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Hopf bifurcation and multistability in a system of phase oscillators
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We study the phase reduction of two coupled van der Pol oscillators with asymmetric repulsive coupling under
an external harmonic force. We show that the system of two phase oscillators undergoes a Hopf bifurcation and
possesses multistability on a 2π -periodic phase plane. We describe the bifurcation mechanisms of formation of
multistability in the phase-reduced system and show that the Andronov-Hopf bifurcation in the phase-reduced
system is not an artifact of the reduction approach but, indeed, has its prototype in the nonreduced system. The
bifurcational mechanisms presented in the paper enable one to describe synchronization effects in a wide class
of interacting systems with repulsive coupling e.g., genetic oscillators.
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I. INTRODUCTION

Synchronization phenomena are one of the highlights of
nonlinear dynamics [1,2]. There exist many examples in
the real world: mechanics [3], electronics [4], biology [5],
neuroscience [6,7], chemistry [8,9], Earth sciences [10–12],
economics [13], sociology [14], etc. Synchronization can be
observed for different types of oscillations and studied in
various models. Coupled phase-reduced oscillators are studied
intensively both theoretically [1,15–19] and experimentally
[20,21]. For chaotic systems, various types of synchronization
have been reported [22–25]. Synchronization in complex
networks has also been intensively studied [26–33].

Despite its importance, e.g., its applications to brain science
[34], there have been only a very few studies on quasiperiodic
oscillators. Recently, the problem of the bifurcation scenario
for synchronization of quasiperiodic oscillators has been
considered [35–38]. A model system of two coupled van
der Pol oscillators under external harmonic force has been
treated using the phase reduction approach [37]. It has been
shown that the synchronization route in the initial system is
based on a tangency bifurcation of closed invariant curves.
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This bifurcation corresponds to a saddle-node bifurcation of
two-dimensional invariant ergodic tori in the phase space of the
nonreduced system [38]. Here we consider the same system
as in Ref. [37], which is a two-dimensional system of phase
oscillators with a simple coupling term. This model can be
obtained by the phase reduction of two van der Pol oscillators
under an external harmonic forcing. In contrast to [37], we
introduce an asymmetrical repulsive coupling into the system
of interacting oscillators in the present paper. We show that the
use of asymmetrical repulsive coupling leads to the emergence
of an Andronov-Hopf bifurcation and the formation of multi-
stability in the system of phase equations. The Andronov-Hopf
bifurcation in systems of phase oscillators has been reported
before [18,19]. However, this bifurcation was observed in a
system of Kuramoto phase oscillators characterized by phase
space dimension >2 and a complex coupling. Moreover, it
has not been shown whether there exists a prototype of this
bifurcation in a nonreduced system or it is typical only for
abstract phase models. Here we show that the Andronov-Hopf
bifurcation in the phase oscillator system indeed corresponds
to a bifurcation in the initial nonreduced system of
coupled van der Pol oscillators under external harmonic
forcing.

Also, we would like to note that the asymmetric repul-
sive coupling considered here has not been studied much
[39,40] despite its importance in systems, e.g., synthetic
genetic circuits [41–43]. Our contribution also sheds light on
understanding phenomena observed in repulsively coupled
interacting systems, e.g., the coexistence of different synchro-
nization regimes.
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The paper has the following structure. In Sec. II we describe
the system under study and derive analytically the conditions
for an Andronov-Hopf bifurcation. In Sec. III we carry out a
bifurcational analysis of the system and show the evolution of
the phase-space structure when control parameters are varied.
In Sec. IV we draw parallels between the Andronov-Hopf
bifurcation in the phase-reduced system and its prototype in
the nonreduced system of van der Pol oscillators. In Sec. V we
discuss the obtained results.

II. SYSTEM UNDER STUDY

We choose a system of two asymmetrically coupled van der
Pol oscillators under external harmonic force as a prototype:

ẍ1 − ε
(
1 − x2

1

)
ẋ1 + ω2

1x1 = γ1 (ẋ2 − ẋ1) + C0 cos(ω0t),
(1)

ẍ2 − ε
(
1 − x2

2

)
ẋ2 + ω2

2x2 = γ2 (ẋ1 − ẋ2) .

