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We study generalized variable projective synchronization between two unified time delayed

systems with constant and modulated time delays. A novel Krasovskii-Lyapunov functional is

constructed and a generalized sufficient condition for synchronization is derived analytically using

the Lyapunov stability theory and adaptive techniques. The proposed scheme is valid for a system

of n-numbers of first order delay differential equations. Finally, a new neural oscillator is

considered as a numerical example to show the effectiveness of the proposed scheme. VC 2013
American Institute of Physics. [http://dx.doi.org/10.1063/1.4791589]

The phenomenon of chaos synchronization has been

investigated in detail for the last two decades. Various

synchronization techniques have been discovered for a

set of coupled time delayed systems. Due to both theoreti-

cal interest and practical applications, several types of

synchronization have been found, such as complete syn-

chronization (CS),1 phase synchronization (PS),2 lag syn-

chronization (LS),3 multiplexing synchronization (MS),4

and generalized synchronization (GS).5 Among them,

there are few articles on projective and functional projec-

tive synchronization on time delayed systems. Here we

propose the most generalized case for variable projective

synchronization y5aðtÞxðt2rðtÞÞ between two time

delayed systems, where the factor aðtÞ is a time depend-

ent function. The Krasovskii-Lyapunov functional has

been constructed and sufficient condition for variable

projective synchronization derived. The scheme is also

valid for lag and anticipatory synchronization. To show

the effectiveness and feasibility of our scheme, numerical

simulations are presented with a new delayed neural

oscillator.

I. INTRODUCTION

Chaos synchronization is an interesting phenomenon,

which has wide applications in Science, Engineering, and

Communications.6–8 Till now, many kinds of synchroniza-

tion have been found in interacting chaotic systems, among

them projective synchronization9,10 has received much atten-

tion due to its faster communication11,12 and proportionality

between the dynamical systems. In case of projective syn-

chronization, the drive and the response system can be

synchronized up to a scaling factor. The scaling factor is a

constant transformation between the driving and the response

variables. In application to secure communications, this propor-

tional feature can be used to extend binary digital to M-nary dig-

ital communication for getting communication much faster.

Recently, function aðtÞ projective synchronization has been

investigated,13 where the driving and the response systems

could be synchronized up to a scaling function aðtÞ leading to

the synchronization manifold14 y ¼ aðtÞx. In case of variable

projective synchronization, due to the unpredictability of the

scaling function, it can additionally enhance the level of secu-

rity during communication. The projective synchronization

phenomenon is also investigated in time delayed systems with

constant and variable scaling factors.15–17 In this article, we

propose the most general variable projective synchronization

criterion between two time delayed systems where the syn-

chronization manifold is of the form y ¼ aðtÞxðt� rðtÞÞ.
The coupling function can be derived by the active non-

linear control technique for the response dynamics. It is im-

portant to mention here that no results exist in the literature

mentioning the synchronization system of n delayed differ-

ential equations.

The usual notations are followed in this article. The

superscript T denotes the transposition and the notation X �
Y (respectively, X > Y), where X and Y are symmetric matri-

ces, means that X–Y is positive semi-definite (respectively,

positive definite). <n and <n�n denote n-dimensional Euclid-

ean space and the set of all n� n real matrices, respectively.

I is the identity matrix. The notation ? always denotes the

symmetric block in one symmetric matrix. Matrices, if not

explicitly stated, are assumed to have compatible dimen-

sions. Let sM > 0 and Cð½�sM; 0�;<nÞ denotes the family of

continuous functions u from ½�sM; 0� to <n with norm

jjujj ¼ sup�sM�h�0jjujj: L2½0; 1Þ stands for the space of

square integrable functions on ½0; 1Þ.
The article is organized as follows: In Sec. II, we con-

struct the generalized variable projective synchronization

phenomenon for a coupled time delayed systems. A suffi-

cient condition for synchronization is derived analytically
a)Author to whom correspondence should be addressed. Electronic mail:

santoban@gmail.com.
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using a novel Krasovskii-Lyapunov (K-L) functional and

Lyapunov stability theory in Sec. III. The nonlinear control-

ler for synchronization is obtained by an adaptive control

technique. Section IV is the numerical simulation with a

new delayed oscillator for constant and modulated time

delay. Conclusion and further investigations are mentioned

in Sec. V.

