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Lag synchronization is a basic phenomenon in mismatched coupled systems, delay coupled

systems, and time-delayed systems. It is characterized by a lag configuration that identifies

a unique time shift between all pairs of similar state variables of the coupled systems. In

this report, an attempt is made how to induce multiple lag configurations in coupled

systems when different pairs of state variables attain different time shift. A design of

coupling is presented to realize this multiple lag synchronization. Numerical illustration is

given using examples of the R€ossler system and the slow-fast Hindmarsh-Rose neuron

model. The multiple lag scenario is physically realized in an electronic circuit of two

Sprott systems. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4828515]

Lag synchronization (LS) is usually studied in instan-

taneously coupled mismatched oscillators, in the pres-

ence of coupling delay in identical systems and time-

delayed systems. LS is characterized by one unique

lag time or time shift that is established between all

the pairs of state variables of the coupled oscillator

while the amplitudes remain strongly correlated. The

amount of lag time, of course, can be varied by tun-

ing the parameter mismatch or the delay in the cou-

pling function as the case may be. A question is

raised if it is possible to induce multiple lags in

coupled systems, chaotic or periodic. Realizing differ-

ent delays in different pairs of state variables of two

unidirectionally coupled oscillators (periodic or cha-

otic) is not reported so far, to our best knowledge.

To achieve this goal, a design of coupling approach is

presented here to explain how to induce multiple lag

or delay in two unidirectionally coupled chaotic oscil-

lators with numerical examples and electronic circuit

experiment.

I. INTRODUCTION

LS1 as observed in instantaneously coupled mismatched

chaotic oscillators, delay coupled oscillators or delay

coupled time-delayed systems has one and unique lag config-

uration. The amplitudes of all the pairs of state variables of

the coupled oscillators remain strongly correlated but shifted

by a common time or delay. LS is, particularly, considered

as an important scenario in coupled mismatched oscillators

since the complete synchronization (CS)2 is an ideal case

and not usually observable in practical systems. CS defines a

state of exact correlation in both the amplitude and the phase

which is only possible if two oscillators are identical. But

never two systems can be exactly identical in nature or

engineering. In practical systems, an almost CS is thus seen

for large or strong coupling in closely identical systems.

Interestingly, although the parameter mismatch plays destruc-

tive effect on the CS, the amplitudes show to remain strongly

correlated for a weaker coupling while the state variables of

the coupled systems are shifted by a constant time. The

amount of time shift or lag time is determined by the

amount of mismatch and the coupling strength. Such a LS

scenario is seen above a critical coupling3 which is for

sure smaller than the critical coupling for CS in identical

oscillators. For a given parameter mismatch, the time shift

is unique for all the pairs of state variables of the coupled

systems and decreases with coupling strength above the

critical value and becomes almost zero for large coupling

when the coupled systems emerge into an almost CS state.

This lag configuration has potential applications in trans-

mitting information4 in unidirectionally coupled oscillators.

Alternatively, a time delay is used5 in the coupling func-

tion of two chaotic oscillators to realize a LS scenario. An

almost identical but a delayed version of the driver signal

is retrieved at the response system.

In this paper, we treat a problem whether it is possible to

transmit different delays through different pairs of state varia-

bles of two coupled oscillators. In other words, if different

delays are used in the coupling via different state variables, is

it possible to establish stable LS with different lag configura-

tions or time shift in different pairs of state variables? In the

past, a kind of multiple lag configuration is reported in the

context of intermittent lag synchronization6 when two coupled

systems switches between different lag configurations, how-

ever, different pairs of state variables still follow one unique

lag configuration at any duration of time. To our best knowl-

edge, no attempt is so far made to realize multiple lag configu-

rations or multiple LS (MLS) either in periodic or chaotic

system.
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In real complex networks such as brain,7 stock-market,8

