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We numerically investigate the role of the number of equilibrium points (N) on characteristic
features of stochastic and coherence resonances in a modified Chua’s circuit model equation
capable of generating multi-scroll orbits. Both types of resonances are found for 1 < N < 20.
Almost periodic switching between the scroll orbits is observed at resonance. The values of the
signal-to-noise ratio (used to quantify stochastic resonance), the autocorrelation function and
the ratio of the dominant peak and its relative width in the power spectrum of the output signal
{used to characterize coherence resonance) at resonance increase with N, reaching a maximum
at N = 6 and then decrease. The mean residence time of a scroll orbit at resonance decreases
rapidly with N. We show that both resonances in the multi-scroll orbits can be useful for weak
signal detection.
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detection.

1. Introduction

Stochastic resonance is one of the most remark-
able phenomena in nonlinear dynamics. In a typ-
ical bistable system driven by a weak periodic sig-
nal of frequency w, the output signal-to-noise ratio
(SNR) displays nonmonotonic behavior as a func-
tion of the input noise intensity. This noise-induced
phenomenon called stochastic resonance (SR) has
been studied theoretically, numerically and exper-
imentally in a variety of physical, biological and
engineering systems [Jung, 1993; Gammaitoni et al.,
1998; McDonnell et al., 2008] over the past three
decades. Its occurrence is analyzed in overdamped

and underdamped bistable systems, monostable
systems driven by multiplicative noise (to induce
bistability) and in monostable systems with coex-
isting attractors. Another fundamental resonance-
like behavior is observed in the absence of a weak
periodic input signal and is termed as coherence res-
onance (CR) [Pikovsky & Kurths, 1997]. CR was
first observed in FitzHugh Nagumo equations by
Pikovsky and Kurths [Pikovsky & Kurths, 1997).
When the noise is replaced by a high-frequency
periodic force, the nonlinear systems exhibit reso-
nance behavior and is called vibrational resonance
[Landa & McClintock, 2000).
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It is important to investigate the features of
various dynamics in multi-stable systems or in oscil-
lators with multi-well potentials. This is because
there are many nonlinear systems with multi-stable
states and moreover such studies help us to know
how multi-stable states affect resonance dynam-
ics and explore their role on the characteristics
of the resonance. In this connection very recently,
the occurrence of vibrational resonance has been
analyzed in pendulum systems with a periodic
potential [Rajasekar et al, 2011]. In a damped
and bi-harmonically driven pendulum when the
amplitude of the high-frequency force is varied the
amplitude of oscillation at the low-frequency of
the force, exhibited a series of resonance approach-
ing a nonzero limiting value. Vibrational ratchet
motion is studied in certain systems with spatially
periodic potentials driven by a periodic force and
a noise [Borromeo & Marchesoni, 2006). In the
pendulum system driven by a high-frequency peri-
odic force and noise, applying vibrational mechanics
scheme, it has been shown that mobility and diffu-
sion coefficient are highly sensitive to mass even for
large damping [Borromeo & Marchesoni, 2007].

Very little work is done on SR in periodic
potential systems. It has been shown that [Kim &
Sung, 1998] the resonant behavior exhibited in a
pendulum system is not SR associated with the
hopping between the wells. The observed reso-
nance is a noise-enhanced phenomenon due to the
intra-well motion. In the case of large damping
and weak periodic force, the distribution of the
escape times displayed a series of SR-like peaks
with noise intensity [Kallunki et al., 1999]. Such a
characteristic property is not observed with diffu-
sion coefficient. Nicolis [2010] investigated SR in
a potential with an arbitrary number of minima
and maxima. Employing the linear response theory,
the number of minima and maxima giving maxi-
mum response is obtained. The occurrence of SR
is studied in a pendulum system with the driv-
ing frequency close to the natural frequency using
the input energy and hysteresis loop area as its
characteristic measures [Saikia et al., 2011]. In the
spatially periodic potentials like the pendulum sys-
tem, there are infinite number of minima (which
are stable equilibria). In the field of nonlinear elec-
tronic circuits, there is a class of circuits capable
of producing multi-equilibrium points and multi-
scroll attractors. Such circuits can be easily realized.
For example, the famous Chua’s circuit has been