Here x1,2 are the dynamical variables, ε is the nonlinearity
parameter, ω1,2 are the natural frequencies of the partial
oscillators, γ1,2 are the coupling coefficients, and C0 and ω0

are the amplitude and the frequency of the external force,
respectively. Using the standard procedure of quasiharmonic
approximation [2],

x1 = a1(t) cos (ω0t + ϕ1(t)), x2 = a2(t) cos (ω0t + ϕ2(t)),

one can easily obtain a phase-reduced model for (1):

ϕ̇1 = �1 + g1 sin(ϕ2 − ϕ1) − C

1 − �1
cos ϕ1,

(2)
ϕ̇2 = �1 + δ − g2 sin(ϕ2 − ϕ1).

Here ϕ1,2 denote the phase difference between the external
harmonic force of the first and second van der Pol oscillators
in (1), respectively; g1,2 = γ1,2/2 are the coupling coefficients;
and �1,2 = (ω2

1,2 − ω2
0)/(2ω0), δ = �2 − �1, C = C0/(2a1).

In the framework of the phase reduction we assume a1,2 ≡
const. The model system, (2), has four equilibrium states:

ϕ
(1)
1 = arccos

[
1 − �1

C

(
�1 + g1

g2
(�1 + δ)

)]
,

(3a)

ϕ
(1)
2 = ϕ

(1)
1 + arcsin

(
�1 + δ

g2

)
;

ϕ
(2)
1 = arccos

[
1 − �1

C

(
�1 + g1

g2
(�1 + δ)

)]
,

(3b)

ϕ
(2)
2 = ϕ

(2)
1 − arcsin

(
�1 + δ

g2

)
+ π ;

ϕ
(3)
1 = − arccos

[
1 − �1

C

(
�1 + g1

g2
(�1 + δ)

)]
,

(3c)

ϕ
(3)
2 = ϕ

(3)
1 + arcsin

(
�1 + δ

g2

)
;

ϕ
(4)
1 = − arccos

[
1 − �1

C

(
�1 + g1

g2
(�1 + δ)

)]
,

(3d)

ϕ
(4)
2 = ϕ

(4)
1 − arcsin

(
�1 + δ

g2

)
+ π.

Here superscripts denote the corresponding fixed points. These
equilibrium states exist in the region where the following

conditions are satisfied:∣∣∣∣1 − �1

C

(
�1 + g1

g2
(�1 + δ)

)∣∣∣∣ � 1,

∣∣∣∣�1 + δ

g2

∣∣∣∣ � 1. (4)

To analyze the stability of the equilibria, we derive the
corresponding eigenvalues of the Jacobian matrix for (2):

λ
(i)
j = 1

2

{
−

(
(g1 + g2) cos

(
ϕ

(i)
2 − ϕ

(i)
1

) − C

1 − �1
sin ϕ

(i)
1

)

− (−1)j
[(

(g1+g2) cos
(
ϕ

(i)
2 −ϕ

(i)
1

)− C

1−�1
sin ϕ

(i)
1

)2

+ 4g2
C
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cos

(
ϕ

(i)
2 − ϕ

(i)
1

)
sin ϕ

(i)
1

] 1
2
}
,

i = 1,2,3,4, j = 1,2. (5)

The obtained formula implies complex values of λ when
the expression in the square brackets in (5) is negative. In this
case the corresponding equilibrium points are foci. It should
be noted that the formula for eigenvalues in Ref. [37] is the
same, but only for g1 = g2 > 0. Therefore the steady states
of the model system considered in [37] can have only real
eigenvalues and can, therefore, be nodes or saddles only.

Complex eigenvalues, (5) provide, the possibility of an
Andronov-Hopf bifurcation when the real part

(g1 + g2) cos
(
ϕ

(i)
2 − ϕ

(i)
1

) − C

1 − �1
sin ϕ

(i)
1

of an eigenvalue changes its sign, while the imaginary part
remains nonzero. Keeping in mind these requirements, one
can derive necessary conditions for the appearance of an
Andronov-Hopf bifurcation in (2):∣∣∣∣1 − �1

C

(
�1 + g1

g2
(�1 + δ)

)∣∣∣∣ � 1,

∣∣∣∣�1 + δ

g2

∣∣∣∣ � 1, (6)

g2(g1 + g2) < 0.

Here, the first and second lines provide the existence of
equilibrium points, while the third line provides the nonzero
imaginary part of the eigenvalues, (5).