signals travel simultaneously between individual nodes

through multiple paths with different lag or delays. On the

other hand, multiplexing9 is a usual form of transmitting dig-

ital signals by time sharing of a common communication

channel. It will be an added practical advantage for commu-

nication application if it is possible to transmit several infor-

mation signals in terms of multiple delays simultaneously

via different state variables of two oscillators. In the perspec-

tive of neuronal networks too, it is well known10 that one

neuron receives information from other neurons at different

time instants since they travel different path length to arrive

at the destination neuron. In this context, we make an

attempt to engineer a coupling scheme that can induce sepa-

rate delays in different state variables of two drive-response

type coupled systems. This is manifested as the response var-

iables being shifted with different time lag from the corre-

sponding driver variables. To our best search of literature, a

co-existence of dual-lag is found11 that considers two semi-

conductor lasers which are coupled optically via two paths

of different lengths. However, no general coupling strategy

is proposed that can be implemented to dynamical system, in

general. We address this issue of MLS in chaotic oscillators

using a design of a coupling scheme based on the Hurwitz

matrix stability.12 The important feature of the method is

that the coupling is assumed to be unknown a priori. Given

the model of a dynamical system, a desired state of synchro-

nization is first targeted and then the coupling function is

derived to realize the targeted stable state using a general

measure of stability. We illustrate the theory with numerical

examples of the Hindmarsh-Rose model13 and the R€ossler

system.14 Furthermore, we implement the MLS in an elec-

tronic experiment using a coupled Sprott system.15

The rest of the paper is organized as follows: the theory

of the MLS in chaotic systems is discussed in Sec. II. In

Sec. III, numerical examples of MLS are presented using

mismatched R€ossler system and identical Hindmarsh-Ross

model. Experimental observation of MLS is described

using a Sprott circuit in Sec. IV. Our results are summar-

ized in Sec. V.

II. DESIGN OF COUPLING FOR MLS

Consider a chaotic system as driver with parameter

mismatch

_y ¼ f ðy; gÞ þ Df ðy; gÞ; y 2 Rn; (1)

where Df ðy; gÞ ¼ f ðy; gþ DgÞ � f ðy; gÞ contains the mis-

matched terms, in general, where g is a vector of system param-

eters. Otherwise if all the parameters appear in the linear term of

f(.), the mismatch term is more simplified, Df ðy; gÞ ¼ f ðy;DgÞ.
Next, consider another system as a response

_x ¼ f ðx; gÞ; x 2 Rn (2)

and we target a goal dynamics xðtÞ ¼ gs ¼ ys as a desired

response, when ys ¼ ½y1ðt� s1Þ; y2ðt� s2Þ; y3ðt� s3Þ; :::::::;
ynðt� snÞ�T , and si � 0 ði ¼ 1; 2; :::; nÞ are coupling delays

and T denotes transpose of a matrix. The response system af-

ter coupling is

_x ¼ f ðx; gÞ þ Dðx; gsÞ; (3)

where the delay coupling term Dðx; gsÞ is defined by

Dðx; gsÞ ¼ _gs � f ðgs; gÞ þ H � @f ðgsÞ
@gs

� �
ðx� gsÞ ; (4)

@f
@gs

is the Jacobian and H is an arbitrary constant n � n ma-

trix. The error signal of the coupled system is defined by

e ¼ x� gs. Using Taylor series expansion, f(x) can be writ-

ten as

f ðxÞ ¼ f ðgs þ eÞ þ @f ðgsÞ
@gs

eþ ::::: (5)