modified to display multi-scroll orbits by adding
a desired number of breakpoints. The generation
of multi-scroll attractors is realized in a variety
of electronic circuits including the modified Brock-
ett’s system [Aziz-Alaoui, 1999), circuit with a sign
function [Yalcin et al., 2001] or a hyperbolic tan-
gent function [Ozoguz et al., 2002] or a saw-tooth
function [Yu et al, 2007], second-order hystere-
sis system [Han et al., 2003] and jerk circuit [Yu
et al., 2005]. Systematic approaches for generating
n-scroll attractors [Zhong et al., 2002; Lu & Chen,
2006; Campos-Canton et al., 2010] are reported.
The study of such circuits explores the influence of
multi-equilibrium states on the dynamics exhibited
by them.

Motivated by the above considerations, in the
present work we wish to investigate the response
of a modified Chua’s circuit equation with N equi-
librium points and with a saw-tooth wave func-
tion nonlinearity driven by (i) a weak periodic force
and noise, (ii) noise only. That is, especially we are
interested in (i) SR and (ii) CR. So far, these two
phenomena have not been analyzed in multi-scroll
systems. The purpose of our investigation is to
explore the role of multiple states on the charac-
teristic features of both SR and CR in the modi-
fied Chua’s circuit equation and the applicability of
these two resonances on weak signal detection. The
reason for our interest in Chua'’s circuit with multi-
ple equilibrium points is multi-fold. This circuit can
be used in place of spatially periodic systems like
the pendulum system. Multi-scroll attractors have
a wide range of theoretical and real world appli-
cations. For example, a secure digital communica-
tion using a digitized keying method [Tang et al.,
2001] is reported. A random bit generator based on
a double-scroll chaotic attractor is proposed [Yalcin
et al., 2004a, 2004b]. A simple proportional and dif-
ferential controller to control the n-scroll dynamics
of Chua’s circuit to a stable equilibrium point or to
a stable periodic orbit is presented [Boukabou et al.,
2009)].

For the modified Chua’s circuit system with
the number of equilibrium points N ranging from
2 to 20, for each fixed value of N, the quantity
SNR is found to be maximum at an optimum noise
intensity (Dmax). Dumax increases with N, while
the maximum value of SNR at Dyax (denoted
as SNRyax) increases with NN, becomes a max-
imum at N 6 and then decreases. For each
fixed value of N (2 to 20) at resonance almost
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periodic switching between scroll orbits occur. The
mean residence time Ty on a scroll orbit at reso-
nance (D = Dpyax) decreases with N. We found
Tvr(Dmax) = T/[2(N — 1)] where T = 27 /w
and w is the frequency of the input periodic signal.
Because the nonlinearity in the circuit is a symmet-
ric saw-tooth function, Tysg on each scroll is the
same. We explore the utility of SR in a multi-scroll
system in detecting an additional dc or ac signal.
Addition of a dc signal creates an asymmetry in
tlie saw-tooth function in the circuit. Consequently,
TwMmr on a particular scroll orbit is different from the
other scroll orbits. The difference in the mean resi-
dence times, ATyR, varies linearly with the increase
in the dc signal and this characteristic property can
be used as a measure of the presence of a weak dc
signal. On the other hand, the presence of an ac sig-
nal in the input can be detected from the variation
of SNR at the optimum noise intensity, since SNR
varies linearly with the amplitude and the frequency
of the applied ac signal.

The system is found to show CR in the absence
of input periodic signal but in the presence of noise.
The power spectrum of the output signal displays a
dominant peak at a particular frequency. The auto-
correlation function and the ratio of the height of
the dominant peak and its relative width in the
power spectrum vary with the noise intensity in
a fashion similar to SNR in the case of SR. Both
quantities become maximum at the same value of
the noise intensity. In CR also, the response is max-
imum for N = 6. Similar to SR, at CR almost peri-
odic switching between the coexisting states occurs
for 2 < N < 20. The mean residence time Ty at
D = Dyax decreases with N.

