
dence, the number of new cases continues to grow,
approaching 10 million in 2010 [Global Fund to
Fight AIDS, Tuberculosis and Malaria, 2006; WHO,
2009]. This rise has been attributed to the spread
of HIV, the collapse of public health programs, the
emergence of drug-resistant strains of MTB [Dye,
2000; Snider et al., 1994; Bloom, 1994] and exoge-
nous re-infections, where a latently-infected indi-
vidual acquires a new infection from other infec-
tions [Feng et al., 2000]. A full understanding of
the effectiveness of treatment and control strate-
gies within different regions of the world is still
needed. It is worth emphasizing that the mathemat-
ical analysis of biomedical and disease transmission
models can contribute to the understanding of the
mechanisms of those processes and to design poten-
tial therapies [Hethcote, 2000; Murphy et al., 2002;
Feng et al., 2000; Murphy et al., 2003; Bhunu et al.,
2008; Bowong & Tewa, 2009; Blower & Gerberding,
1998].

However, the analysis of the spread of infec-
tious diseases on complex networks has become a
central issue in modern epidemiology [Keeling &
Eames, 2005; Kuperman & Abramson, 2001; Auger
et al., 2009] and, indeed, it was one of the main
motivations for the development of percolation the-
ory [Newman, 2004]). While the initial approach was

focussed on local contact networks [Lloyd & May,
1996; Pastor-Satorras & Vespignani, 2001; New-
man, 2001; Colizza et al., 2007a), i.e. social networks
within single populations (cities, urban areas), a
new approach has been recently introduced for deal-
ing with the spread of diseases in ensembles of
(local) populations with a complex spatial arrange-
ment and connected by migration. Such sets of con-
nected populations living in a patchy environment
are called metapopulations in ecology, and their
study began in 1967 with the theory of island bio-
geography [MacArthur & Wilson, 1967).

Unfortunately, when considering dispersal
models, there is an approach based on the metapop-
ulation concept. The population is subdivided into
a number of discrete patches which are supposed
to be well mixed. Then, in each patch, the popula-
tion is subdivided into compartments corresponding
to different epidemic status. This leads to a multi-
patch, multicompartment system. At this point two
formulations are possible.

The first one assumes that an infective in one
patch can infect susceptible individuals in another
patch. This assumption gives rise to a family of
models which have been well studied [Lloyd &
Jansen, 2004: Lajmanovich & Yorke, 1976]. This
formulation assumes that there is a spatial coupling
between patches, but that individuals (vectors or
hosts) do not migrate between patches. They make
short “visits” from their home patches to other
ones.

The second one considers migration of individ-
uals between patches. The infection does not take
place during the migration process. The situation
is that of a directed graph, where the vertices
represent the patches and the arcs represent the
links between patches. Recently, there has been
increased interest in these deterministic metapop-
ulation disease models. For instance, in some recent
models of epidemic spreading, the location of the
patches in space is treated explicitly thanks to the
increasing of computational power [Colizza et al.,
2007a). However, an alternative approach based
on the formalism used in statistical mechanics of
complex networks is presented in [Colizza et al.,
2007b; Colizza & Vespignani, 2007, 2008]. Under
this approach, the structure of the spatial network
of patches (nodes) is encapsulated by means of
the connectivity (degree) distribution p(k) defined
as the probability that a randomly chosen patch
has connectivity k. In contrast, in [Saldana, 2008;
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Juher et al., 2009], the authors consider reaction
diffusion processes to take place simultaneously,
which turns out to be a correct assumption for
a suitable continuous-time formulation of meta-
population models for the spread of infectious
diseases.

In this paper, motivated by the usefulness of
and the current investigation on the complexity of
the spread of infectious diseases on heterogeneous
populations, we intend to systematically analyze
the dynamics of the spread of tuberculosis in the
modeling framework. We consider the spread of TB
on complex metapopulations, i.e. networks of popu-
lations connected by migratory flows whose config-
urations are described in terms of the conditional
probabilities of connections among classes of nodes
sharing the same degree. We give a necessary and
sufficient condition for the instability of the disease-
free equilibrium for uncorrelated networks. We find
that there exists a more precise bound of the largest
eigenvalue of the Jacobian matrix of the system
around the disease-free equilibrium. This condition
says that, for fixed values of the migration rates of
latently-infected and infectious individuals, a high
enough density of individuals and/or large enough
maximum connectivity in the metapopulation guar-
antee the instability of the disease-free equilibrium
and, hence, TB spread. In the limit of infinite net-
works with bounded average degree, this condition
implies the existence of a TB threshold for any dis-
tribution with large value. The existence of endemic
equilibria is also discussed. Comparing to existing
results in the literature, our work treats a specific
disease which is not the case in [Saldana, 2008;
Juher et al., 2009; Saldana, 2010]. We point out that
in [Saldana, 2008; Juher et al., 2009; Saldana, 2010},
the authors have neglected some important epi-
demiological features of a disease propagation such
as birth, natural mortality, disease related mortal-
ity and the basic models studied are of dimension
2 which are very simple. In addition, the authors
have supposed that the total population is con-
stant which is not always the case. The proposd
model is of dimension 3 and incorporates essen-
tial biological and epidemiological features of TB
such as birth, mortality due to the disease, slow
and fast progression, effective chemoprophylaxis of
latently-infected individuals and treatment of infec-
tious. Also, the total population is not constant.
It is our view, this study represents the first work
that provides an in-depth spread of TB on complex

metapopulations using a degree of distribution and
conditional probabilities.