The known scenario of synchronization of quasiperiodic
oscillations in the phase approach originally described in
Ref. [37] does not include a Hopf bifurcation because the
eigenvalues of the steady states can never be complex in
that case. Indeed, usually the Hopf bifurcation arises in the
synchronization scenario, when a model system is treated
with the amplitude-phase approach and it corresponds to the
“suppression” scenario of synchronization. Then the Hopf
bifurcation corresponds to the Neimark-Sacker bifurcation
in the nonreduced system, which is characterized by the
emergence of a torus in the vicinity of a limit cycle. However,
in our case we are restricted by the phase approach and the
Hopf bifurcation leads to a regime where the phase variables
do not increase constantly but oscillate in certain intervals,
while the amplitude variables are treated as constant.
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FIG. 1. Phase-space structure of system (2) for �1 = −0.1, C =
0.25, δ = 0.1, g1 = 0.15, g2 = −0.0616: 1 and 2 are saddle
equilibrium states, 3 is an unstable focus, and 4 is a stable focus.

III. BIFURCATION ANALYSIS

Now we analyze the phase-space structure evolution for
the model system, (2), with the control parameters satisfying
conditions, (6). We start from the following values of the
control parameters: �1 = −0.1, C = 0.25, δ = 0.1, g1 =
0.15, g2 = −0.0616. The phase space of the considered
system has a structure presented in Fig. 1 (to obtain the
phase portraits we have developed our own code in C++,

(a) (b)
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FIG. 2. Phase-space structure evolution for system (2) with
C = 0.25, δ = 0.1, g1 = 0.15, g2 = −0.0616. (a) �1 = −0.04; foci
become nodes. (b) �1 = −0.0383, fixed points undergo pairwise
saddle-node bifurcations, and two closed invariant curves (stable, Cs ,
and unstable, Cu) appear as the result. (c) �1 = 0.438; closed in-
variant curves undergo tangency bifurcation, and the phase trajectory
densely covers the 2π -periodic phase plane.

programming language using the fourth-order Runge-Kutta
method to integrate the differential equations). As one can see
in the figure, the system of phase oscillators, (2), has four fixed
points. The situation is similar to the case considered in [37],
however, here we have two foci (denoted 3 and 4 in Fig. 1)
instead of two nodes.

Now let us vary the parameter �1. The corresponding
phase-space structure evolution is presented in Fig. 2. With
an increment in �1, pairs of the fixed points approach each
other and the imaginary parts of their eigenvalues approach
0. At �1 = −0.0431 the eigenvalues become real and the
foci become nodes [Fig. 2(a)]. A further increase in �1 leads
to pairwise saddle-node bifurcations of the fixed points at
�1 = −0.0383 [Fig. 2(b)]. As a result of the saddle-node
bifurcation, two invariant closed curves appear in the phase
space: a stable [denoted Cs in Fig. 2(b)] and an unstable
[denoted Cu in Fig. 2(b)] curve. These two curves approach
each other as �1 increases, and at �1 = 0.383 a tangency
bifurcation of Cu and Cs takes place. As a result, the phase
trajectory covers the phase plane densely [Fig. 2(c)]. If we
decrease �1 starting from �1 = −0.1, the scenario shown in
Fig. 3 is observed. It is clearly shown that the bifurcation
scenario is similar to the one presented in Fig. 2.

A one-parametric bifurcation diagram for the observed case
is constructed and presented in Fig. 4. A phase-parametric
diagram for region B is presented in Fig. 5 (we have used
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FIG. 3. Phase-space structure evolution for system (2) with C =
0.25, δ = 0.1, g1 = 0.15, g2 = −0.0616. (a) �1 = −0.155; foci
become nodes. (b) �1 = −0.162; fixed points undergo pairwise
saddle-node bifurcations, and two closed invariant curves (stable, Cs ,
and unstable, Cu) appear as the result. (c) �1 = −1.5; closed invariant
curves undergo tangency bifurcation, and the phase trajectory densely
covers the 2π -periodic phase plane.
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FIG. 4. One-parametric bifurcation diagram for system (2) with
C = 0.25, δ = 0.1, g1 = 0.15, g2 = −0.0616. Region B corresponds
to the structure presented in Fig. 1: there are four equilibrium states:–
two foci and two saddles. Region C corresponds to the situation
presented in Figs. 2(a) and 3(a). Region D corresponds to the structure
observed in Figs. 2(c) and 3(c).

the XPPAUT package [44] to calculate the phase-parametric
diagrams). The observed bifurcations are similar to the case
considered in [37]. However, there is one important difference:
we have obtained two foci in system (2).