The paper is organized as follows. In Sec. 2
first we introduce the modified Chua'’s circuit model
equation capable of generating N scroll attractors.
We analyze the role of the number of equilibrium
states of the circuit model equation on the charac-
teristics of SR. Section 3 is devoted for weak signal
detection through SR using the modified Chua’s cir-
cuit model equation. In Sec. 4 we discuss the effect
of the number of equilibrium states on CR. Section 5
contains concluding remarks.

2. Stochastic Resonance

The dimensionless form of the modified Chua’s cir-
cuit model equation [Yu et al., 2007] proposed for
generating multi-scroll attractors is given by

& = ay — oF(z), (1a)
y=x—-y+z, (1b)
2 = —Py+ fsinwt + 5(t), (1c)
where
F(z) = Fi(z)
= €z + EAsgn(zx)
n-1
—EA Z[sgn(a: + 2jA) + sgn(z — 25 A))

3=0
(2)

F(z) = Fy(z)

=&z~ EA 2_:[sgn(:c + (25 +1)A)
3=0

+sgn(z — (2§ + 1)4)), ®3)

a, 8, A>0,n2>1and sgn(z) = -1, 0, 1 for
z <0, z =0 and z > 0 respectively.

F(z) given by Egs. (2) or (3) is a saw-
tooth function with amplitude 2A£ and period 2A4.
Figures 1(a) and 1(b) depict the forms of F(z) and
F5(x) respectively for n = 2, £ = 0.25 and A = 0.5.
The piecewise-linear functions Fi(z) and F>(z) have
multiple breakpoints. The number of breakpoints
depends on the value of n in Egs. (2) and (3). The
breakpoints are given by

+(m - 1), for Fi(z)
T, (4)
’ + (m - é), for Fp(z),
where m 1,2,...,n. The equilibrium points

about which scroll orbits occur are given by

[£(2m — 1)A,0,F(2m — 1)A4],

for F\{(z
(xm Ye, Ze) v I ( ) (5)
(0,0,0), (£2mA, 0, +2mA),

for F»(z),

where m 1.2,...,n. The system (1) in the
absence of external forces with F;(z) possesses N =
2n equilibrium points, while with Fy(z), the system
admits NV = 2n+1 equilibrium points. To realize the
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The graph of (a) Fi(z), (b) Fa(x) given by Egs. (2) and (3) respectively with n = 2, £ = 0.25 and A; = 0.5. The

equilibrium points about which scroll orbits occur are indicated by solid circles. (a) and (b) n = 2.

system (1) with an even respectively odd number of
equilibrium points, we use the functions Fj(z) and
Fy(z) respectively as F(z).

We fix the values of the parameters in Eq. (1)
asa=6,0=14, A =0.5,£ =0.25 and f = 0.07
so that the noise free system (n(t) = 0) possesses
N coexisting period-T'(= 27 /w) orbits. About each
equilibrium point there is one periodic orbit. Each
orbit is confined between two consecutive break-
points. Between two consecutive equilibrium points
there is a finite height barrier located at the break-
points. There is no cross-barrier motion for the
above chosen values of the parameters. A barrier
crossing can be induced by an additive noise leading
to SR. We choose 7(t) as Gaussian white noise with
zero mean and correlation (n(t)n(s)) = Di(t — s)
where D is the noise intensity. In the numeri-
cal analysis, Eq. (1) is integrated with the time
step At = (2m/w)/2000. Starting from an initial
condition (z(0),y(0),2(0)) near the origin without
noise term, Eq. (1) is integrated to get the solu-
tion (z(At),y(At), z(At)). Noise is then added to
the variable z as z(At) — z(At)+ v DAt n(t) where
7n(t) represents Gaussian random numbers with zero
mean. In this way noise is added to the state vari-
able in each integration step. We analyze the effect
of the number of equilibrium states on the various
characteristics of SR.