1. A TB Metapopulation Model
1.1. The model

We consider the spread of TB in heterogeneous
metapopulations. The model consists of n patches.
We assume that the architecture of the network
of patches (nodes) where local populations live is
mathematically encoded by means of the connectiv-
ity (degree) distribution p(k), defined as the proba-
bility that a randomly chosen patch has degree k. At
any given time, in each patch, an individual is in one
of the following states: susceptible, latently infected
(exposed to TB but not infectious) and infectious
(has active TB). These states are average number
(density) of pgk, pex and pj i in the patches of con-
nectivity k, respectively. The total variable popula-
tion size at time ¢ is given by,

pr(t) = psi(t) + pEk(t) + pri(t). (1)

It is assumed that births are recruited into the pop-
ulation at per capita rate A. The transmission of
MTB occurs following adequate contacts between
a susceptible and infectious in each subpopula-
tion. The rate at which susceptible are infected
is Bpripsy which is a mass action (or density-
dependent) transmission, where § is the effective
contact rate of infectious that is sufficient to trans-
mit the infection to susceptible (it also denotes how
contagious the disease is). On adequate contacts
with active TB individuals, a susceptible individ-
ual becomes infected but not yet infectious. A frac-
tion g of newly infected individuals is assumed to
undergo a fast progression directly to the infectious
class, while the remainder is latently infected and
enters the latent class. Latently infected individuals
are assumed to acquire some immunity as a result of
the infection, which reduces the risk of subsequent
infection but does not fully prevent it. We assume
that chemoprophylaxis of latently infected individ-
uals reduces their reactivation at a rate @ and that
the initiation of therapeutics immediately remove
individuals from active status and place them into
a latent state. This last assumption is realistic.
Indeed, the classic works of Jindani et al. [1980]
showed that a bactericidal treatment reduced the
number of bacilli 20 times during the first two days
and about 200 times during the 12 days. After two
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weeks of treatment, the sputum of a patient contain
on average 1000 times less bacilli then before treat-
ment, a number generally too low to be detected
on direct examination. Latently infected individ-
uals who did not received effective chemoprophy-
laxis progress to active TB at a rate a(1 — @) where
o is the rate at which latently infected individu-
als become infectious (this value is connected with
the average time of incubations). After receiving an
effective therapy, an individual leaves the class of
infectious to the class of latently infected at a con-
stant rate v which is the probability that an infec-
tious individual will recover.

The rate for nondisease-related death is u, thus,
1/p is the average lifetime. Infectious individuals
have additional death rate due to disease by a
rate d.

According to the derivation in [Saldana, 2008:
Juher et al., 2009] of the continuous-time formula-
tion for the progress of diseases on metapopulations,
the equations governing the dynamics of TB prop-
agation are

( .
psk =N — Bpripsk — upsk — Dspsk

+kDs Z P(K | K,

pEL = B(l — @)prrpsk + VPIk

— e+ (1 - 0)lpex — DepEK

kDEZP(/»'Ik)pEk 1 (2)

o1k = Bapripsi + ol — 0)pEex
—(p+d+v)prx — Dipri

+ kDIZP(L'M B,

\

where k is the degree of the patches where local
population live (k = ki,...,kmax), and P(K'| k) is
the conditional probability that a path of degree k
has a connection to a path of degree k'. As in clas-
sical reaction-diffusion processes, Eq. (2) expresses
the time variation of susceptible, latently infected
individuals and infectious as the sum of two inde-
pendent contributions: reaction and diffusion. In
particular, the diffusion term includes the outflow
of individuals (diffusing particles) from patches of

degree k and the inflow of migratory individuals
from the nearest patches of degree k'. For the sake
of brevity, in the sequel, we consider strictly positive
diffusion rates (Ds, Dg, D > 0).