Now we decrease the value of the parameter C and set
the following values of control parameters: �1 = −0.1, C =
0.15, δ = 0.1, g1 = 0.15, g2 = −0.0616. For this case the
phase-space structure is presented in Fig. 6. The situation is
very different from the one shown in Fig. 1. Besides the four
equilibrium points, there are two invariant closed curves, Cs

and Cu, of the type shown in Figs. 2(b) and 3(b) (we denote
them as invariant closed curves of type I) and two closed
curves, C∗

s and C∗
u , of a new type (which we denote type II).

Unlike the invariant closed curves observed in [37] (which are
all of type I in our classification), these curves do not cross the
phase plane in any direction and the coordinates of the phase
point on the curve oscillate. The dynamics on such a closed
curve resembles the dynamics of a limit cycle.

The observed type of phase-space structure implies a
multistability phenomenon of periodic solutions. Indeed, three
stable regimes coexist for the given set of control parameters.
There is a stable focus 4 separated from the stable type I
invariant closed curve Cs by the type II unstable invariant
closed curve C∗

u and a type II stable invariant closed curve

0

1

2

3

4

5

6

-0.2 -0.15 -0.1 -0.05 0

ϕ
2

Δ1

1

2

3

4

FIG. 5. (Color online) Phase-parametric diagram for system (2)
with C = 0.25, δ = 0.1, g1 = 0.15, g2 = −0.0616. The solid black
curve denotes a stable equilibrium; dashed curves denote saddles; the
solid gray (red) curve denotes the repeller. 1 and 2 denote saddle-node
bifurcations of equilibria 2 and 4 [see Figs. 2(a) and 3(a)]; 3 and 4
denote saddle-repeller bifurcations of equilibria 1 and 3 (see the same
figures).
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FIG. 6. Phase-space structure of system (2) for �1 = −0.1, C =
0.15, δ = 0.1, g1 = 0.15, g2 = −0.0616. 1 and 2 are saddle equi-
librium points; 3 and 4 are unstable and stable foci, respectively;
Cu and Cs are unstable and stable invariant closed curves of type I,
respectively; and C∗

s and C∗
u are stable and unstable closed invariant

curves of type II, respectively.

C∗
s separated from the type I stable invariant closed curve Cs

by the unstable type I invariant closed curve Cu and by the
invariant manifolds of saddles 1 and 2.

To explain the mechanisms of formation of the observed
structure, we vary the parameter �1. The phase-space structure
evolution when �1 is increasing is presented in Fig. 7. An
increment of �1 leads to a reduction in the C∗

s and C∗
u

radii, and at �1 = −0.097 a Hopf bifurcation takes place
[type II closed invariant curves disappear in the vicinity of
the foci and the foci change their stability; see Fig. 7(a)]. A
further increment of �1 leads to a reduction in the imaginary
parts of the eigenvalues of the foci when the foci approach
the saddles. At �1 = −0.073 the foci become nodes as the
imaginary parts of their eigenvalues vanish [see Fig. 7(b)].
It has to be noted that the structure of the phase space is
different from the case presented in Figs. 2(a) and 3(a), because
there are invariant closed curves, Cs and Cu, which coexist
with the equilibrium points. After a saddle-node bifurcation
at �1 = −0.072, the equilibrium points disappear and only
the type I invariant closed curves Cs and Cu remain in
the phase space [see Fig. 7(c)]. A further increment of �1

leads to a tangency bifurcation of Cs and Cu at �1 = 0.134
and the phase trajectory covers the phase space densely
[see Fig. 7(d)].

Variation of �1 in the negative direction leads to the phase-
space structure evolution presented in Fig. 8. As one can see,
the situation here is similar to the one presented in Fig. 7 except
for the bifurcation illustrated in Fig. 8(a). Here both C∗

s and
Cu approach the homoclinic loop of the saddle equilibrium
point 2 and at �1 = −0.109 the tangency of these three limit
sets takes place. The same situation is observed for C∗

u , Cs ,
and the homoclinic loop of saddle 1. The observed evolution
of the phase-space structure enabled us to construct the one-
parametric bifurcation diagram presented in Fig. 9. The phase-
parametric bifurcation diagram of regions A and B is presented
in Fig. 10.