One of the characteristic measures of SR is SNR
given by

SNR = 10log,, (i) dB, (6)
N

where S and N are the amplitudes of the signal and

the background noise respectively computed from

the power spectrum at the frequency w of the input

signal fsinwt. Figure 2 presents the SNR profile

for N € [2,20]. In this figure, we note that for each

fixed value of N, as the noise intensity D increases
from a small value, SNR increases, reaches a maxi-
mum value at an optimum noise intensity denoted
as Dyax and then decreases. This is a typical sig-
nature of SR phenomenon.

Figure 3 shows typical time-series plots for a
few fixed values of D with F(z) = Fy(z) andn =1
(N = 2). For small values of D the motion is con-
fined around each of the two equilibrium states
as in Fig. 3(a). The two orbits in this figure are
obtained for two different initial conditions. The
system exhibits a behavior similar to that of the
noise free case but in a slightly perturbed form due
to the applied noise. As D increases, at D = D,
onset of a cross-barrier behavior occurs. For D > D,
the trajectory jumps randomly from one side of
the barrier (or the breakpoint) to the other etc.
In Fig. 3(b) for D = 0.04 the state variable z
switches irregularly but occasionally between posi-
tive and negative values, that is, between the two
sides of the barrier. In a symmetric bistable oscilla-
tor with a double-well potential this type of motion

35¢
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Fig. 2. Variation of signal-to-noise ratio (SNR) as a function
of the noise intensity D for the modified Chua’s circuit model
equation for N = 2,3,...,20. For N = 2,4,...,20 the func-
tion F(z) in Eq. (1) is chosen as Fj(z) with n=1,2,...,10
respectively and for N = 3,5,....19 F(z) = Fy(z) with
n=1,2,...,9, respectively.

1350132-4



Stochastic and Coherence Resonances in a Modified Chua’s Circuit System

8 Of -
e e
-1.5} , . LA
0 200 400 600
t
(a)

0 200 400
t
(c)
Fig. 3.

15 7 ]

400 600

t

0 200

(b)

2.5 f P 3-

N
0
1

400 600

t
(d)

0 200

x versus t of Eq. (1) with two equilibrium points (N = 2) for four values of noise intensity D. F(x) is chosen as F ()

with n = 1 so that N = 2n = 2. The values of the other parameters are « = 6, 8 = 14, A = 0.5, £ = 0.25. w = 0.05 and
f=0.07 (a) N=2,D=0.004, (b) N=2, D=004, (c) N=2, Dyax =0.14 and (d) N =2, D = 04.

corresponds to a cross-well orbit and the depth of
the well and the local maximum of the potential
correspond to the barrier height and the breakpoint
respectively in the function F(z). The switching is
not periodic for small values of D. As the value
of D increases further, the switching between the
coexisting states increases. At D = 0.14 [Fig. 3(c)]
almost periodic switching is seen. SNR is maximum
at this value of D. For sufficiently large values of
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D, the motion is dominated by the noise. In this
case the intermittent dynamics disappears and the
trajectory jumps erratically between both sides of
the barrier. This is shown in Fig. 3(d) for D = 0.4.

Figures 4(a) and 4(b) depict the effect of N on
Duax and SNRyax respectively. Dyax increases
monotonically with N and its variation is a non-
linear function of N. Though the barrier height
remains same at all the breakpoints and same for
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Fig. 4. Variation of (a) Dyax and (b) SNRyjax with the number of equilibrium points N.
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all values of N > 2, the value of Dpax at which res-
onance occurs depends on N. Even though Dyax
increases with IV, the SNRya x neither increases nor
decreases monotonically with N as seen in Fig. 4(b).
Interestingly, SNRpax increases with N, becomes
maximum for N = 6 and then decreases. This
implies that along with the optimum noise inten-
sity an optimum number of equilibrium points can
be used to enhance the SR phenomenon. In this
connection we wish to point out that for a pendu-
lum system with N coexisting states, Nicolis [2010]
theoretically predicted that there exists an optimal
number of coexisting states for which the response
of the system at resonance is maximized.