Restricting to the first order term, the error dynamics can be

easily obtained12 as _e ¼ He using Eqs. (3)–(5). This ensures

that e! 0 for t!1 if H is a Hurwitz matrix whose eigen-

values all have negative real parts and when asymptotically

stable LS is obtained. If s1 ¼ s2 ¼ ::: ¼ sn, the conventional

LS scenario is seen1 but alternatively, MLS is observed for

s1 6¼ s2 6¼ :::: 6¼ sn. This is possible since the stability condi-

tion does not involve the delay time as elaborated later. The

H-matrix is constructed from the Jacobian @f ðgsÞ=@gs. If a

system is known, the Jacobian is derived by a linearization

of the system. H-matrix is then constructed using a set of

rules: the elements of a Jacobian matrix that contain state

variables are replaced by a set of constant pi keeping other

elements (zero or constant) unchanged. Once the H-matrix is

formed, its characteristic equation is derived and the Routh-

Hurwitz (RH) criterion16 is applied to obtain the condition

for which all eigenvalues have negative real parts. As an

example of a 3D system, the characteristic equation of the

H-matrix is given by k3 þ a1k
2 þ a2kþ a3 ¼ 0, where the

coefficients a1, a2, a3 are defined by the elements of the ma-

trix, i.e., the system parameters and pi. Next, apply the RH

criterion as given by a1 > 0; a3 > 0; a1a2 > a3 that confirms

all eigenvalues of H have negative real parts and H becomes

Hurwitz and it ensures stability of the error dynamics (e) at

zero. The stability of a desired synchronized state is thereby

established. From these conditions, for a given set parameter

values, the range of pi values is determined for which the RH

criterion is valid. The system parameters decide the dy-

namics (periodic or chaotic) of the coupled system which

remains undisturbed by the choice of the pi values. It is

not difficult now to implement the method, in numerical

simulations, once the Hurwitz matrix is designed by the

appropriate choice of its pi parameters from the given

range of values. To complete the design of the coupling

term Dðx; gsÞ, the coupling delay s is to be decided next

which can be arbitrarily chosen as desired without any

loss of stability of MLS. The stability condition of MLS

depends on pi only for a set of system parameters and

is independent of the coupling delay s. This is a great

advantage in obtaining the stable MLS state. The cou-

pling design is illustrated in Sec. III with numerical

examples.
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III. NUMERICAL EXAMPLES

Next, we illustrate the design of coupling based on

Hurwitz matrix stability for MLS in identical as well as mis-

match systems. We show that the stability of MLS is main-

tained even in the presence of a parameter mismatch. We

take paradigmatic examples, the R€ossler system and the

Hindmarsh-Rose neuron model.

A. Mismatched oscillator: R€ossler system

We start with two mismatched R€ossler oscillators and

show that mismatch does not affect the stability of MLS. We

consider the unidirectional delay coupling when the driver is

_y ¼ f ðyÞ þ Df ðyÞ where y ¼ ðy1; y2; y3Þ 2 R3; (6)

f ðyÞ ¼
�y2 � y3

y1 þ by2

cþ y3ðy1 � dÞ

0
@

1
A and Df ðyÞ ¼

0

Dby2

0

0
@

1
A;

and Db is a parameter mismatch. The Jacobian of the system

and the H-matrix are

J ¼ @f

@y
¼

0 �1 �1

1 b 0

y3 0 y1 � d

2
64

3
75;

H ¼
0 �1 �1

1 b 0

p1 0 p2 � d

2
64

3
75:

We construct the H from the above Jacobian matrix by fol-

lowing the rules as stated above. In our simulation, we

choose p1¼ 5, p2¼�5 when the eigenvalues of the

H-matrix are �14.6605, �0.0947 6 0.9813i. As mentioned

above, this choice is not a unique one, in fact, a wider

choice11 is available and the coupled system remains in the

chaotic dynamics. It is, particularly, to mention that the

choice ensures the chaotic regimes. After adding the cou-

pling (4), the response system becomes

_x ¼ f ðxÞ þ Dðx; ysÞ; (7)

where

D ¼

�y2ðt� s1Þ � y3ðt� s1Þ þ y2ðt� s2Þ þ y3ðt� s3Þ
�y1ðt� s1Þ þ y1ðt� s2Þ þ Dby2ðt� s2Þ

½p1 � y3ðt� s3Þ�ðx1 � y1ðt� s1ÞÞ þ ½p2 � y1ðt� s1Þ�ðx3 � y3ðt� s3ÞÞþ
y3ðt� s3Þðy1ðt� s3Þ � dÞ � y3ðt� s3Þðy1ðt� s1Þ � dÞ

0
BBB@

1
CCCA:

The targeted MLS manifold is

x1ðtÞ ¼ y1ðt� s1Þ; x2ðtÞ ¼ y2ðt� s2Þ; x3ðtÞ ¼ y3ðt� s3Þ:

In our simulations, we consider the coupling delays s1¼ 1.0,

s2¼ 2.0, s3¼ 3.0, however, we can make any arbitrary choice

(besides integer values) of the delays without disturbing the sta-

bility of the MLS. Figure 1(a) shows the time series of the driv-

ing signal y1(t) (blue line) and the response signal x1(t) (red

line) for a lag time s¼ 1.0. To confirm the lag configuration,

we estimate a similarity measure Sy1x1
between the variables (y1,

x1) as shown in Fig. 1(b). The similarity measure1 between any

pair of state variables, say, x1(t) and y1(t) is defined as

Sy1x1
¼ h½x1ðtÞ � y1ðt� ssÞ�2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hx2
1ðtÞihy2

1ðtÞi
p : (8)

The Sy1x1
plot with an arbitrary ss shows a global mini-

mum at zero for ss ¼ ss0, which is the principal lag charac-

teristic or configuration of the pair of time series. Sy1x1
has a

global minimum closely at zero at s1 ¼ ss ¼ 1:0 (dimension-

less), which estimates the lag time between the time series y1

and x1 in Fig. 1(a). Similarly, Figs. 1(c) and 1(e) show the

time series (y2, x2) and (y3, x3) with time lag 2.0 and 3.0,

respectively. Figures 1(d) and 1(f) confirm the corresponding

similarity measures of the pairs of time series (y2, x2) and

(y3, x3), where Sy2x2
and Sy3x3

also have global minima at zero

at ss¼ 2.0 and ss¼ 3.0, respectively. Our numerical results

confirm the MLS scenario where three different delays are

introduced separately in the coupling function and each of

them are exactly retrieved from the response signals. It is im-

portant to emphasize that the presence of a parameter mis-

match in the coupled systems does not destabilize the MLS.

B. Identical oscillator: Hindmarsh-Rose model

Next, we check the coupling scheme for MLS in a slow-

fast system. For this, we choose the spiking-bursting

Hindmarsh-Rose neuron model

_y ¼ f ðyÞ; (9)

where y ¼ ðy1; y2; y3Þ 2 R3 and

f ðyÞ ¼
y2 � ay3

1 þ by2
1 � y3 þ I

c� dy2
1 � y2

rfsðy1 þ 1:6Þ � y3g

0
B@

1
CA;

where y1 is the fast membrane voltage and, y2 and y3 are

associated with fast and slow membrane currents, and I is

the bias current. For the numerical simulations, we take the

system parameters as a¼ 1.0, b¼ 3.0, c¼ 1.0, d¼ 5.0,

s¼ 5.0, r¼ 0.003, and I¼ 4.1. Now, we assume to have an

identical response system. As usual, the first step in the pro-

cess of designing the coupling is to derive the Jacobian of
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the given model system and then to construct the H-matrix

and to convert it into a Hurwitz by appropriate choice of its

pi parameters as discussed above and a wider choice of it is

available for this system too. Finally, we use Eq. (4) to

define the coupling for one given model system with a

choice of system parameters of a desired dynamics (chaotic

or periodic). For the Hindmarsh-Rose system, the Jacobian
(J) and the corresponding H-matrix are given by

J ¼ @f

@y
¼
�3ay2

1 þ 2by1 1 �1

�2dy1 �1 0

rs 0 �r

2
64

3
75 and

H ¼
p1 1 �1

p2 �1 0

rs 0 �r

2
64

3
75:

The condition for H to be a Hurwitz is derived as p1< r þ 1

for p2¼ 0 using the RH criterion,16 which obviously

provides a wider choice of pi values. We decide our

target to realize MLS in the response Hindmarsh-Rose

system

_x ¼ f ðxÞ þ Dðx; gsÞ; x ¼ ðx1; x2; x3Þ 2 R3; (10)

where the goal dynamics is set as

gs ¼
y1ðt� s1Þ
y2ðt� s2Þ
y3ðt� s3Þ

2
64

3
75 ¼

x1ðtÞ
x2ðtÞ
x3ðtÞ

2
64

3
75:

We make an additional approximation, s1¼ s3, for simplifi-

cation of the coupling when the slow response variable (x3)

will attain a lag identical to one of the fast response variables

(x1). We must mention that it does not affect the MLS sce-

nario if s16¼s3. However, we make the approximation for nu-

merical ease. Accordingly, the response system after

coupling is derived using Eq. (4) as given by

D ¼
y2ðt� s1Þ � y2ðt� s2Þ þ ½p1 þ 3ay2

1ðt� s1Þ � 2by1ðt� s1Þ�ðx1 � y1ðt� s1ÞÞ
dy2

1ðt� s1Þ � dy2
1ðt� s2Þ þ ½p2 þ 2dy1ðt� s1Þ�ðx1 � y1ðt� s1ÞÞ

0

0
B@

1
CA: (11)

FIG. 1. Multiple lag synchronization in

coupled R€ossler system in Eqs. (6) and

(7): (a) time series of x1(t)(red line) and

y1(t)(blue line) shows lag synchroniza-

tion, (b) using the similarity measure Syx

in Eq. (8) between (x1, y1), ss¼ 1.0,

(c) time series of x2(t) and y2(t), (d) simi-

larity measure between (x2, y2) ss¼ 2.0,

(e) time series of x3(t) and y3(t), and

(f) similarity measure between (x3, y3),

ss¼ 3.0. The system parameters are

p1¼ 5, p2¼�5, b¼ 0.15, c¼ 0.2,

d¼ 10, and Db¼ 0.05.
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The condition for stability of MLS now depends only on the

external parameter p1 (p2¼ 0). MLS emerges when the coupling

delays are targeted as non-identical. In the simulations, we con-

sider p1¼�15, p2¼ 0 and coupling delays s1 ¼ s3 ¼ 10,

s2 ¼ 5. This makes two different delays one each for the fast

variables. Figure 2(a) shows the time series of the driving signal

y1(t) (blue color) and the response signal x1(t) (red color) with a

lag time s1 ¼ 10. Figure 2(b) shows the time series of (y2, x2)

with a time lag s2 ¼ 5. To confirm LS, we calculate the similar-

ity measure between pairs of variables (y1, x1), (y2, x2) as shown

in Figs. 2(c) and 2(d). Figure 2(c) plots Sy1x1
from the pair of

time series (y1, x1) in Fig. 2(a), which has a global minimum

near zero at s1¼ ss0¼ 10.0 and confirm LS of s1¼ 10.0.

Similarly, Fig. 2(d) shows the similarity measure Sy2x2
between

the pair of state variable (x2, y2) in Fig. 2(b) and shows a global

minimum at zero for s2¼ ss0¼ 5.0.

The time series of the pair of slow variables (x3, y3) are not

shown here, however, they emerge into the same LS scenario

as of the first pair of variables (x1, y1). The coupling design is

thus able to induce two different LS configurations as targeted

in this slow-fast system. Numerically, of course, we can also

target a set of three delays for the two systems which is redun-

dant here. We are mainly interested to show the applicability of

the coupling design for more than one lag configuration in the

coupled system.

IV. EXPERIMENTAL OBSERVATION

Finally, we physically implement the MLS scheme in an

electronic circuit using a Sprott system,

_y ¼ f ðyÞ; (12)

where

y ¼ ðy1; y2; y3Þ 2 R3; f ðyÞ ¼
�ay2

y1 þ y3

y1 þ y2
2 � y3

0
B@

1
CA:

For reducing complexity in the circuit implementation,

we again consider two separate time delays in the cou-

pling instead of three by setting s2¼ s3. Our target

shows that multiple delays can really be induced in two

coupled systems. After coupling, the response system

becomes

_x ¼ f ðxÞ þ D; (13)

where D ¼
�ay2ðt� s1Þ þ ay2ðt� s2Þ

y1ðt� s2Þ � y1ðt� s1Þ
y1ðt� s2Þ � y1ðt� s1Þ þ ½p1 � 2y2ðt� s2Þ�ðx2 � y2ðt� s2ÞÞ

0
B@

1
CA; and

H ¼ ½0 �a 0;1 0 1;1 p1 � 1�T :