The Andronov-Hopf bifurcation found in the phase os-
cillator system, (2), is robust and can be observed in the
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FIG. 7. Phase-space structure evolution of system (2) for C =
0.15, δ = 0.1, g1 = 0.15, g2 = −0.0616. (a) �1 = −0.09; the limit
cycles C∗

s and C∗
u have reduced around foci 3 and 4, respectively,

and disappeared through the Hopf bifurcation at �1 = −0.097. (b)
�1 = −0.073; foci 3 and 4 become nodes and approach saddles 1 and
2, respectively. (c) �1 = −0.072; pairwise saddle-node bifurcations
take place. (d) �1 = 0.18; invariant closed curves Cs and Cu

disappear after the tangency bifurcation at �1 = 0.134.

system, not just for the chosen values of control parameters.
Figure 11 shows bifurcation lines of the Hopf bifurcation and
of the tangency bifurcation on the parameter plane of (g1,g2),
indicating that the observed phenomena occur over a wide
range of coupling strengths. The corresponding structures in
the phase space are presented in Fig. 12.

IV. COMPARISON TO THE NONREDUCED CASE

From the bifurcational analysis of the phase oscillator
system, (2), we obtained the following results. In the region
of existence of equilibrium states on the control parameter
plane (�,C) two types of bifurcations of the steady states can
be realized: a saddle-node bifurcation and an Andronov-Hopf
bifurcation. The lines corresponding to the saddle-node bifur-
cation restrict the region of existence of the equilibrium points.
This region corresponds to a so-called Arnold’s tongue in the
nonreduced system, (1), where oscillations are synchronized
on a single frequency [2]. However, the Andronov-Hopf
bifurcation in the reduced system, (2), is of special interest.
We have explicitly shown that this bifurcation can be realized
in (2) only in the case of nonsymmetric repulsive coupling, (6).
The corresponding bifurcational transitions in (1) have not
been analyzed yet. Hence, the following question arises: Is the
Andronov-Hopf bifurcation in the phase oscillators an artifact
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FIG. 8. Phase-space structure evolution of system (2) for C =
0.15, δ = 0.1, g1 = 0.15, g2 = −0.0616. (a) �1 = −0.109. (b)
�1 = −0.159; foci 3 and 4 become nodes and approach saddles 1 and
2, respectively. (c) �1 = −0.162; pairwise saddle-node bifurcations
take place. (d) �1 = −0.7; invariant closed curves Cs and Cu

disappear after the tangency bifurcation at �1 = −0.526.

of the reduction method? In other words, does it correspond to
any bifurcation in the nonreduced system?

To answer this question we consider the nonreduced
system, (1), with the same values of the control parameters as
in the case of the phase oscillators, (2). The Hopf bifurcation
of equilibrium point 3 in the phase oscillator system, (2),
is presented in Fig. 13(a). To compare the behavior of
the nonreduced system of van der Pol oscillators under an
external harmonic force, (1), with the dynamics of the phase
oscillators, (2), we use the stroboscopic section with the

-0.6 -0.4 -0.2 0.2

D C B B C D

A

Δ1
0

FIG. 9. One-parametric bifurcation diagram for system (2) with
C = 0.15, δ = 0.1, g1 = 0.15, g2 = −0.0616. Region A corresponds
to the structure presented in Fig. 6: there are four equilibrium states,
two invariant closed curves of type I, and two invariant closed
curves of type II. Region B corresponds to the structure presented
in Figs. 7(b) and 8(b). Region C corresponds to Figs. 7(c) and 8(c).
Region D corresponds to Figs. 7(d) and 8(d). Regions B, C, and D
show qualitatively the same phase-space structures as the ones in
Fig. 4.
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FIG. 10. (Color online) Phase-parametric diagram for system (2)
with C = 0.15, δ = 0.1, g1 = 0.15, g2 = −0.0616. The thin solid
black curve denotes a stable equilibrium; the thin dashed curves
denote unstable equilibria; the solid gray (red and blue) curves denote
saddles. The thick solid black curve denotes C∗

s ; the thick dashed
black curve denotes C∗

u . 1, 3, 4, and 6 denote a saddle-node bifurcation
[see Figs. 7(b) and 8(b)]; 2 and 5 denote Hopf bifurcations; 7 and
8 denote tangency bifurcations of closed invariant curves with the
homoclinic loops of saddles.

period T = 2π/ω0 of the external forcing and the following
coordinate transformation:

ψ1 = − arctan

(
y1

x1

)
, ψ2 = − arctan

(
y2

x2

)
. (7)

The results are presented in Fig. 13(b). A comparison of the
results presented in Figs. 13(a) and 13(b) clearly shows that
the Andronov-Hopf bifurcation found in the phase-reduced
system, (2), is not an artifact of the reduction routine but is
indeed observed in the nonreduced system (1).