Figure 5 presents the almost periodic switch-
ing between the coexisting states at D = Dyax
for N = 2, 4 and 6. In this figure, corresponding
to the two coexisting states (N = 2) the trajectory
switches almost periodically between the states. For
the case of four and six coexisting states (N = 4
and 6 respectively) as shown in Figs. 5(b) and 5(c)
respectively the trajectory visits the states one by
one say, left most state to the right most state,

W W “

0 100 200 300

t

-15

reverses the direction of visit and so on. We can
clearly notice that the time spent about an equilib-
rium point varies with N. When the system (1) has
N equilibrium points, then there are (N — 1) break-
points in the function F(z). Suppose we denote the

left most breakpoint as x{)l), the next breakpoint as

() ()

Ty and so on. Let us call the region < x; ' as R,
(1) (2)

Typy < & < Ty, as Ry.
For N > 2 during one drive cycle, a trajectory after
the transient motion enters and leaves the regions
R, and Ry once, while twice the other regions. If
we denote TS{)R as the mean residence time in the
ith region, then at D = Dyax we realize that

T 42 Z T8 47 T, (7)

For each fixed value of N, the mean residence
times in each of the N regions are all the same.
Figure 6(a) displays the numerically computed Tuygr
at D = Dyax as a function of N. We can clearly see
the effect of N on the mean residence time Ty g at
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x(t) versus t for three even integer values of N at D = Dyax at which SNR is maximum. Similar periodic switching to
2, Dpiax = 0.14, (b) N =

Fig. 5.

coexisting states occurs for N = 3.5,.... (a) N =

200 300

t

4, Dyiax = 0.172 and (¢) N = 6, Dyax = 0.25.
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(a) Dependence of mean residence time Tyr of a trajectory about an equilibrium point on the total number of

coexisting states N. Solid circles are the numerically computed values of Tjqg. Continuous line represents the relation Ty =
T/[2(N -1)] where T = 27 /w. (b) Plot of T/T\r versus N. Solid circles are the numerically computed data and the continuous

line corresponds to T/Tyg = 2(N - 1).

resonance (D = Dpax). It decreases with N follow-
ing the simple relation Tyr = T/|2(N — 1)] where
T = 2w Jw. This is clearly evident in Fig. 6(b) show-
ing T/Tumr (measuring the number of switches per
drive cycle) versus N. The z-component values of
the equilibrium points of the noise free and unforced
system are equidistant and the function F(z) has
equidistant breakpoints and the barrier heights at
the breakpoints are all the same. Due to these prop-
erties, the Tgr of a trajectory in all the regions are
the same. For N = 2 at D = Dyax = 0.14 [see
Fig. 5(a)] the mean residence time Tygr = T/2.
While for N = 4, at D = Dyax = 0.172 the
corresponding Tyig is T/6. For N = 6 we found
D = Dyax = 0.25 and Tyg = T/10.

For D < D, and for an initial condition, the
long time motion (after leaving the motion corre-
sponding to first 100 drive cycles of the external
periodic force as a transient) is confined around any
one of the equilibrium points. The equilibrium point
about which motion occurs depends on the initial
conditions. For both D < D, and D > D, the state
variables (z(t),y(t), 2(t)) depend on initial condi-
tions. We computed SNR and Ty\g for several set
of values of D and initial conditions. The variation
of SNR and Ty with initial conditions is found to
be negligible. That is, the characteristic features of
SR are insensitive to initial conditions.

3. Signal Detection Using Stochastic
Resonance
Next, we discuss the problem whether it is possi-

ble to realize a mean residence time based signal
detection making use of the modified Chua’s circuit.

Recently, residence time based detection strategies
for nonlinear sensors have been suggested [Gam-
maitoni & Bulsara, 2002; Bulsara et al., 2003; Dari
et al., 2010]. In this section, we use SR in system (1)
for weak dc and ac signal detection by introducing
an asymmetry in the characteristic function F(z).
Specifically, we consider the mean residence time
asymmetry in the noisy multi-stable system.

By an additional dc signal we can alter the
barrier height at one or more breakpoints. In the
absence of a dc signal, distributions of residence
times as well as mean residence times about var-
ious coexisting states are the same. They can be
changed by an additional dc signal and the differ-
ence in the mean residence times can be used to
measure the amplitude of the input dc signal.