1.2. Positively-invariant set

Notice that, since births and deaths are considered
in model system (2), the total number of individuals
is not constant at the metapopulation level. More
precisely, multiplying equations in model system (2)
by p(k), and summing over all k, we have the
following differential equations for pg, pg and py,
the average number of susceptible, latently infected,
and infectious individuals per path at time ¢,
respectively,

( »
ps=A—-p E p(k)prrpsy — ups — Dsps
k

Ps.k!
+Ds )y kp(R)P(K |K)=2,
kK

pe =B —q) > p(k)prrpsk + 01
p

— [k +a(l —0)lpe — DepE
+DpY S kp(k)P(K K22,

kK

(3)

1= BgY_p(k)prkpsk + ol - 6)pE
%

—(w+d+7)pr — Dipr

+Dr >3 kp(k)P( | )P,

\ kK

where p;(t) = Y, p(k)pjxr, 5 = S.E,I. Now, since
the number of links emanating from nodes of degree
k to nodes of degree k' must be equal to the num-
ber of links emanating from nodes of degree k' to
nodes of degree k in nondirected graphs, we have
the following relationship between p(k) and P(k’ | k)
[Boguna & Pastor-Satorras, 2002):

kP(K' | k)p(k) = K P(k | K')p(K'). 4)

Using this restriction and the fact that ), X
P(k|k') = 1 after changing the order of summa-
tions, Eq. (3) becomes
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pI kPS,k

Ps = A - ﬂz — 1PS,

pE =Bl ~q) Zp(k)Pl.sz,k +vp1
f

| - [t + a(l - 6)lpg, (5)

b1 = B> _pk)pripsy+ ol - 0)pg
,‘-

{ ~ (e +d+7)pr-

Adding all the expressions on the right-hand side of
model system (5) yields

dp
EE A — pp —dpy. (6)

From the above equation, one can deduce that %‘g <

A — up. Thus,aE<01fp> Since%f;<A p,
it can be shown that using a standard comparison
theorem [Lakshmikantham et al., 1989}, that

é(1 —e ™M),

p(t) < p(0)e ™ +

If p(0) < A , then p(t) < A,
Hence all feasible solutlons of components of
system (5) enter the region:

= {(PS7PEaPI)€R?é%*p(t)S%}' (7)

Thus, it follows from Eq. (7) that all possible solu-
tions of model system (5) will enter the region
2. Hence, the region (2, of biological interest,
is positively-invariant under the flow induced by
model system (5). Further, it can be shown using
the theory of permanence [Berman & Plemmons,
1994] that all solutions on the boundary of Q even-
tually enter the interior of 2. Furthermore, in €2, the
usual existence, uniqueness and continuation results
hold for model system (5). Hence, model system (5)
is well posed mathematically and epidemiologically
and it is sufficient to consider the dynamics of the
flow generated by model system (5) in 2.

For networks with a connectivity pattern
defined by a set of conditional probabilities
P(K'| k), we define the elements of the connectiv-
ity matrix C as

Ckk' -]\%P(k’ |]\7)
Note that these elements are the average number
of individuals that patches of degree & receive from

neighboring patches of degree &’ assuming that one
individual leaves each of these patches by choos-
ing at random one of the k' connections [Pastor-
Satorras & Vespignani, 2001]. One should notice
that, for those degrees & that are not present in
the network, P(k'|k) = 0, VE'. Hereafter in the
paper, when talking about degrees, we implicitly
mean those degrees that are present in the net-
work. Furthermore, the case with patches having all
the same connectivity is excluded from our consid-
erations because, under the present approach, the
model equations reduce to those of a single patch
SEI model.

2. Uncorrelated Networks

In order to obtain analytical results about the TB
metapopulation dynamics, we need to be precise
about the form of P(k'|k). The easiest and usual
assumption is to restrict ourselves to uncorrelated
networks. In these networks, the degrees of the
nodes at the ends of any given link are indepen-
dent, that is, no degree-degree correlation between
the connected nodes. In this case, we have that
P(K'|k) = K'p(k")/(k) which corresponds to the
degree distribution of nodes (patches) as a result of
following a randomly chosen link [Newman et al.,
2001).

After replacing the expression of P(k'|k) into
Eq. (2), one obtains the following equations for TB
spread in metapopulations described by uncorre-
lated networks:

(ﬁs,k = A — Bpripsk — LPSk

).

pE) = B(1 — @)pripsk + YP1k
J -[u+a(l —0)lpsk

- DE(PE‘.k : (1,:> )

pri = Baprapsy +a(l —0)pe i

— Dg (Ps,k -

k
(p+d+)prr — Dy (Pl,k - mpl),

(8)

where (k) = >, kp(k) is the average network

degree.
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In this form, it becomes clearer that the diffu-
sion term is simply given by the difference between
the outflow of susceptible, latently infected and
infectious individuals in patches of connectivity &,
Dypsy, Deper and Dipry and the total inflow
of susceptible, latently infected and infectious indi-
viduals across all their k& connections, which is k
times the average flow of individuals across a con-
nection in the network, Dgpg/(k), Depe/{k) and
Dipr/(k). Note that this average flow across a con-
nection does not depend on the degree k of the
considered path because we assume that the archi-
tecture of the metapopulation is described by an
uncorrelated network.