II. PROBLEM FORMULATION

We consider the following coupled chaotic systems with

time varying delay:

_xðtÞ ¼ A1xþ A2xsðtÞ þ f ðx; xsðtÞÞ; (1)

_yðtÞ ¼ A1yþ A2ysðtÞ þ f ðy; ysðtÞÞ þ uðx; yÞ; (2)

where xðtÞ; yðtÞ 2 Rn;A1 2 Rn�n; A2 2 Rn�n, f is a nonlin-

ear vector field, u(x, y) is the active nonlinear control term

defined appropriately, and xsðtÞ ¼ xðt� sðtÞÞ. Here sðtÞ is a

time varying delay such that 0 � sðtÞ � sm <1. The main

objective of this study is to achieve generalized variable pro-

jective synchronization (GVPS) between Eqs. (1) and (2).

Let the error between two dynamics be eðtÞ ¼ yðtÞ
�aðtÞxrðtÞ, where rðtÞ is the time varying delay during the in-

formation lag or anticipation such that 0 � rðtÞ � rm

<1 _rðtÞ ¼ dð< 1Þ. If eðtÞ ! 0, that is y! aðtÞxrðtÞ as

t!1, GVPS between the coupled system is achieved with

respect to the nonlinear control u(x, y) to be designed. Thus,

the synchronization manifold of the systems (1) and (2)

become y ¼ aðtÞxrðtÞ.
To achieve the main focus of this paper—GVPS, a new

nonlinear active control is defined as

uðx; yÞ ¼ KðaðtÞxrðtÞ � yÞ þ dA1yþ dA2ysðtÞ

�f ðy; ysðtÞÞ þ ð1� dÞaðtÞf ðxrðtÞ; xrðtÞþsðtÞÞ

þ _aðtÞxrðtÞ; (3)

where K 2 Rn�n is the coupling strength to be determined

later. Thus, the error dynamic can be obtained as

_e ¼ _y � _aðtÞxrðtÞ � aðtÞð1� dÞ _xrðtÞ;

¼ A1yþ A2ysðtÞ þ f ðy; ysðtÞÞ � ð1� dÞaðtÞA1xrðtÞ

� ð1� dÞaðtÞA2xrðtÞþsðtÞ � ð1� dÞaðtÞ

� f ðxrðtÞ; xrðtÞþsðtÞÞ � _aðtÞxrðtÞ þ KðaðtÞxrðtÞ � yÞ

� dA1yþ _aðtÞxrðtÞ � dA2ysðtÞ � f ðy; ysðtÞÞ

þ ð1� dÞaðtÞf ðxrðtÞ; xrðtÞþsðtÞÞ

¼ ð1� dÞA1eþ ð1� dÞA2esðtÞ � Ke: (4)

The initial condition corresponding to the error dynamical

system (4) is given as eðhÞ ¼ uðhÞ; h 2 ½�sM; 0�;
u 2 Cð½�sM; 0�; RnÞ, where Cð½�sM; 0�; RnÞ denotes the

Banach space of the continuous vector valued functions

mapping the interval ½�sM; 0� into R. Here

sM ¼ maxfsm; rmg.

If the asymptotic stability of the error dynamics (4) is

assured at equilibrium then the asymptotic synchronization

exists between both Eqs. (1) and (2) under the proposed

control. In the above, the GVPS problem has been formu-

lated using a nonlinear control. The difference between

existing generalized projective synchronization15,16,18,19 and

the above proposed problem is the use of nonlinear control

and the variable projective scaling factor aðtÞ. In addition,

the problem stated here can be used for n-systems of first

order delayed differential equations, which can contain non-

differentiable time varying delays unlike in Refs. 15 and 16.