Suppose we feed a dc signal, say d, to the mod-
ified Chua’s circuit so that the functions Fj(z) and
F5(z) are modified into

F (.’B) — Fl(:l:) = ng
Fy(z) — Fa(z) — €4y,

(8a)
(8b)
where
d, if (x+2jA) <0 for Fi(x)
g=14d, if (@+(27+1)A) <0 for Fo(z) (8c)
0, otherwise

and assume that d > 0. For simplicity we consider
the system with only two breakpoints and three
equilibrium points (N = 3) which can be realized
for F = Fp(x) with n = 1. Figure 7 shows the plot
of Fp(x) versus x for n = 1, d = 0 and 1. We
can clearly notice the influence of d. The barrier

1350132-7



5. Arathi et al.

0.3

Fig. 7. Plot of F»(z) given by Egs. (3) and (8) withn =1
(that is, N = 3), £ = 0.25, A = 0.5 and for d =0 and 1.

heights at the breakpoints are the same for d = 0.
When d # 0 the barrier height at a:l()lg = —0.5is

less than that at zl()? = 0.5. For arbitrary N and
d # 0 the heights of the barriers at z,, < 0 are
altered by the input dc signal. In the absence of
noise and in the presence of weak periodic force,
the system has three orbits about the equilibrium
points . = —1,0,1. We call the orbits around the
points 2, = —1,0,1 as the left-, middle- and right-
orbits respectively. When noise is introduced, SNR
becomes maximum at an optimal noise intensity
and the system displays SR.

In the presence of a dc signal the mean resi-
dence time of a trajectory on the left-orbit is dif-
ferent from that on, say, the right-orbit. We define
ATyr = TRg — Thgr where TRy and Ty are
the mean residence times on the right- and the
left-orbits, respectively. We calculate numerically
ATy\pg for a range of values of d for D = 0.14 and
for a few fixed values of N. The result is presented
in Fig. 8. Interestingly, AT\r = sd. The values of

40 [ ' ’ '
e N =2
g
20 .
<
0 N 1 N 1
0 0.05 0.1

Fig. 8. Variation of ATyg with the dc signal d for three
fixed values of N with D = 0.14. The symbols are numerical
data while the continuous lines are the best straight-line fit.

s for N =2, 3 and 4 are 323.87, 232.62 and 158.13
respectively.

Ac signal detection is also possible using SR
in the modified Chua’s circuit. Suppose both fre-
quency (w) and amplitude (f) of the input signal,
for example fsinwt, are unknown. When the inten-
sity of the noise is varied, we notice that the peak in
the power spectrum at the frequency (or its integral
multiple) of the input periodic signal alone shows
the signature of SR, that is, it increases, reaches a
maximum at an optimum noise intensity and then
decreases. This property can be used to identify the
frequency w of the input signal. For a fixed noise
intensity, we can compute SNR and then making use
of the predetermined relation between the ampli-
tude f and SNR we can determine the amplitude
f of the unknown input signal. It is noteworthy to
point out that the relation between f and SNR is
found to be linear. Figure 9 shows f and w versus
SNR. The dependence of SNR on w is also linear.

(b)

Fig. 9. Variation of SNR. with (a) the amplitude f and (b)
the frequency w of the input periodic signal for N = 2, 3,
4 and D = 0.14. In (a) w = 0.05 and in (b) f = 0.07. The
symbols are numerical result and the continuous lines are the
best straight-line fits.
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4. Coherence Resonance

The modified Chua’s circuit Eq. (1) exhibits CR
in the absence of input periodic signal. The values
of the parameters in Eq. (1) are the same as those
used in SR analysis except f = 0. We analyze the
response of the system by varying the noise intensity
for various fixed values of N.

Prior to a detailed characterization of CR, we
first show a signature of it in the power spectrum of
the z-component of system (1). Figure 10 presents
the power spectrum for three values of noise inten-
sity for N = 2. Even though there is no input
periodic signal of a definite frequency, the power
spectrum shows a dominant peak at the particular
frequency wg = 0.045. The presence of a dominant
frequency in the trajectory of the system indicates
the rotational motion about the equilibrium points.
Additional peaks are not found for a wide range of
noise intensity. The value of wp is found to be the
same for other values of N. In Fig. 10 we notice
that the width and the height of the peak in the
power spectrum increase with increase in D but in
different rates.