In these networks, the elements of the connec-
tivity matrix C are simply

kp(K')
C, W 9
Clearly, C is a rank-one matrix and has the vector
with components v, = k as eigenvector of eigen-
value 1. So, if there are n different degrees in the
network, then the eigenvalues of this matrix are
A = 0, with algebraic multiplicity n — 1 and X = 1
which is a simple eigenvalue. This fact will be used
in the stability of equilibria of the model. To do this,
we are going to “vectorialize” model system (8),
using the following vectors of R™:
S = (pS.kl s PSkaye - ;PS,k,,)T,
E = (0B 1> PB ka1 PE k) 5
I =Pl ky-PLye s PLER)

N = (p11p2-- e apn)T
and
I=(,1,...,1)7.

If X € R" is a vector, we denote by diag(X) the
n X n matrix whose diagonal is given by the compo-
nents of X. With these notations and conventions,
model system (8) becomes

($ = AL - Bdiag(I)S — (u+ Ds)S
+ DgCS,

< E = B(1 — q)diag(I)S + ~I (10)
— {u+ a(l —0)+ Dg|E + DpCE,

I = Bgdiag(I)S + (1 — 9)E

—(p+d+~y+ Dp)I+ D;CI,

where C is the connectivity matrix defined as in
Eq. (9).

We point out that in the case where the param-
eters 8, q, v, i, o, 8 and d are not the same for all
patches, they are replaced in model system (10) by
diagonal non-negative matrices and this does not
change the fundamental structure of the system.

2.1. Disease-free equilibrium (DFE)
Jor generic networks

The disease-free equilibrium of model system (2) are
the solutions pg,k, p%,k and p‘},k to the equations:

4

A~ Bp} k0% x — 1P% i — Dsply,
P
+kDs Y P(K'| k) =0,
kl
B(L — 9)Bp7 kPSi + 1P — [+ a1 — O)]pk

0
PE g
k/

~ Dgply +kDg Y | P(K | k)
kl

Bapd 1p% s + (1 — 0)p% . — (p+ d+7)p7 s

0
- Digfy+ kD YD PG R o,
kl

(11)

For the analysis of the infection’s spread, the
so-called disease-free equilibrium is particularly
relevant. By definition, this is obtained by replacing
prk = 0 in model system (2), leading to an explicit
expression for the number of susceptible individuals
in patches with degree k that can be written as

(4 + Ds)p%x = A+ Ds Z Crn P jo-
kl

As Y. P(K' | k) = 1, it follows that, for any generic
network, one has

1 k
0 - A+D—°).
Pk #+Ds( HCIS

Note that Eq. (6) at the disease-free equilibrium
yields
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Then, the disease-free equilibrium is given by
Ds k

ng:—A'—<1 ‘—‘—)
ToetDs\ o r B v 1)

0 _ 0 _
PEK =PIk =0,

2.2. Basic reproduction number
and local stability of the DFE

The global behavior for model system (10) crucially
depends on the basic reproduction number, that
is, an average number of secondary cases produced
by a single infective individual which is introduced
into an entirely susceptible population. Model sys-
tem (10) has an evident equilibrium Qg = (S°,0,0)
with S = pg,k defined as in Eq. (12) and 0 is the
zero vector of dimension n when there is no disease.

Linearizing model system (10) around the
disease-free equilibrium S° = (pg‘l, PLas- . ,pg,n)T
where pg_ « is defined as in Eq. (12), one obtains that
the Jacobian matrix is the following block matrix:

J 0
J = 0 J3 J4 b
0 J5 Js

where
J1 = DgC — (u+ Dg)I,,,
Jp = —f diag(5°),
J3 = DgC — [u+ Dg + (1 — 9))In,
Ji = (1 - g)diag(S°) + I,
Js = a(l — 0)I,
Js = DiC — (u+ d + v+ Dy)I, + Bqdiag(S°),

and 0 are n xn matrices with 0 being the zero matrix
and n the number of degrees in the metapopulation.
Note that the upper blocks of the Jaco-
bian matrix are computed differentiating equations
in model system (10) with respect to suscepti-
ble, latently-infected and infectious individuals in
patches of degree k, respectively. The triangular
structure of the Jacobian implies that its character-
istic polynomial factorizes as Q(s) = Q,(5)Q,(5)
with Q,(s) and Qj,(s) being the characteristic
polynomial of the main diagonal blocks with

5 J
Jo [3 “].
Js

The submatrix Jp defines the linear dynamics of
latently infected individuals and infectious around
the disease-free equilibrium. Therefore, a positive
dominant eigenvalue of Jy implies an increase of the
number of latently infected individuals and infec-
tious initially added to a resident population of sus-
ceptible individuals at the equilibrium.