We have used an active nonlinear control technique for the

slave dynamics in order to achieve the GVPS, which is sim-

ilar to the one proposed in Ref. 15. The existing conditions

do not depend on the derivative of rðtÞ whereas the error

dynamics (4) itself contains d so that we can have a bound

for the rate of lag or anticipation by solving the condition. It

is important to mention here that if the condition does not

have proper parameter d, it means that for any rðtÞ synchro-

nization is achieved, which is not possible in the physical

sense, and no results exist in the literature, which are de-

pendent on the derivative bound of rðtÞ. We use the follow-

ing lemma on deriving sufficient lower matrix inequality

(LMI) conditions:

Lemma 1: (Ref. 20). For any constant matrix

X 2 Rn�n;X ¼ XT > 0, there exists a positive scalar sM such

that 0 � sðtÞ � sM, and a vector-valued function _x :
½�sM; 0� ! Rn, such that the integral �sM

Ð t
t�sM

_xT

ðsÞX _xðsÞds is well defined, and fulfills the following

inequality:

�sM

ðt

t�sM

_xTðsÞX _xðsÞds

�
xðtÞ

xðt� sMÞ

� �T �X X

? �X

� �
xðtÞ

xðt� sMÞ

� �
: (5)

III. ANALYTICAL CONDITIONS

In this section, we present various conditions for projec-

tive synchronization based on the stability theory of time

varying delayed systems. For this objective, we consider the

following Lyapunov functional:

Vðt; et; _etÞ ¼ eTðtÞPeðtÞ þ
ð0

�sM

eTðtþ nÞ S1 eðtþ nÞdn

þ sM

ð0

�sM

ðt

tþh
_eTðnÞ S2 _eðnÞdndh

þ
ðt

t�rðtÞ
eTðnÞ S3 eðnÞdn; (6)

where et ¼ eðtþ sÞ; 8s 2 ½�sM; 0�, and P, S1, S2, S3 are pos-

itive definite matrices of appropriate dimensions. It is clear

that Vðt; et; _etÞ is a quadratic functional depending on deriva-

tives. The asymptotic stability of the closed-loop error sys-

tem described by Eq. (4) is assured if there exist

ei > 0 ði ¼ 1; 2; 3Þ such that
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e1jjeðtÞjj2 � Vðt; et; _etÞ � e2jjetjj2M;

_Vðt; et; _etÞ � �e3jjeðtÞjj2:

By using the Lyapunov functional given in Eq. (6), condi-

tions for GVPS are obtained and stated as the following

preposition.

A. Generalized variable projective synchronization
condition

Preposition 1: For the scalar sM > 0; d > 0, the error dy-

namical system (4) is globally asymptotically stable with the

prescribed active nonlinear control (3), if there exist sym-

metric positive definite matrices P, S1, S2, S3, and any matrix

M with compatible dimensions such that the following in-

equality holds:

N ¼

-11 -12 0 0 -15

? �2S2 S2 0 -25

? ? �S1 � S2 0 0

? ? ? -44 0

? ? ? ? -55

2
66664

3
77775 < 0; (7)

where

-11 ¼ S1 � S2 þ S3 þ 2ð1� dÞMA1 � 2L

-12 ¼ S2 þ ð1� dÞMA2;

-15 ¼ �MT þ ð1� dÞðMA1ÞT � LT þ P;

-25 ¼ ð1� dÞðMA2ÞT ;

-44 ¼ �ð1� dÞS3;

-55 ¼ s2
MS2 � 2M;

and the control gain is given by K ¼ M�1L.

Proof: see Appendix. Preposition 1 presents a condition

for asymptotic stability of the closed-loop error dynamics

(4), which eventually lead to GVPS of Eqs. (1) and (2). It

must be noted that the condition is dependent on the deriva-

tive of the time varying delay rðtÞ in the synchronization

manifold but does not depend on the derivative of the time

varying delay sðtÞ. Thus, the condition provides an upper

bound of sðtÞ, sM, and the time varying delay can be any

bounded continuous function not necessary to have a deriva-

tive. Thus, modulated delays and non-differentiable delays

can be considered in the synchronization problem and still

the generalized condition is feasible to achieve synchroniza-

tion. Now, we assume that the derivative of the time varying

delay exists, that is, _sðtÞ ¼ .. Then, the following less con-

servative condition is proposed.