The temporal order in the noise-induced
dynamics is often quantified in terms of correla-
tion time 7. [Pikovsky & Kurths, 1997]. For the z-
component of the state variable of the system, the
normalized autocorrelation function is given by

(Z@)z@E+ 1))

0=

(9)

where Z = z — (z). Then the correlation time 7 is

o0
Tc'—"/ C%(7)dr.
0

(10)

0 0.05 0.1
w

Fig. 10. Normalized power spectrum of z-component of the
system (1) for three values of noise intensity in the absence of
external periodic force. The values of D for the spectra (a),
(b) and (c) are 0.01, 0.058 (optimum value) and 0.1 respec-
tively.

Fig. 11. Variation of correlation time with the noise inten-
sity D for various fixed values of N.

For a time series, the larger the value of 7, the larger
the temporal coherence. C(7) is numerically com-
puted for 0 < 7 < 7 in steps of 0.01. For each
T, after leaving a sufficient transient motion, z(t),
t' <t <t +10° is used for the computation of
various average quantities in Eq. (9). C(7) exhibits
damped oscillation. 7’ is chosen suitably so that for
r>7',|C(1)| < 1075,

Figure 11 shows 7. versus the noise intensity D
for various fixed values of N. The 7. versus D profile
resembles the SNR profile shown in Fig. 2 for SR.
For each fixed value of N, 7 increases with increas-
ing D, reaches a maximum at an optimum noise
intensity and then decreases. In Fig. 12(a) the value
of Dyax at which 7. becomes maximum increases
with increasing N. In Fig. 12(b) the variation of
maximum of 7. with N is similar to the variation of
SNRMmax with N. 7¢max is also found to be maxi-
mum for N = 6.

Another statistical measure of CR is the quan-
tity G5 given by [Sun et al., 2008]

Bs = 10log;q (%) dB, (11)

where H is the height of the peak in the power
spectrum of the state variable, say, z at the dom-
inant frequency wp shown in Fig. 10. W = Aw/wp
where Aw is the half-width of the power spectrum
about wp. Bs describes coherence in switching. H
and W vary in different rates with D. The value of
D at which 8 becomes maximum is considered as
the optimum noise intensity Dyax. Figure 13 shows
the dependence of s on D for three values of N.
For N = 2, 4 and 6, both f; and 7. are maximum
at D = 0.06, 0.08 and 0.09, respectively.

To gain more insight into the noise-induced CR
dynamics, we consider the mean residence times
about the coexisting states. For very small noise
intensity, the motion is mostly confined to an equi-
librium point and very rare switching between the
coexisting states occurs. In SR, the noise-induced
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Fig. 12. Variation of (a) Dyax, the value of D at which
correlation time becomes maximum and (b) 7¢, computed at
D = Dyax, with the number of equilibrium points N.

switching is assisted by the periodic force. Conse-
quently, resonance is realized when there is a syn-
chronization between the switching motion and the
input periodic signal. In the case of CR even though
there is no input periodic signal, almost periodic
switching between the coexisting states is found to
occur at an optimum noise intensity. Figure 14 illus-
trates the nature of evolution of the z-component
of the system at CR for three values of N. We

0 o1 0.2
D

Fig. 13. CR parameter §s versus the noise intensity for three
values of N.

3 T T .
80 M ! Mmmw
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(b)

(c)
Fig. 14. The coherent switching dynamics at Dyax for

three values of N. (a) N = 2, Dyax = 0.058, (b) N = 4,
Dpiax = 0.08 and (¢) N =6, Dyax = 0.09.

can clearly see a staircase-like switching among the
coexisting states.