Hence, the eigenvalues of J are those of the sub-
matrix J; plus those of the submatrix Jy. From the
knowledge of the eigenvalues of C, the eigenvalues
of Jy are those of DgC shifted by —(Dgs + u). It
follows that Qu, (s) = (s + p)(s + Ds + p)*! and,
hence, the largest eigenvalue of J; is always s = —p.
This implies that the submatrix J; is stable. On the
other hand, using the results in [Kamgang & Sallet,
2005] on the computation of eigenvalues of an arbi-
trary matrix of dimension n, the eigenvalues of the
submatrix Jy are associated with the eigenvalues of
the following n X n matrix:

Jg — J5J3_1J4.

To compute the expression of Jg—J5J5 L J4, we need
to compute the inverse matrix of Js3. To do so, we
shall used the following Lemma 1 stated below and
proved in Appendix A.

Lemma 1. Let R=U + XWZ be an n X n nvert-
ible matriz. Suppose that the matrices U, W and
W-1 4+ ZU7'X are invertible. Then, the inverse
matriz of R is defined as

R =U"'-U'XW 42U X]"" 207"
(13)

Note that the matrix J3 may be written in the
form R =U+ XWZ with U = —(u+ Dg)I,, X =
(K1, k2, ... k)T, W = 1 and Z = %[p(kl),...,
p(kp)]. Then using Lemma 1, one can easily prove
that the inverse matrix of J3 is given by

-1 -1 DgC
R | L o]

With this in mind, using the above expression of
J3 ! one has

DsC
-1 -17 _ E
Js IV = T35 [In ey 0)}
. (a1 —6)[B(1—q)S°+4I]
Xdlag< p+Dpta(l—0) )
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Then, one can deduce that

Js — JsJ3'Jy = D1C + diag(8gS° — (u +d + v+ Dy)I)

Dg

I [ A —
# [+ o

Dgo(1 — 6)[B(1 — q)S° + 41|

C_ 9)] diag(a(l - 0)[B(1 —q)S° + 711])’

[+ Dg + a1 - 9)]

= C’diag(

[+ Dg +a(l —0)][n+ (1 - 6)]

+ D]ri)

. (Blo(1 - 8) + g(u + D)} S°
*d‘*‘g( [t+ D5 +a(l - 0)] )

B diag([(“+ Dp)(u+d+~v+Dp)+a(l -0)(p+d+ DI)]]I))

[t + Dg + (1 — 6)]

= Cdiag(V") + diag(W"),
where
. Dga(1-6)[B(1 —q)S° +11] .
V it DetaQ-0utai-_o) T >0
— Bla(l — 8) + q(u+ Dg))S® — [(u+ De)(p+d+v+D1)+ (1 — 0)(p+d+ Dz)]]I‘

Thus, the eigenvalues of Jg — J5J3 1Jy reduce to
the eigenvalues of the matrix L = Cdiag(V*) +
diag(W*). Note that the matrix L is the sum of a
rank-one matrix and a diagonal matrix. Then, L
can be considered as a diagonal matrix perturbed
by a rank-one matrix. Now, for a general interlacing
theorem of eigenvalues for perturbations of a diag-
onal matrix by rank-one matrices {Anderson, 1996),
the eigenvalues Ay, < A, < -+ < Agy = Agpnax Of L

interlace with the eigenvalues W} < W < ... <
|

b+ Dg+ (1 -96)]

[
Wy, of diag(W”) as follows
I/V}:,1 < ’\k: < W};z < )\k2
L vee <)\k" < WI:n < )\kn = )\kmax'

Then, it follows that the greatest eigenvalue Ay, of
L satisfies A, > Wi = Wi > 0. In summary,
all eigenvalues of the Jacobian matrix of model sys-
tem (10) at the disease-free equilibrium Qg are real
and the largest one is Apax = Agpa, With

, Bl —6) +au+ Di)lpy, — 1+ Dp)(p+d+y+ D) +a(l —O)u+d+ D)l

kn

lu+ Dg +a(1-0)]

Therefore, a sufficient condition for this equilibrium to be unstable is given by

[(u+ Dg)(p+d+~+ Dr)+ ol —60)(u+d+ Dy

0
PS kmax

This condition simply says that, if the number of
individuals inhabiting those patches with lowest
connectivity in the metapopulation, for fixed values
of u, v, D, Dy, q, 6, B, d and a, a large enough
pg'km“ guarantee the instability of the disease-free
equilibrium. This implies that the infection reaches
all patches.

Model of this type demonstrates clear infection
threshold. In the presence of a threshold. disease

Bla(l - 6) + g(u+ DE)]

: (14)

|

eradication requires the reduction of the infection
rate below a critical level where a stable infection-
free equilibrium is guaranteed. In epidemiologi-
cal terminology, the infection threshold may be
expressed in terms of the basic reproductive num-
ber Ry, the average number of infections produced
by a single infected individual in a population of
susceptible. From this definition, it is clear that TB
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infection can spread in a population only if Ry > 1. Note that pg’km“x is defined as

0 A
PS kmax —

uik) (1 + Ds)

[p‘ (k) + Kmax DS] .