Hence, the Andronov-Hopf bifurcation in the phase-
reduced system, (2), corresponds to the emergence of a two-
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FIG. 11. (Color online) Bifurcation diagram for the phase-
reduced system, (2), on the (g1,g2) parametric plane for C =
0.15, δ = 0.1, �1 = −0.1. The solid line denotes an Andronov-Hopf
bifurcation and the dashed (red) line denotes the tangency bifurcation
of the limit cycle and the homoclinic loop of the saddle.
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FIG. 12. Structure of the phase space of the phase-reduced
system, (2), for C = 0.15, δ = 0.1, �1 = −0.1, g2 = −0.1, and (a)
g1 = 0.1, (b) g1 = 0.185, and (c) g1 = 0.3. 1 and 2 are saddles, 3 and
4 are foci, Cs,u are type I invariant closed curves, and C∗

s,u are type II
closed invariant curves.

dimensional invariant torus [see Fig. 13(c)] in the nonreduced
system, (1). This corresponds to a Neimark-Sacker bifurcation,
however, here we deal with an unusual case. Usually, a
Neimark-Sacker bifurcation corresponds to an Andronov-
Hopf bifurcation in a reduced system including amplitude and
phase equations. Indeed, the torus appearing as the result of the
Neimark-Sacker bifurcation describes amplitude-modulated
oscillations in the nonreduced system. In our case we are
restricted by phase equations considering the amplitudes as
constants. However, taking into account that (2) is a two-
dimensional dynamical system the phase differences between
the phases of each oscillator in (1) and the external forcing can
oscillate. Therefore the two-dimensional torus 2′ in Fig. 13(c)
is an image of phase-modulated oscillations.

V. SUMMARY AND DISCUSSION

In this paper we have considered a system of phase
equations which was obtained using the phase reduction
approach applied to a system of two van der Pol oscillators with
asymmetric repulsive coupling under external excitation, (1).
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FIG. 13. (Color online) The Andronov-Hopf bifurcation in (2),
with �1 = −0.08, g1 = 0.15, g2 = −0.0616, and δ = 0.1, and the
corresponding torus emergence in the nonreduced system, (1). (a)
Before the bifurcation (C = 0.16) the reduced system, (2), possesses
the stable focus 1 on the phase plane. A similar focus can be
observed in the stroboscopic section of the nonreduced system, (1),
in coordinates, (7). (c) This regime corresponds to the stable limit
cycle 1 in the phase space of the nonreduced system, (1). After
the bifurcation (C = 0.1659) the stable limit cycle 2 appears in the
reduced system, (2) (a), as well as in the stroboscopic section of (1)
(b). Further increase in the control parameter leads to an increase in
the limit cycle both in the reduced system, (2), and in the stroboscopic
section of (1). The limit cycle for C = 0.17 is denoted 2′ in (a) and (b).
In the nonreduced system, (1), 2′ corresponds to a two-dimensional
torus.
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We have shown that the use of asymmetrical repulsive coupling
between oscillators leads to a new synchronization scenario.
Using the phase reduction approach we obtained a system
of two phase oscillators with a simple coupling term where
an Andronov-Hopf bifurcation is realized. This bifurcation
was observed before in a system of Kuramoto oscillators with
higher dimension and complex coupling [18,19]. However, this
bifurcation in this type of system has been studied rarely and it
was not clear whether it has a prototype in a nonreduced real-
world system. In this paper we have shown that the Andronov-
Hopf bifurcation in the phase reduction corresponds to the
emergence of a two-dimensional torus on the basis of a limit
cycle (the Neimark-Sacker bifurcation) which is the image of
phase-modulated oscillations in the nonreduced system.

A necessary condition for an Andronov-Hopf bifurcation
is negativeness of one of the coupling coefficients, which
means that the coupling must be repulsive and asymmetric.
Nowadays, the role of repulsive coupling is attracting the
attention of researchers in different branches of nonlinear
science. We show that in the reduced system the Hopf
bifurcation leads to the formation of multistability, which is
common for a wide class of systems. Recently synchronization

in a ring of three repulsively coupled phase oscillators has been
reported [45]. The authors showed that few synchronization
regimes can coexist in the system. However, they do not
carry out a bifurcation analysis to explain the presence of
multistability. We expect that the bifurcations are similar to
the ones presented in our paper and underlie the multistability
observed in [45].

It must be noted that the problem of phase multistability has
been studied in other papers, e.g., [46]. However, the systems
considered in [46] (nonreduced system of mutually coupled
van der Pol oscillators) and other publications [1,15–17,20,21,
37,38] do not possess a Hopf bifurcation in the phase-reduced
case.
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