Figure 15(a) shows the variation of mean resi-
dence time at resonance (D = Dyax) with N. Tyr
decreases with increase in N. In Fig. 15(b) the quan-
tity T/Twmr, where T = 27 /wp, varies linearly with
N. We find T/T\ir = aN + b where a = 0.37 and
b = 1.2, while for SR, T/Tuyr = 2(N — 1) with
T = 2w/w. The features of CR are found to be
insensitive to initial conditions.

CR is also useful for dc signal detection (addi-
tion of an unknown ac signal and noise leads to
SR). We follow the same methodology considered
in Sec. 3 in the case of SR. Figure 16 shows the
numerically computed AT\r = T{‘m - Thp as a
function of the dc signal d for N = 2, 3 and 4. For
all the three values of N, the quantity AT\ig varies
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Fig. 15. (a) Plot of the mean residence time Tyg at D = Dpax versus N of system (1) driven by external noise in the
absence of periodic input signal. (b) T/Tyg versus N where T = 27 /wp, wg = 0.045.

linearly with d as ATyr = sd. The value of s for
N = 2, 3 and 4 are calculated as 106, 87 and 69
respectively.

Few methods are available for signal detection.
A straight-forward approach is the computation of
Fourier transform of the time series of a given signal.
It shows dominant peaks at the various frequencies
present in the signal. In most of the sensors, occur-
rence of harmonics in the power spectrum is often
used to detect the frequencies present in the sig-
nal. A feedback mechanism also exists for dc sig-
nal measurement. Some of the drawbacks of this
scheme are given in [Bulsara et al, 2003]. If the
amplitude of the signal at a particular frequency is
so weak then the Fourier transform technique may
not be helpful. In this case, we can make use of SR,
CR and vibrational resonance (VR) phenomena.
In the VR approach, a nonlinear system is driven
by a weak periodic force of frequency, say, w and
another periodic force of relatively high frequency
Q with Q > w. A difficulty with this method is that
the frequency € of the second periodic force should
be > w. In order to choose the value of 2 we need to

OFNZ2 ]
g |oN
230 | g
<
O 1 . !
0 0.25 0.5

Fig. 16. Dependence of ATy on the applied input dc signal
d for three values of N and D = Dyax(N).

know the range of the unknown frequency w. In this
approach, a dc signal cannot be easily predictable.

Interestingly, in the modified Chua’s circuit sys-
tem, the height of the barrier at a breakpoint can be
altered by the addition of a dc signal. This leads to
asymmetry in the mean residence times of the tra-
jectory about the stable equilibrium points when
the system is subjected to noise. The asymmetry
can be used to determine the presence of dc signal
through both SR and CR. Also, we have pointed out
the determination of unknown frequency and ampli-
tude of a signal making use of SR in the system (1).
The mean residence time based signal detection
can be implemented experimentally [Bulsara et al.,
2003]. It is noteworthy to mention that as pointed
out in [Nikitin et al., 2003 the measurement error
occurring due to the finite time interval of the signal
is minimum at the resonance.

5. Conclusion

In conclusion the effects of multiple coexisting equi-
librium points on both SR and CR are numerically
investigated with reference to a modified Chua’s
circuit model equation. We mainly focused on the
variation of statistical measures with the number of
equilibrium points at the optimum noise intensity
at which resonance occurs. The number of equilib-
rium points gives rise to similar effects for both res-
onances. Another notable result is that SR occurs,
that is, SNR becomes maximum only when the
mean residence times about the coexisting states
are all same and equal to T/[2(N — 1)] where T
is the period of the input periodic signal. On the
other hand, in the absence of an input periodic sig-
nal, CR takes place when the mean residence times
about the coexisting states are same and equal to
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Tmr(Dmax) = T/(aN + b) where a = 0.37 and
b=12and T = 27 /wy with wg = 0.045. Further-
more, the variation of SNR (in the case of SR) and
correlation time 7. (in the case of CR) with number
of equilibrium points is nonmonotonic and is maxi-
mum at N = 6. Tiyg and Dyax also depend on N.
The two resonances reported in this paper can be
realized experimentally in the modified Chua’s cir-
cuit system with multiple equilibrium points and
breakpoints and exploiting them for weak signal
detection will have practical applications.
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