Thus, large values of the patch connectivity lead to a large enough pgy,\.mx. Now, rearranging Eq. (14)

yields

A,B[kma.xDS + #(k)][a(l = 0) + q(l‘ + -DE)]

1.

iR+ Ds)(n+ DE)(u+d+v+ D) +e( —8)(utd+ D7)

Note that in the limit of very large networks with bounded average degree (k), the above sufficient condition
implies that there always exists an epidemic threshold for any degree distribution.
Using the above condition, it then follows that the basic reproduction ratio Rg > 1 is given by

Ro

ABlkmaxDs + p(k)le(1 — 6) + q(p + DE)]

(15)

Thus, crossing the threshold reduces the basic
reproductive number Ry below unity and the infec-
tion is prevented from propagating.

2.3. Endemic equilibrium

Herein, we investigate the existence of the endemic
equilibrium of model system (10). To this end, it
is more convenient to write model system (10) in a

Ki=(1-4q,0,...,0,0,....0),
N —— N’

Kn = (0,...,0,1 —q,0,...,0),
N —

]Cn+2 == (0,...,0,0,(],...,0),...,
N Nt

" k) (u+ Ds)[(4 + DE)(p +d+ 7+ Dr) + ol — 0)(u+ d+ D)]’

K2 = (0,1 —¢q,0,...,0,0,...
N —

ICn+l

Kop = (O,,,,,0,0,...,O,Q),

|
more compact form. In a more compact form, model

system (10) may be written as follows:
& = Al — diag(By)z + [DsC — (u + Dg))z,

n 16
5= 3 e B | ) (Kt Kog) ~ VO

i=1

where = § € R%, y = (B, I)T € R%, K; € R™®

and K;;, € R?" are constant vectors with
N 1)

-(0,...,0,q,0,...,0),
—_——

e; is the canonical basis of R”, B = [0, 8I,] with 0 a n X n null matrix, I is defined as in model system (10)

and V is the 2n x 2n constant matrix:

V -
~a(l-0)I,

We point out that the matrix —V is a Metzler
matrix, that is, a matrix with all its off-diagonal
entries non-negative [Berman & Plemmons, 1994;
Jacquez & Simon, 1993].

With this new notation, and using the method
of [Van den Driessche & Watmough, 2002], the basic
reproduction number (15) satisfies

n
Ro=§&|Y (e |a) BV (K + Kisn)e] |,

i=1

(17)

where £ is the spectral radius.

[u+ a(l —8) + Dg|I, — DgC

—7In
[u+d+~+ DI, — DiC|

r

Let Q" = (z*,y") be the positive endemic equi-
librium of model system (16). Then, the positive
endemic equilibrium (steady state with y > 0) can
be obtained by setting the right-hand side of equa-
tions in model system (16) at zero, giving

Al — diag(By*)z" + [DsC — (u + Dg)I,]=" =0,

S ex | By e |2°) (s + Kin) — Vo™ = 0.
=1

(18)

1350128-9
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Multiplying the second equation of (18) by V!
yields

Multiplying the above equation by B and setting
2" = By" gives
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Y # =Y el )

y" = (e | By Yei |2V 1 (Ki + Kign).
=1 =

Using the first equation of (18), one has x (e | _P_l(za)[DSc —(p+ DS)In]mO)

~ [diag(By") — [DsC — (u + Dg)IL,]] Al x BV (K + Kitn), (20)
Then, one can deduce that where
" P(+") = diag(2") - [DsC — (s + D))
* — l B *x

y ig;(e |By") We give the explicit expression of the inverse matrix
of P(z*) since we will need it later. Note that
x (e; | [diag(By*) — [DsC — (u+ Ds)In]) *Al)  P(z*) has the form of the matrix R = U + XWZ
1 _ given in Lemma 1 with U = diag{z* + (¢ +
X VI + Kign)- (19) D), X = [k ka, o okn, W = 1 and Z =

ﬁ[P(’»I) p(ka), .. ,p(kn)] Then, using Lemma 1,

Remind that at the disease-free equilibrium,
a simple computation gives

one has

1
~[DsC — (1 + Ds)I,)z° > 0. PY(2*) = diag| ————
[Ds (w $)n) (2") = diag P

Plugging the above expression in Eq. (19) yields

1
n DgC diag [——]
* = ‘. D
y = (e|By") |1, + 2, + 1+ Ds
i=1 1- & Z —_kp(k)
. . 1 (k) zptp+ Dg
x {e;| —[diag(By") — [DsC — (¢ + Ds) 1) 1)
x [DsC — (u + Ds) ]2V HK: + Kign).
[Ds (e S)le )V +n) Now, from Eq. (20), one has
n
(ej ] 2%) Z (€] 2")(e: | P (z")P(0)2°) (e; | BV ™Y (K + Kign))y 5 =1,2,...,n. (22)
where P(0) = —[DgC — (;L + Dg)I,]. From the above equation, one can deduce that
n n n
Y lejl2") = D (el ="M e | P7H(z")P(0)2°) <Z€j | BV ~H(K; + ’Cs+n)>- (23)
j=1 i=1 Jj=1

Then, to find the endemic equilibrium of model system (10), it suffices to find solutions of the following
equation:

H(z*) =1, (24)

where

> el 2 e | P71 (z")P(0)a° <26J|BV YK, +1cl+n)>
H(Z*) = =] J=l1

n ?