A physical realization of the uncoupled Sprott systems

(12) and (13) is shown in Fig. 3 with circuit diagrams. The

driver Sprott circuit (OS-1) is designed using three Op-amp

(U1–U3) as integrators with associated resistances, capaci-

tors and an inverting amplifier (U4); the multiplier U5 simu-

lates the quadratic nonlinearity in the driver. Similarly the

FIG. 2. Multi-delay synchronization

in Hindmarsh-Rose neural model:

Time series of (a) (y1, x1) for s1¼ 10

(b) (y2, x2) for s1¼ 5. Similarity mea-

sure between (y1, x1) to confirm LS in

(c), ss¼ 10.0 and between (y2, x2) in

(d) to confirm LS, ss¼ 5.0. Time series

(x3, y3) are not shown but have identi-

cal lag as the pair (x1, y1).
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response circuit (OS-2) is designed using three integrators

(U6–U8), one inverting amplifier (U9) and a multiplier U10.

The delay coupler in Fig. 4 is designed using three op-amp

(U11–U13), two multiplier (U14–U15) and associated resist-

ance shown. The delay line in the coupler is designed16 using

a ladder LC network preceded by an isolating amplifier and

followed by a non-inverting amplifier. This amplifier is used

to compensate the attenuation in the signal due to leakage re-

sistance in the inductors of the LC arrays. The lag time is

now increased algebraically by simply adding one after

another LC circuit in series as desired. The power supply for

all active devices is 69 V. The variables y1(t) and x1(t) of

Eqs. (12) and (13) are recorded as output voltage of U1 and

U6, respectively, using a 2-channel digital oscilloscope

(Tektronix TDS 2012B, 100 MHz, 1 GS/s) as shown in the

lower row (left) of Fig. 5. We find that the oscilloscope pic-

tures of the driver and the response variables are in MLS for

two arbitrary time lags or delays (s1¼ 150 ls,

s2¼ s3¼ 400 ls) as designed by adding one after another LC

circuit in the coupler. MLS between Eqs. (12) and (13) is

also investigated using numerical simulation. In simulation,

we have considered p1¼�1, s1¼ 1, and s2¼ 3. Note that

FIG. 4. Delay coupling circuit of the Sprott system. Each of the circuit for tau_i (i¼ 1, 2, 3) is a LC ladder network where inductor L and capacitor C are

appropriately chosen to design a desired delay s.

FIG. 3. Circuit of two Sprott systems: Driver (left) and response (right) systems. Incoming and out-going connecting nodes (A–G) appropriately connect the

delay couplers shown in Fig. 4.
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p1< 1 satisfies the RH condition. The numerical time series

of (y1, x1), (y2, x2), and (y3, x3) are shown in the upper row of

Fig. 5. Clearly, two different time delays appear in three

pairs of time series of the driver and the response system

since we induce only two delays in the coupling function. A

similar result is seen in the experimental results of three pairs

of time series shown in the lower panels (oscilloscope pic-

tures). The pairs of time series (y2, x2) and (y3, x3) are shown

in the middle and right panel in the lower row, respectively,

as measured output of the (U2, U7) and (U3–U8), respec-

tively. A closer look at the experimental time series (oscillo-

scope pictures) confirms their chaotic behavior, although

readers may confuse them as periodic. This confusion arises

due to shorter time series presented here.

V. CONCLUSION

We explored a design of delay coupling for targeting

multiple delays in two chaotic systems. We introduce differ-

ent delays in different pairs of state variables of a drive-

response system. The stability condition for this multiple lag

configuration is derived with the help of the Hurwitz matrix

stability criterion. Basically, we designed the delay coupling

for a driver oscillator where different delays are introduced

in the coupling function and retrieved the delays at a

response system. The parameter mismatch and the amount of

delay does not affect the stability condition. We supported

the theory of multiple delay with numerical simulations of

the mismatched R€ossler system and the slow-fast system

Hindmarsh-Rose neuron model. We physically implemented

the multiple delay configurations in electronic circuit of two

coupled Sprott systems. To our best search of literature, we

did not find any such example of multiple lag configurations.
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