B. GVPS condition for differentiable time varying
delays

Preposition 2: For the scalar sM > 0; d > 0, and . > 0,

the system described by Eq. (4) is globally asymptotically

stable with the prescribed active nonlinear control (3), if

there exist symmetric positive definite matrices P, S1, S2, S3,

S4, and any matrix M with compatible dimensions such that

the following inequality holds:

N ¼

-11 -12 0 0 -15

? -22 S2 0 -25

? ? �S1 � S2 0 0

? ? ? -24 0

? ? ? ? -55

2
66664

3
77775 < 0; (8)

where

-11 ¼ S1 � S2 þ S3 þ S4 þ 2ð1� dÞMA1 � 2L

-12 ¼ S2 þ ð1� dÞMA2;

-15 ¼ �MT þ ð1� dÞðMA1ÞT � LT þ P;

-22 ¼ �S2 � ð1� .ÞS4;

-24 ¼ �ð1� dÞS3;

-25 ¼ ð1� dÞðMA2ÞT ;

-55 ¼ s2
MS2 � 2M;

and the control gain is given by K ¼ G�1L.

Proof: see Appendix. In the above two prepositions, we

have considered variable projective synchronization, i.e.,

projective scaling factor as aðtÞ along with the non-

differentiable time varying delay and rate of lag/anticipation

variations. The above conditions generalize the projective

synchronization proposed in Refs. 15, 18–21. In Refs. 15

and 16, authors derived a generalized projective synchroni-

zation criterion for a constant scaling factor a. In fact, the

result obtained in Refs. 15 and 16 is not suitable for n—

system of delay differential equations (DDEs), and there

is the requirement to obtain a new condition. For this

objective, we consider generalized projective synchroniza-

tion (GPS) between Eqs. (1) and (2) without a variable scal-

ing factor and the error between both dynamics is

eðtÞ ¼ yðtÞ � axrðtÞ, where a is constant. Thus, the synchroni-

zation manifold of systems (1) and (2) is y ¼ axrðtÞ. The cor-

responding nonlinear active control can be defined as

uðx; yÞ ¼ KðaxrðtÞ � yÞ þ dA1yþ dA2ysðtÞ

�f ðy; ysðtÞÞ þ að1� dÞf ðxrðtÞ; xrðtÞþsðtÞÞ
;

where K 2 Rn�n is the coupling strength. Thus, the error dy-

namics can further be reduced to Eq. (4), and the correspond-

ing LMI conditions for GPS are given in Prepositions 1 and 2.

It can be noted that the derived result is the most generalized

one.15,16 We now proceed to obtain anticipate-complete-lag

synchronization with constant r. For r ¼ 0, projective com-

plete synchronization is achieved; for r > 0, projective lag

synchronization can be achieved and for r < 0, anticipation

projective synchronization is achieved. Thus the synchroniza-

tion manifold is y ¼ axr. We define a nonlinear control to

obtain the error dynamical system (4) and the corresponding

criteria are given below.

Preposition 3: For the scalar sM > 0, the error dynami-

cal system is globally asymptotically stable, if there exist

symmetric positive definite matrices P, S1, S2, S3, S4, and

any matrix M with compatible dimensions such that the fol-

lowing inequality holds:

013118-3 Banerjee, Theesar, and Kurths Chaos 23, 013118 (2013)

Downloaded 18 Apr 2013 to 193.174.18.1. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions



N ¼

-11 -12 0 0 -15

? �S2 S2 0 ðMA2ÞT
? ? �S1 � S2 0 0

? ? ? �S3 0

? ? ? ? -55

2
66664

3
77775 < 0; (9)

where

-11 ¼ S1 � S2 þ S3 þ 2MA1 � 2L;

-12 ¼ S2 þMA2;

-15 ¼ �M þ ðMA1ÞT � LT ;

-55 ¼ s2
MS2 � 2M; and the control gain is given by

K ¼ G�1L.

Proof: see Appendix.