> lesl2)

=

(25)

where P~1(z*) is defined as in Eq. (21). Note that z* are the intersection points between the curve of
H(z*) and the line z = 1.
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From Eq. (25), it follows that the function
H(z") satisfies

lim H(z") =0,

¥4

and

n
i, H() = 3 o)

X <i €j I BV_I(’C; + ’Ci+n)>.

i=1
We claim the following result.

Lemma 2.

holds.

Proof of Lemma. Let A= 3" (e;|z*)BV (K, +
Kiin)el. Then, using Eq. (17), one has Ro = £(A).
Since A is a non-negative matrix, if r; = Z;‘ Ajiis
the sum of the jth column of A, one has

The inequality lim,-_o H(z*) > Rp

min{r,} < £(4) < max{r;}.

If e; denotes the canonical basis of R", I = (e; +
ez + +++ + e,)7, using the fact that tTu -1, Vi,
one has

T = C?A]I

n
=l (Z@i |z*)BV YK, + 1cl+n)e;-")n,
i==1

= (‘:f (E(e,; I(E*)BV—-I(,Ci 44 ’Ci+n)) )

i=1

(e: 17 (e; | BV (K + Kisn)).

Xn]e, |z%YBV1(K; + 1c,+n)>.

=1

i=1

i

With this in mind, one can deduce that

Z’I‘j z ZefAI[,
=1 j=1
n n
- E(ei | 20) <Zej | BVL(K, +ici+,,)>,
1=1

J;:l

- J1_11_1.10 H(z").

Then, one has that

n
Ro = §(A) < max{r;} <3 rj,
J
which implies that lim,. .o H(z*) > Rp. This com-
pletes the proof. W

Note that we use the expression of V! to put
emphasis on the fact that V=1 > 0 because —V is
a Metzler matrix. Since lim,»_o H(2*) > Ro and
lim,- 4o H(2*) = 0, H(z*) is a positive function.
Thus, positive solutions of Eq. (24) exist if and only
if lim,._,o H(z*) > Ro > 1. From the first equation
of (18), one has z* = P~!(z*)AL Since P~!(z*)
is a positive definite matrix, one has z* > 0. On
the other hand, since 2* are the intersection points
between the curve of H(z*) and the line z = 1, one
has that z* > 0. Then, when Ro > 1, the equi-
libria are endemic. This means that there exists at
least one endemic equilibrium of model system (10).
Also, note that 2* = By™ is not a bijection (it is
a onto map, but not a one-to-one map), one can
conclude that the TB model could have multiple
endemic equilibria. However, to know the number
of endemic equilibria, we need to analyze the func-
tion H(z*). We stress that Eq. (24) is very diffi-
cult to solve analytically due to the fact that H is
a nonlinear function. Nonetheless, one can numeri-
cally plot this curve and examine how the intersec-
tion point(s) with the line z = 1 change with model
parameters.

2.4. Numerical studies

To illustrate the various theoretical results con-
tained in the previous section, model system (8)
is simulated using the parameter value/range in
Table 1. In all simulations, the initial conditions
have been chosen randomly.

In Table 1, a* denotes parameter values from
Bowong & Kurths, 2010], b* from [Bhunu et al.,
2008] and ¢* from |[National Committee of Fight
Against Tuberculosis of Cameroon, 2008].

Figure 1 shows the effects of the transmission
rate 0 and the patch connectivity & on the basic
reproduction number Ry given as in Eq. (15). We
have taken a metapopulation with scale-free distri-
bution p(k) ~ k=3 with (k) = 6, knin = 3 and
Dg = Dg = Dy = 1 per year. All other parameters
are as in Table 1. The part above the unity of the
picture corresponds to the region of the instability
of the disease-free equilibrium, while the part below

1350128-11
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Table 1. Description and estimation of parameters.