IV. NUMERICAL EXAMPLES

A. Delayed neural oscillator

In recent years, synchronization of neural oscillators,

especially chaotic neural networks have discussed by many

authors.18,20,21 Potential implementation of neural network

for field programmable gate array (FPGA) has been demon-

strated in Ref. 22. Bursting synchronization in neuronal net-

work has been studied in Ref. 23. For the current study, to test

the GVPS conditions found, the following time varying

delayed neural oscillator is introduced. The delayed neural

network can be realized in FPGA by the method proposed in

Ref. 22. The dynamics of neural oscillator is given as follows:

_xðtÞ ¼ A1xðtÞ þ A2xsðtÞ þ f ðx; xsðtÞÞ; (10)

where A1 ¼ diagf�1; �1g, A2 ¼
0:1 0

�0:2 �1

� �
,

f ðx; xsðtÞÞ

¼
1:8uðx1Þ � 0:1uðx2Þ � 1:6uðx1

sðtÞÞ � 0:6uðx2
sðtÞÞ

�2:5uðx1Þ þ 0:3uððx2Þ þ 0:1uðx1
sðtÞÞ � 2:4uðx2

sðtÞÞ

" #
;

where xi are the nodes of neural oscillator for i¼ 1,2 and

uð�Þ ¼ tanhð�Þ. The richness of its chaotic formulation has

been shown as a gallery of chaotic attractors in Fig. 1 by

considering various time varying delays for the neural oscil-

lator (10). For GVPS, we consider the identical neural oscil-

lator as a slave dynamics with the same parameter defined

for (10)

_yðtÞ ¼ A1yðtÞ þ A2ysðtÞ þ f ðy; ysðtÞÞ þ uðx; yÞ: (11)

By making use of the control (3), the error dynamics (4) is

formed. Now, we solve the matrix inequality (7) presented

in the Preposition 1 using the MATLAB LMI toolbox to show

the asymptotic stability of the error dynamical system. Tak-

ing d ¼ 0:5, we get the following solutions: P

¼ 108 3:1850 �0:0000

�0:0000 0:0000

� �
, M ¼ 108 4:7007 0:0000

0:0000 0:0000

� �
,

and the control gain K ¼ 104 0:0001 0:0000

�2:4187 0:0001

� �
. The

upper bound of the time varying delay sðtÞ is sM ¼ 2:7872.

Also we have presented the upper bounds sM corresponding

to each d, which is depicted in Fig. 2(a). It can be seen

that the upper bound increases as the rate of rðtÞ increases

to unity. Nevertheless, _rðtÞ cannot be unity and thus d < 1.

FIG. 1. Gallery of chaotic attractors formed by the neural oscillator (10) by the Phase-space portrait with x1ðtÞ vs x2ðtÞ. The chaotic attractors are formed due

to different types of delays especially time varying delays. (a) sðtÞ ¼ 1; (b) sðtÞ ¼ 1:2; (c) sðtÞ ¼ 1:5jsin tj; (d) sðtÞ ¼ 1:6; (e) sðtÞ ¼ 1:9jsin tj; (f) sðtÞ ¼ 2 (g);

sðtÞ ¼ 2:1jsin tj; (h) sðtÞ ¼ 2:2jsin tj; (i) sðtÞ ¼ 2:3jsin tj; (j). sðtÞ ¼ 2:4jsin tj; (k) sðtÞ ¼ 2:05jsin tj; (l). sðtÞ ¼ 2:5jsin tj:
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Fig. 2(b) shows the error trajectories of closed-loop error

dynamics to prove the existence of GVPS between both

neural oscillators and the error is given as a function of d
ranging from 0 to 10. Here the variable projective scaling

factor is a ¼ t2, and the time varying delay sðtÞ ¼ 1

þ 0:1jsin tj and rðtÞ ¼ t=2. It is observed that the synchro-

nization manifold y ¼ t2x is achieved and can be seen from

Fig. 2(e) in which the norm of error state trajectories is

presented. We see that the obtained conditions effectively

are applied to achieve GVPS between identical neural

oscillators.

V. CONCLUSION

We have introduced a generalized projective synchroni-

zation criterion for a coupled time delayed systems of n first

order equations, which can contain modulated non-

differentiable time delays. A synchronization condition is

derived by the Krasovskii-Lyapunov theory and the nonlin-

ear controller is designed by an observer like control tech-

nique. The scheme is also valid for projective lag and

projective anticipatory synchronization. We have proposed a

new delayed neural oscillator with rich chaotic dynamics

and the proposed scheme is verified numerically with the

neural oscillator. The scheme of GVPS can be used in signal

and digital communication with a more generalized synchro-

nization manifold and which has faster communication than

projective synchronization.