Parameter Description Estimated Value Source
A Recruitment rate 1001 year ! a’
Ji] Transmission coefficient Variable
m Per capita naturally death rate 0.017 year ! b*
q Fast route to active TB 0.015 b
«a Slow route to active TB 0.0024 year_l a*
0 Per capital rate of effective chemoprophylaxis 0.001 year~! c"
¥ Recovery rate of infectious 0.7372 year_1 a”
d Per capita disease-induced mortality rate 0.0012 year ! a’
Dg Diffusion rate of susceptible individuals Variable

Dg Diffusion rate of latently-infected individuals Varijable
Dy Diffusion rate of infectious Variable
(a)
5 | A
254 g
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g 24
% 15
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@ 0.
0.03
(b | ' ' N
\ \ o - % )
14} § i p > s ‘% T N
B\ L % _
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12 - \ '\‘ ¥ % ’.% -
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%- \ = ;.% 11.6
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Fig. 1. Basic reproduction ratio given as in Eq. (15) as a function of the transmission rate and the patch connectivity when

Dg = Dg = Dy = 1. All other parameters are as in Table 1.
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the unity of the figure represents the region for the
stability of the disease-free equilibrium. From this
figure, one can see that Ry decreases if  decreases
even in the case of large values of k. This means
that if the transmission coefficient [ is sufficiently
small, TB infection could be eliminated in the host
population even if the number of the patch connec-
tivity k is large. However, it is difficult to control £.

Prevalence of the infection

This figure also shows that for the chosen parameter
values, if the patch connectivity k& does not exceed
1.2 (k < 6), then TB can be controlled irrespective
of the value of 8. The infection will equally persist
for k> 6.

Figure 2 gives the evolution of model system
(8) when 8 = 0.0001 and Dg = Dg =Dy =1 (so
that Rgp < 1). All other parameters are as in

12000 ! ' ! !

Number of infected individuals

10. 12 14 16 18 20

Time(years)

(b)

Fig. 2. Evolution of model system (8) when 8 = 0.0002 and Dg = Dg = Dy =1 (so that Ry < 1). Al other parameters are
as in Fig. 1. (a) Prevalence curves and (b) time evolution of the number of infected individuals in each patch.
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Fig. 1. Figure 2(a) presents the prevalence curves
of the model while, the time evolution of the
number of infected individuals in each patch is
depicted in Fig. 2(b). From these figures, it clearly
appears that the disease disappears in the host
population even for higher values of the patch
connectivity.

Prevalencs of the infection

Figure 3 gives the evolution of model system (8)
when § = 0.001 and Dg = Dg = Dy = 1 (so that
Ro > 1). All other parameters are as in Fig. 1. From
this figure, one can observe that the disease persists
in the host population. In addition, one can also
observe that as the patch connectivity increases, the
prevalence of the infection also increases.

15

Time(years)

Number of infected individuals

10 12 14 16 18 20

Time(years)

Fig. 3. Evolution of model system (8) when 8 = 0.002 and Dg = Dg = Dy = 1 (so that Ry > 1). All other parameters are
as in Fig. 1. (a) Prevalence curves and (b) time evolution of the number of infected individuals in each patch.
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Fig. 4. Prevalence of the infection of model system (8)
in nodes of degree k of an uncorrelated scale-free network
when B = 0.001. All other parameters are as in Fig. 1.
Dg = 0.1 and D = D; = 1 (blue stars); Dg = 0.1 and
Dg = Dy = 1 (red stars); Dy = 0.1 and Dg = Dy = 1
(green stars); Dg = Dg = D; = 1 (yellow stars) and
Dg = D = Dy = 1.5 (black stars).

Now, let us examine the influence of the
migration on the propagation of TB in the host
population.

Figure 4 presents the prevalence of the infec-
tion of model system (8) in nodes of degree k of an
uncorrelated scale-free network for different values
of the migration rates. From this figure, the role of
the migration rates Dg, Dg and Dy is remarkable.
Increasing the value of the migration rates Dg, Dp
and Dy causes a reduction in the prevalence of the
infection. This is the only case we have observed
in which the infection prevalence changes nonuni-
formly across the metapopulation when varying the
value of a parameter.

3. Conclusion

In this paper, we have presented a system of
differential equations of reaction-diffusion type
describing the TB spread in heterogeneous complex
metapopulations. The spatial configuration is given
by the degree p(k) and the conditional probabilities
P(K'|k). For uncorrelated networks, a necessary
and sufficient condition for the instability of the
disease-free equilibrium for uncorrelated networks
has been given. We have also shown that if the basic
reproduction number Rg > 1, then the simple mass
action model could have multiple endemic equilib-
ria. Through numerical simulations, we found that

the prevalence of the infection increases with the
path connectivity. Also, increasing the value of the
migration rates cause a reduction in the prevalence
of the infection.
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Appendix A
Proof of Lemma 1

In this Appendix, we give the proof of Lemma 1. To
do so, it suffices to verify that GG~! = I,,. Indeed,
one has

GGl =UU - X[Wl4zulx|tzUu !
+ XWZU ! - XWZU ' X
x Wl zu- x|z,
=L, -X([W '+ 207X 4+ W
- wzU ' Xw + ZzUu ' X) N Zu
— L, - XWW ' W'+ zU07'X]7' - I,
+ZU ' X[Wt + ZzU X)) 20,
I, - XW[W™ 4+ ZU71X)
x[Wl4 zU x| - I,)2U0 Y,
In— XW(I, - I,)ZU !,
I.
This concludes the proof. B
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