APPENDIX: PROOF OF PREPOSITION 1

Consider the Krasovskii-Lyapunov functional given in

Eq. (6). Taking the time derivative of Eq. (6) along the tra-

jectories of Eq. (4) yields

_Vðt; et; _etÞ ¼ 2eTðtÞP _eðtÞ þ eTðtÞS1eðtÞ þ s2
M _eTðtÞS2 _eðtÞ

� eTðt� sMÞS1eðt� sMÞ þ eTðtÞS3eðtÞ

� sM

ðt

t�sM

_eTðhÞ S2 _eðhÞdh

�ð1� dÞeTðt� rðtÞÞS3eðt� rðtÞÞ: (A1)

In view of Lemma 1, the integral term in Eq. (A1) can be

written as

�sM

ðt

t�sM

_eTðhÞS2 _eðhÞdh � ~f
TðtÞX~fðtÞ; (A2)

where ~fðtÞ ¼
"

e
esðtÞ
esM

#
, and X ¼

�S2 S2 0

? �2S2 S2

? ? �S2

2
4

3
5. Con-

sider the following equation for appropriately dimensioned

matrix M:

0 ¼ ½2eTM þ 2 _eTM�
� ½� _e þ ð1� dÞA1eþ ð1� dÞA2esðtÞ � Ke�: (A3)

Thus, the Eq. (A1) can be written as

_VðetÞ � 2eTðtÞP _eðtÞ þ eTðtÞS1eðtÞ � eTðt� sMÞS1eðt� sMÞ

þ s2
M _eTðtÞS2 _eðtÞ þ ~f

TðtÞX~fðtÞ þ eTðtÞS3eðtÞ

� ð1� dÞeTðt� rðtÞÞS3eðt� rðtÞÞ � 2eTM _e

þ 2eTMð1� dÞA1eþ 2ð1� dÞeTMA2esðtÞ

� 2eTMKe� 2 _eTM _e þ 2ð1� dÞ _eTMA1e

þ 2ð1� dÞ _eTMA2esðtÞ � 2 _eTMKe:

Letting L¼MK for j¼ 1,2,3, and fðtÞ ¼ ½~fðtÞ erðtÞ _eðtÞ �,
we have

FIG. 2. Numerical simulations of GVPS for the neural oscillator (10). (a) represents the maximum upper bound in y scale for different values of d in x scale. It

is seen that an increase in the rate of rðtÞ increases the upper bound sM . (b) represents the norm of error trajectories taken as a function of d after control

applied to achieve the GVPS. (c) and (d) represent the absolute of the error states and norm of error states before applying the nonlinear control. The error tra-

jectories approaches zero as the time progresses, which proves the existence of GVPS which can be seen from (e).
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_Vðt; et; _etÞ � fTðtÞN fðtÞ < 0; (A4)

for all fðtÞ 6¼ 0 with N < 0. Thus, there exists a positive con-

stant e > 0 such that _Vðt; et; _etÞ � �ejjeðtÞjj2: This completes

the proof.

Proof of Preposition 2: Consider the Lyapunov

functional

Vðt; et; _etÞ ¼ eTðtÞPeðtÞ þ
ð0

�sM

eTðtþ nÞ S1 eðtþ nÞdn

þ sM

ð0

�sM

ðt

tþh
_eTðnÞ S2 _eðnÞdndh

þ
ðt

t�rðtÞ
eTðnÞ S3 eðnÞdn (A5)

Following the similar procedure presented in the proof

of Preposition 1, the LMI condition (8) can be obtained.

Proof of Preposition 3: Consider the Lyapunov

functional

Vðt;et; _etÞ ¼ eTðtÞPeðtÞþ
ð0

�sM

eTðtþ nÞS1 eðtþ nÞdn

þsM

ð0

�sM

ðt

tþh
_eTðnÞS2 _eðnÞdndh; (A6)

þ
ðt

t�r
eTðnÞ S3 eðnÞdn: (A7)

Following the similar procedure presented in the proof

of Preposition 1, the LMI condition (8) can be obtained.
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